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Abstract

In the spectral analysis of digital signals, one of the most useful paramet-
ric models is the representation by a sum of phase-shifted sinusoids in form of
∑

N−1

n=0
An sin(ωnt + ϕn), where An, ωn, and ϕn are the component’s ampli-

tude, frequency and phase, respectively. This model generally fits well speech
and most musical signals due to the shape of the representation functions.
If using all of the above parameters, a quite difficult optimization problem
arises. The applied methods are generally based on eigenvalue decomposition
[3]. However this procedure is computationally expensive and works only if
the sinusoids and the residual signal are statistically uncorrelated. To speed
up the representation process also rather ad hoc methods occur [4]. The
presented algorithm applies the newly established Homogeneous Sinus Rep-
resentation Function (HSRF) to find the best representing subspace of fixed
dimension N by a BFGS optimization. The optimum parameters {A, ω, ϕ}
ensure the mean square error of approximation to be below a preset threshold.

1 Introduction

Since the invention of the telephone, speech or generally sound processing and
representation have paramount importance in electrical engineering. In the last
years the rapid development of multimedia and computer networks brought a re-
vival of the high-effective coding and representation problem. By the classic model
of speech generation, the voiced part of speech comes from the oscillation of the
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Táncsics M. u. 1., Hungary

1



2 A. Kocsor L. Tóth I. Bálint

vocal chord, which is modellable by an oscillating string. The voice consists of a
fundamental and its harmonics, therefore it is well representable in the form

N−1
∑

n=0

An sin(ωnt + ϕn).

The error of this approximation gives the ’unvoiced’, noise-like part, which can be
decoupled from the signal. The model fits well also musical signals, since the sound
of most musical instruments (stringed-, wind instruments, etc.) consist of harmonic
sinusoids. The residual signal again contains the noise-like part of the sound (e.g.
drum hits), which should be modelled separately.

The above form of the model yields a complicated optimization problem enforc-
ing some simplifications. In case of DFT (Discrete Fourier Transform), the number
of sinusoids and their frequencies are fixed providing a rapid way for the compu-
tation of amplitudes and phases. However, in general, the individual sinusoidal
components of this representation may significantly differ in their parameters from
the real sound components. The method of McAulay-Quatieri [4] tends to deduce
the real frequencies of components by looking for peaks in the DFT spectrum. A
basically different approach is based on eigenvalue decomposition [3]. Here, only
the dimension of approximation space is fixed, but the statistical independence of
the representation functions (sinusoids) and of the residual signal is required.

The presented procedure is free from requiring any statistical condition, only the
dimension of approximation space is fixed. The established optimization problem
is based on a recently introduced functional [16] and it is solved very effectively
by the BFGS [10,12,13] method. The efficiency of the method is illustrated by
representations of artificial and natural voice patterns.

As to the structure of the report, the second section provides the usual, ’con-
servative’ formulation of the problem, the third section deals with the introduced
Homogeneous Sinus Representation Function (HSRF), the fourth section investi-
gates the properties of HSRF, the fifth section discusses the workhorse optimization
scheme BFGS, finally the sixth section delivers the numerical illustrations and con-
clusions.

1.1 Notational conventions

The Euclidean norm is denoted by ‖ ‖, the gradient of a function f(x) : IRn → IR
by

∇f(x) = [
∂f(x)

∂x1
, · · · , ∂f(x)

∂xn

]⊤,

and the Hessian will be denoted, as

∇×∇f(x) =









∂2f(x)
∂x1∂x1

· · · ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂xn∂xn









.
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Definition 1.1 The continuous function f(x) : IRn → IR is homogeneous of lth
degree, if

f(kx) = klf(x), k ∈ IR.

2 The representation problem

A signal is sampled at points τ0, τ1, · · · , τK−1 of a closed time-interval [0, τ ] and the
obtained values are represented by the real sequence,

x[τ0], · · · , x[τK−1].

