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Introduction

= Proposed in their influential paper by

David Mumfoerd
= Qittp - //www. dam.- brewn . edu/people/mumford/

Jayant Shah
= Qietp s //www. math.-neu. edu/=shah/
Optimal Approximations by Piecewise Smooth
Functions and Associlated Variational
-~ Problems. Communications on Pure and Applied
Mathematics, Vol. XLIl; pp 577-685, 1989




Images as functions

= A gray-level image represents the light
~ Intensity recorded in a plan demain R
\We may Introduce coordinates x, V.
et g(x,y) denote the intensity recorded at the
point (x,y) of R

Ihe function g(x;y) defined on the domain R IS
-~ called an image.




What Kind of function iIs g7

= The light reflected by the
surfaces S; of various
~ objects O; will reach the
domain R in various open
subsets R:

= \When O, appears as the
background to the sides of
- O, thenithe open sets R,
and R, will'have a
- common boundary (edge)

= One usually expects g(x,y)
to be discontinuous along
this boundary.

Figure 1. An image of a 3D scene.




Other discontinuities

= Surface orientation of visible objects (cube)
= Surface markings
~ = [[lumination (shadows, uneven light)

Fxiremal




Piece-wise smooth g

= |n all cases, we expect g(x,y) to be piece-wise
Smooth to the first approximation.

= |t Is welllmodelled by a set of smooth functions f;

defined on a set of disjoint regions R; covering R.

~ = Proplems:

Tlextured objects (regions perceived homogeneous but
—lots of discontinuities. in:-intensity)

Sahdews are not true discontinuities
Partially transparent ebjects
Noise
= Still widely' and succesiully applied model!




Segmentation problem

=  Consists in computing a decomposition of
the domain of the image g(x,y)

R =

1=1

1. gvaries smootly and/or slowly within R

2. g varies discontinuously: and/or rapidly
ACleSS Moest of the boundary [ between
iegions R;




Optimal approximation

= Segmentation problem may be restated as
finding optimal approximations ofi a general function g

by plece-wise smoothi functions f;, whose restrictions f;
to the regions R; are differentiable

-~ = Many other applications:
Speech recognition
Sonar, radar or laser range data

CAT scans
etc...




Optimal segmentation

= Mumford and Shah studied 3 functionals which
measure the degree of match between an image

g(x,y) and a segmentation.

= First, they defined a general functional E (the

famous Mumford-Shah functional):

R: will'be disjoint. connected open sulsets of the planar

domain R, eachione with a piece-wise smooth beundary.
["willFlbe the union of the houndaries.
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Mumford-Shah functional

= | et fdifferentiable on CR: and allowed to
be discontinuous across /-

E(f.1) = [[ (f—g)?dxdy+ [[ [VF| dxdy+v]r
= TJhe smaller E, the better (f, [)) segments g

1. fapproximates g

2. f(hence g) dees not vary much on RS
3. The beundary [r be as short as possible.
= [Dropping any. term would cause inf E=0.
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Cartoon image

= (f, I') Is simply a cartoon of the original image g.

TThe objects are drawn smootly without texture

(f, [)1s essentially an idealization of g by the sort of
- Image created by an antist.

Such carteons are perceived correctly as representing
the same scane asi g => fis a simplification of the scene
containing mest ofi its essential features.
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Related problems

= D, Geman & S. Geman: Stochastic relaxation,
Gibhbs distribution and the Bayesian restoration of
~ Images. IEEE Trans. on PAMI 6, pp 721-741,
1984.
MRE model
- = A Blake & A. Zisserman:; Visual Reconstruction.
MIT Press, 1987
\Weak membrane model
- = M. Kass, A. Witkin & D. Terzopoulos: Snakes:

Active contour Models. International Journal of
Computer Vision, vel. 1, pp 321-332, 1988.

Active contour model




Pilecewise constant
approximation
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= A special case of E where f=a; IS constant

- 0h eachiopen set R..

W PE(f,T) = Z jj (g - a)zdxdy+ .y

- ObvmuslygﬂsmmlmJZEdJnaibyﬁe
(o the mean of g in R:

.Imga,-

jj gdxdy
a, =meang (g) = area(R.)
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Pilecewise constant
approximation

Eo() =2, ][, (g —mean, (9))*dxdy +—]r]

U
- " |t can be proven that minimizing E, Is well
posed:
Eor any continueus: g, there exists a /& made up

of finit nUMBEr of singular points jeined by a finit
NUMBEr of arcs on which E, atteins a minimum.

