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Overview

Probabilistic approach
Markov Random Field (MRF) models
Markov Chain Monte Carlo (MCMC) sampling

Variational approach
Shape priors for variational models



Why MRF Modelization?

In real images, regions are often homogenous; 
neighboring pixels usually have similar 
properties  (intensity, color, texture, …)
Markov Random Field (MRF) is a statistical 
model which captures such contextual 
constraints
Well studied, strong theoretical background
Allows MCMC sampling of the (hidden) 
underlying structure.



What is MRF

To give a formal definition for Markov Random 
Field, we need some basic building blocks

Observation Field and Labeling Field 
Pixels and their Neighbors
Cliques and Clique Potentials
Energy function
Gibbs Distribution



Overview of MRF Approach - Labelling

1. Extract features from the input image
Each pixel s in the image has a feature vector     
For the whole image, we have

2. Assign each pixel s a label     
For the whole image, we have
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Probability Measure, MAP

For an nXm image, there are (n·m)Λ possible labelings.
Which one is the right segmentation?

Define a probability measure on the set of all possible 
labelings and select the most likely one.

measures the probability of a labelling, given 
the observed feature 
Our goal is to find an optimal labeling      which 
maximizes
This is called the Maximum a Posteriori (MAP) estimate:
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Bayesian Framework

By Bayes Theorem, we have

is constant 
We need to define         and               in our 
model
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Definition – Neighbors

For each pixel, we can define some surrounding 
pixels as its neighbors.
Example : 1st order neighbors and 2nd order 
neighbors



Definition – MRF

The labeling field X can be modeled as a 
Markov Random Field (MRF) if 

1. For all 
2. For every         and          , 

denotes the neighbors of pixel s
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Hammersley-Clifford Theorem

The Hammersley-Clifford Theorem states that a 
random field is a MRF if and only if         follows 
a Gibbs distribution.

where                               is a normalization 
constant

This theorem provides us an 
easy way of defining MRF models via 
clique potentials.
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Definition – Clique 

A subset            is called a clique if every pair of 
pixels in this subset are neighbors.
A clique containing i pixels is called ith order 
clique, denoted by .
The set of cliques in an image is denoted by 
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Definition – Clique Potential

For each clique c in the image, we can assign  a 
value         which is called clique potential of c, 
where      is the configuration of the labeling field
The sum of potentials of all cliques gives us 
energy         of the configuration
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Current work in MRF modeling

Multi-layer MRF model for combining 
different segmentation cues:

Color & Texture [ICPR2002,ICIP2003]
Color & Motion [HACIPPR2005, ACCV2006]
…?



Project Objectives

Multiple cues are perceived 
simultaneously and then they are 
integrated by the human visual system 
[Kersten et al. An. Rev. Psych. 2004]

Therefore different image features has to be 
handled in a parallel fashion. 

We attempt to develop such a model in a 
Markovian framework

Collaborators:
Ting-Chuen Pong from HKUST – Hong Kong



Multi-Layer MRF Model: 
Neighborhood & Interactions

ω is modeled as a MRF
Layered structure
“Soft” interaction 
between features
P(ω | f) follows a 

Gibbs distribution
Clique potentials define 
the local interaction 
strength

MAP ⇔ Energy 
minimization (U(ω))
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Extract Color Feature

We adopt the CIE-L*u*v* color space because it 
is perceptually uniform.

Color difference can be measured by Euclidean 
distance of two color vectors.

We convert each pixel from RGB space to CIE-
L*u*v* space 

We have 3 color feature images

L* u* v*



Color Layer: MRF model
Pixel classes are represented by 
multivariate Gaussian distributions:

Intra-layer clique potentials:
Singleton: proportional to the likelihood of 
features given ω: log(P(f | ω)).
Doubleton: favours similar classes at 
neighbouring pixels – smoothness prior

[+ Inter-layer potentials (later…)]
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Texture Layer: MRF model

We extract two type of texture features
Gabor feature is good at discriminating strong-
ordered textures
MRSAR feature is good at discriminating weak-
ordered (or random) textures
The number of texture feature images depends on the 
size of the image and other parameters.

Most of these doesn’t contain useful information 
Select feature images with high discriminating power.

MRF model is similar to the color layer model.



Examples of Texture Features

MRSAR features:

Gabor features:



Combined Layer: Labels

A label on the combined layer consists of a pair 
of color and texture/motion labels such that               

,  where             and 
The number of possible classes is
The combined layer selects the most likely ones.  
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Combined Layer: Singleton potential

Controls the number of classes:

is the percentage of labels belonging to class
L is the number of classes present on the combined 
layer.

Unlikely classes have a few pixels they  will 
be penalized and removed to get a lower energy

is a log-Gaussian term:
Mean value is a guess about the number of  classes,
Variance is the confidence.
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Combined Layer: Doubleton potential

Preferences are set in this order:
1. Similar color and motion/texture labels 
2. Different color and motion/texture labels
3. Similar color (resp. motion/texture) and different 

motion/texture (resp. color) labels
These are contours visible only at one feature layer.
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Inter-layer clique potential

Five pair-wise interactions between 
a feature and combined layer
Potential is proportional to the 
difference of the singleton 
potentials at the corresponding 
feature layer.

Prefers ωs and ηs having the same 
label, since they represent the 
labeling of the same pixel 
Prefers ωs and ηr having the same 
label, since we expect the combined 
and feature layers to be homogenous



Color Textured Segmentation

segmentation

segmentation

color

color

texture

texture



Color Textured Segmentation
Original Image Texture 

Segmentation 
Color 

Segmentation 

   
Multi-cue Segmentation 

Texture Layer 
Result 

Color Layer 
Result 

Combined Layer 
Result 
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Motion Layer:
1. Flow-based model

Compute optical flow data which characterizes the 
visual motion of the pixels

Proesmans et al. [ECCV 1994]
2D vector field we have 2 motion feature images

Then a similar MRF model can be applied at the 
motion layer as for the color layer.

Note that the Gaussian likelihood implies a 
translational motion model



Motion Layer:
2. Motion compensated model

Each motion-label is modeled by an affine motion 
model:

us gives the motion at s assuming label ωs
Given 2 successive frames F and F’ and 
assuming brightness / color constancy

we have the singleton potential 
||F(s)-F’(s+us)||2

A special label is assigned to occluded pixels
Occluded pixels will have a high color difference for any 
motion label 

occluded singleton potential is a constant penalty 
lower than these differences.

Doubleton potential is the usual smoothness prior.
[+ Inter-layer potentials]
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Color & Motion Segmentation