A function of the form
N−1
∑

n=0

An sin(ωnt + ϕn)

is sought, which approximates the measured sample with a preset error ǫ > 0, by
fixing the dimension of approximation space to N ,

min
A1, · · · , AN−1

ω1, · · · , ωN−1

ϕ1, · · · , ϕN−1

K−1
∑

k=0

(

N−1
∑

n=0

An sin(τkωn + ϕn) − x[τk]

)2

< ǫ. (1)

3 Optimization of the Homogeneous Sinusoidal

Representation Function

Let be introduced the following notation,

wk(A, ω, ϕ) :=
N−1
∑

n=0

An sin(ωnτk + ϕn), k = 0, · · · ,K − 1 (2)

where

A := [A0, · · · , AN−1]
⊤, ω := [ω0, · · · , ωN−1]

⊤, ϕ := [ϕ0, · · · , ϕN−1]
⊤

and let be applied the trigonometric identity,

wk(A, ω, ϕ) :=

N−1
∑

n=0

An sin(τkωn + ϕn) =

N−1
∑

n=0

An(sin(ωnτk) cos(ϕn) + cos(ωnτk) sin(ϕn)) =

N−1
∑

n=0

an sin(ωnτk) + bn cos(ωnτk),
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where
an = An cos(ϕn), bn = An sin(ϕn). (3)

By introducing new variables,

cn
√

c2
n + d2

n

:= sin(ωn),
dn

√

c2
n + d2

n

:= cos(ωn), c2
n + d2

n 6= 0, (4)

we obtain
N−1
∑

n=0

an sin(ωnτk) + bn cos(ωnτk) =

N−1
∑

n=0

an sin(τk arcsin(
cn

√

c2
n + d2

n

)) + bn cos(τk arcsin(
cn

√

c2
n + d2

n

)) =: wk(a,b, c,d),

where
a := [a0, · · · , aN−1]

⊤, b := [b0, · · · , bN−1]
⊤,

c := [c0, · · · , cN−1]
⊤, d := [d0, · · · , dN−1]

⊤.

If we introduce two further vectors,

x := [x[τ0], · · · , x[τK−1]]
⊤, w := [w0(a,b, c,d), · · · , wK−1(a,b, c,d)]⊤

the Homogeneous Sinusoidal Representation Function (HSRF) to be optimized will
be

Lxw(a,b, c,d) := x
⊤
xw

⊤
w − (x⊤

w)2. (5)

4 Some properties of HSRF

Notation 4.1 Let the parameters a,b, c,d of HSRF be concatenated into a single

vector, as follows

z = [a,b, c,d]⊤ = [a0, · · · , aN−1, b0, · · · , bN−1, c0, · · · , cN−1, d0, · · · , dN−1]
⊤.

Vector z is of 4N -dimension and the concatenated components occupy the following
fields:

zi =















ai , if 0 ≤ i ≤ N − 1
bi−N , if N ≤ i ≤ 2N − 1

ci−2N , if 2N ≤ i ≤ 3N − 1
di−3N , if 3N ≤ i ≤ 4N − 1

.

Lemma 4.2 HSRF exhibits the properties:

1. Lxw(z) is a homogeneous function of 2nd degree.

2. Lxw is a 0th degree homogeneous function of its variables c,d:

Lxw(a,b, λc, λd) = Lxw(a,b, c,d), 0 6= λ ∈ IR
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3. Lxw is a 2nd degree homogeneous function of its variables a,b:

Lxw(λa, λb, c,d) = λ2Lxw(a,b, c,d), λ ∈ IR

4. Lxw(z) = Lwx(z)

Proof. Point 4. satisfies trivially, points 1., 2., and 3. follow from the continuity of
Lxw(z), as well as from the enumerated properties obeyed by wk(z) ≡ wk(a,b, c,d):

1. wk(λz) = λwk(z), 0 6= λ ∈ IR.

2. wk(λa, λb, c,d) = λwk(a,b, c,d), λ ∈ IR.

3. wk(a,b, λc, λd) = wk(a,b, c,d), 0 6= λ ∈ IR. 2

Theorem 4.3 HSRF exhibits the enumerated properties:

1. Lxw(z) ≥ 0 and Lxw(z) = 0 if and only if the x and w vectors are linearly

dependent.

2. If z is an optimumpoint of Lxw(z), then Lxw(z) = 0.

3. If Lxw(z) = 0, then ∇Lxw(z) = 0.

Proof.