= |t can also be shown that E, IS the natural
limit functional of E as u->0
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Relation to the Ising model

= |f we further restrict fto
i take only values of +/-1.
“ assume that g and f are defined on:a lattice

then E, becomes the energy of the Ising
model.
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Relation to the Ising model

igure 2. Continuous vs. discrete segmentation.
= /7 IS the path between all pairs ofi lattice points on
~ Which fchanges sign:

E,(f) = Z(f(I D-9G, i)+ > (FG, J)-f(k1)°

(I 1),(K,1)




18

Weak string

= Eitting an elastic spline with possible breaks, (line
. precess or lecal edges)
Remove noise
Approximate with smeoth curnves
Breaks where smoothness IS not satisfied




19

Energy of a weak string

E(T) :Z(fi _di)2 +ZZ(fi+1_ fi)z(l_li)_l_azli

- = g IS the cost of Inserting a break (local edge
element) /.

= [ may take binary values [0,1]
= [ is turnedion when (f...-f; )2>a//




Weak membrane model

— v = vertical line processor

| h=horizontal line processor -
@ pixel value estimate f -

IE(fi,j’h,j1\/i,j):Z(fi,j _di,j)2 Z(fi+1j_fi,j)2(1_h,j) I
+/IZ(fi,j+l_ fi,j)z(l_vi,j)_l_aZ(Vi,j +h,j)+KZ:\/c(i1 )




Contour continuity
constraint

=V _(I,j) energy term:
Low: for O, 2 lines

Medium for 3 lines

High for 1, 4 lines
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First variation and
the Euler equation

= The extrema of a function f(x) are attained where
=0
= Similarly, the extrema of the functional E(u) are
obtained where E* = 0.
E = (FJE /du)is the first variation.
“ Assuming a cemmon fermulation where u(x):[0,1] >R,

u(0)=a and u(1)=b, ;
E(u) :jo F(u,u'")dx

the basic problem;is to minimize:

TThe necessary condition for u
to be an extremum ofi E(u) Is the
Euler equation

ofi a ene dimensional preblem.
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Energy minimization:
Gradient descent

= The Euler equation can be solved
by numerically selving (1).

= _Can be formulated as an evolution
equation (t— time):

= For example, updating fwhile /1

fixed (string):

(1)

=2(f, —d;)—2A(f,, - 1)A-1) (2
o
o \Works only for convex
t+1 t -
== ®) functions!
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Energy minimization.
Simulated Annealing example

L|ne process (I) Surface signal ()

= Works for non-convex %J
energy functions -‘? e o o
1=6, a=0.04 o
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Energy minimization:
Graduated non-convexXity.

= Proposed by Blake & Zisserman for the
weak membrane’s energy.

= PBasic idea:

Approximate the originall energy functional by
a Convex one

2.~ Dora gradient descent on the appreximation

Gradually morph back the approximation Into
the originall energy while repeating step 2.

= |n case of a weak membrane energy, the
moerphing can be parametrized!
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Graduated non-convexity

= GNC runs downhill'en
each ofia seguence of
functions

= |t reaches a global
~ Optimuny assuming &
seuence of
approximating and
~ locally convex funtiens
exist.
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Convex approximation of
the weak membrane energy

(P :Z(fi —di)2+zg(p)(fi — fi_l)

= FO=E the original . [L/2 string
functional, ’ :{1/4 membrane
= FD=F*the convex
- dppreximation

Contours are
defined as

the set of 1 for
Which o
|F-1,.4|>0
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Convex approximation of
the weak membrane energy

= |t is shown that FP) is
convex for p21

F(¥ can be minimized
~ usingigradient descent

= As p->0
Increased localization
- of boundaries (/)

Gradual anisotropic
smooething of surface (1)

= Parameters used for
the test: /=6, a=0.03
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Energy functional — MRFE
eguivalence

= Formal equivalence between the two
- approaches. For example:

E(T) :Z(fi _di)2 +2’Z(fi+1_ fi)z(l_li)_l_azli

= aking exponential (= Hammersley-Clifford)
I' — uncertainty. (,temperature”)

2 2
e—E(f)/T :He—(fi—di) /THe—(/l(fm—fi) (1-li)+ali)/T
i i

data term (Gaussian) smoothness prior (MRF)
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Energy functional — MRE
eguivalence

= Size of the neighborhood in the MRFE (or

- Glbbs field) corresponds to the degree of
~ derivatives In the energy functional

Mem

orane: (f.,4-f)?

T hin

olate: (f.,,-2f*f, ,)?