1. Function Lxw(z) stems from the Cauchy-Scwartz-Bunyakovszkij inequality
applied on the vectors x ∈ IRK and w(z) ∈ IRK :

x
⊤
xw(z)⊤w(z) ≥

(

x
⊤
w(z)

)2
.

The equality satisfies, if the vectors are linearly dependent,

x
⊤
xw(z)⊤w(z) −

(

x
⊤
w(z)

)2
= 0.

2. If z ∈ IR4N is an optimumpoint of Lxw(z), then necessarily ∇Lxw(z) = 0.
Euler’s theorem ensures that the 2nd degree, homogeneous function Lxw(z)
obeyes the equality:

z
⊤∇Lxw(z) = 2Lxw(z).

Therefore a zerovector gradient implies a zero function value, ∇Lxw(z) =
0 =⇒ Lxw(z) = 0.

3. If Lxw(z) = 0, the vectors x and w are linearly dependent, i.e. x = λw(z)
without restricting generality. The following sequence of equalities proves the
statement:

∇Lxw(z) =

= x
⊤
x∇

(

w(z)⊤w(z)
)

+ ∇
(

x
⊤
x
)

w(z)⊤w(z) − 2
(

x
⊤
w(z)

)

∇
(

x
⊤
w(z)

)

=

= λ2
(

w(z)⊤w(z)
)

w(z)⊤∇ (w(z))+0−2λ2
(

w(z)⊤w(z)
)

w(z)⊤∇ (w(z)) = 0

2
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The properties of Lxw(z) discussed above ensure good optimization properties.
The optimumpoints of this non-negative homogeneous function are global and a
gradient-based optimization scheme may efficiently localize them.

Lemma 4.4 The gradient ∇Lxw(z); z = [a,b, c,d]⊤ is of the form:

∂

∂zi

Lxw(z) =

(

K−1
∑

k=0

x[τk]2

) (

2
K−1
∑

k=0

wk(z)
∂

∂zi

wk(z)

)

−

2

(

K−1
∑

k=0

x[τk]wk(z)

) (

K−1
∑

k=0

x[τk]
∂

∂zi

wk(z)

)

.

The partial derivatives by the various sets of variables are as follow:

∂

∂ai

wk(z) = sin

(

τk arcsin

(

ci
√

c2
i + d2

i

))

∂

∂bi

wk(z) = cos

(

τk arcsin

(

ci
√

c2
i + d2

i

))

∂

∂ci

wk(z) =

τkdi

(

ai cos

(

τk arcsin

(

ci√
c2

i
+d2

i

))

− bi sin

(

τk arcsin

(

ci√
c2

i
+d2

i

)))

(c2
i + d2

i )

∂

∂di

wk(z) = −
τkci

(

ai cos

(

τk arcsin

(

ci√
c2

i
+d2

i

))

− bi sin

(

τk arcsin

(

ci√
c2

i
+d2

i

)))

(c2
i + d2

i )

Proof. The proof is trivial by the differentiation rules. 2

The next theorem provides the bridge between the function value of HSRF and the
representation problem (1).

Theorem 4.5 If for any positive number δ and for real vectors z ∈ IR4N and

x ∈ IRK , Lxw(z) < δ is satisfied, then

min
i

∥

∥

∥

∥

x − w(z)

λi

∥

∥

∥

∥

2

<
2δ

‖w(z)‖2 , λi =
wi(z)

x[τi]
, i ∈ {0, · · ·K − 1}.

Proof. For the sake of simplicity, the argument z of w(z) and of wi(z) will be
omitted and x[τi] will be denoted simply as xi.

Lxw(z) = x
⊤
xw

⊤
w − (x⊤

w)2 =

(

K−1
∑

i=0

x2
i

)(

K−1
∑

i=0

w2
i

)

−
(

K−1
∑

i=0

xiwi

)2

=
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=
1

2

K−1
∑

i=0

K−1
∑

j=0

(wixj − wjxi)
2

=
1

2

K−1
∑

i=0

K−1
∑

j=0

(

wixj − wj

wi

λi

)2

=

=
1

2

K−1
∑

i=0

w2
i

K−1
∑

j=0

(

xj −
wj

λi

)2

=
1

2

K−1
∑

i=0

w2
i

∥

∥

∥

∥

x − w

λi

∥

∥

∥

∥

2

< δ

If choosing the ’best’ of λis, the inequality

1

2
‖w‖2

min
i

∥

∥

∥

∥

x − w

λi

∥

∥

∥

∥

2

<
1

2

K−1
∑

i=0

w2
i

∥

∥

∥

∥

x − w

λi

∥

∥

∥

∥

2

< δ,

proves the statement. 2

If the previous optimization yields a z0 satisfying

∥

∥

∥

∥

x − w(z0)
x[τs]

ws(z)

∥

∥

∥

∥

2

= min
i

∥

∥

∥

∥

x − w(z0)
x[τi]

wi(z)

∥

∥

∥

∥

2

<
2Lxw(z0)

‖w(z0)‖2 ,

the difference of the Euclidean norm of the signal vector x and the representation
vector

w(z0)
x[τs]

ws(z)

is given by the above expression.

5 Solving the representation problem by NHSRF

5.1 Application of the BFGS optimization scheme

For minimizing the representation functional the most suitable procedure proved
to be the gradient based Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme
[10,12,13]. Since also the zero-vector is an optimumpoint of Lxw(z) to avoid conver-
gence to the zero-vector, the HSRF is normalized to be a 0th degree homogeneous
function of the form,

Lxw(z)

‖a‖ ‖b‖ . (6)

This will be called Normalized HSRF, NHSRF in short. Every former obtained
result are inherited by NHSRF, however the new partial derivative components of
the gradient are given below,

∂

∂ai

Lxw(z)

‖a‖ ‖b‖ =
1

‖b‖
‖a‖

(

∂
∂ai

Lxw(z)
)

− Lxw(z) ai

‖a‖

‖a‖2 ,

∂

∂bi

Lxw(z)

‖a‖ ‖b‖ =
1

‖a‖
‖b‖

(

∂
∂bi

Lxw(z)
)

− Lxw(z) bi

‖b‖

‖b‖2 ,
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∂

∂ci

Lxw(z)

‖a‖ ‖b‖ =
1

‖a‖ ‖b‖
∂

∂ci

Lxw(z),

∂

∂di

Lxw(z)

‖a‖ ‖b‖ =
1

‖a‖ ‖b‖
∂

∂di

Lxw(z).

Every test result displayed for illustration was obtained by the NHSRF. For termi-
nating the line-search

min
κ∈ℜ

Lxw(z + κd)

‖a‖ ‖b‖ ,

the Wolf-condition, for initializing the H-matrix, the unit matrix was used. For
terminating the whole BFGS optimization generally the acceptable low norm of
the error-vector, as well as that of the gradient was used. We also have stopped
the iteration, if the condition

2Lxw(z)

‖w(z)‖2 < δ

as referred in Theorem 4.5 was satisfied.

5.2 Estimation of the number of necessary operations

For one iteration step of the BFGS scheme generally the function value and gradient
should be computed at several points in the line-search process. This requires to
evaluate scalar products, which can be obtained with o(NK + K2) operations,
because for any k,

N−1
∑

n=0

an sin(τk arcsin(
cn

√

c2
n + d2

n

)) + bn cos(τk arcsin(
cn

√

c2
n + d2

n

)) = wk(a,b, c,d)

can be obtained with o(N) operations, and the K-dimensional vector w is obtain-
able with o(NK) operations. To evaluate the function value, as well as the gradient,
scalar products of K-dimensional vectors have to be computed. The update of the
4N×4N -size H-matrix requires o(N2) operations in every step counting altogether
o(N2 +NK) operations per step. Since generally the number N of sinusoidal com-
ponents is much less then the number of the components in the signal vector, the
number of really required operations is of o(NK).

6 Numerical illustration of the algorithm

The aim is to construct an acceptably accurate sinusoidal representation of an
arbitrary (sound) signal. The procedure is based on the optimization of NHSRF
starting from an approximate sinusoidal decomposition of the signal. The procedure
aims to reduce the number of sinusoidal components by retaining the accuracy
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of the representation. The numerical illustrations are mainly artificial examples
to obtain a well-defined measure for the accuracy of approximation, however the
representation of a natural sound sample is also included.

In all cases of artificial and natural sound patterns an approximate sinu-
soidal represenation served as initial parameters of the NHRSF optimization. The
x[τ0], · · · , x[τK−1] signal was decomposed by the following iterative algorithm:

• In every iteration, first the DFT of the signal was computed on a zero padded
2048 base point data set using a Hamming window. The obtained spectrum
is the convolution of the transformed signal and the transformed window.

• The maximum amplitude component was selected. To remove the unpleas-
ant effect of windowing, the Fourier-transform of the window function was
subtracted from the spectrum after a suitable shifting and scaling.

• The iteration was continued until the largest amplitude was smaller than a
preset positive number.

The iterations steps necessary for the NHSRF optimization algorithm to reach the
required accuracy was empirically tested. Both in the case of the natural and
artificial tests the number of function and gradient evaluations necessary for one
iteration step was generally one or two.

6.1 Representation of artificial signals

The sample to be represented was a sum of N sinusoidal components sampled at K
points, where the parameters A0, · · · , AN−1; ω0, · · · , ωN−1; and ϕ0, · · · , ϕN−1 were
specified:

x[k] =

N−1
∑

n=0

An sin(ωnk + ϕn), k ∈ {1, · · · ,K}.

Using the above mentioned DFT-based decomposition of the signal,

x[1], · · · , x[K],

the following estimate was obtained,

x[k] ≈
P−1
∑

n=0

A′
n sin(ω′

nk + ϕ′
n), k ∈ {1, · · · ,K}, , P > N,

which proved to be generally unacceptably inaccurate. Without restricting gener-
ality, we can assume the following ordering of the components A′

i ≥ A′
j ⇔ i ≥ j,

which selects the N components,

A′
0, · · · , A′

N−1, ω
′
0, · · · , ω′

N−1, ϕ
′
0, · · · , ϕ′

N−1
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ω ϕ A K iter δ1 δ2

0.2 0.1 2 100 8 0.0006 10−17

0.2 0.1 2 200 9 0.0031 10−19

0.2 0.1 2 400 7 0.0131 10−15

Table 1: Approximation of one sinusoidal component.

dominating by amplitude. The optimization process started in every case from
these dominant components by constructing the initial parameter vector

z = [a′
0, · · · , a′

N−1, b
′
0, · · · , b′N−1, c

′
0, · · · , c′N−1, d

′
0, · · · , d′N−1]

⊤

using (3) and (4). Let be assumed, that the optimization of (6) resulted in the
optimum vector

z0 = [a′′
0 , · · · , a′′

N−1, b
′′
0 , · · · , b′′N−1, c

′′
0 , · · · , c′′N−1, d

′′
0 , · · · , d′′N−1]

⊤

and the inverses of transformations (3) and (4) yielded the parameters

A′′
0 , · · · , A′′

N−1, ω
′′
0 , · · · , ω′′

N−1, ϕ
′′
0 , · · · , ϕ′′

N−1.

The error of the DFT-based signal representation is

δ1 =

N−1
∑

n=0

(An − A′
n)

2
+ (ωn − ω′

n)
2

+ (ϕn − ϕ′
n)

2
, (7)

while that of the NHSRF-based signal representation is

δ2 =
N−1
∑

n=0

(An − A′′
n)

2
+ (ωn − ω′′

n)
2

+ (ϕn − ϕ′′
n)

2
. (8)

For N = 1, 2, 3, three examples were investigated in each case and the results are
displayed in Tables 1.-9.. The rows of the tables display the parameters of the
sinusoidal basis functions ω, ϕ,A, the number of sample points K, the number of
iterations iter and the accuracies of DFT-based and NHRSF-based representations
δ1, δ2. The discussion of the results will be given together with the discussion of
the natural test results.

6.2 Representation of natural sound signals

To check the accuracy and efficiency of the proposed algorithm on natural sound
patterns, the phone /a/ was represented and synthesised by the DFT decompo-
sition, as well as by the NHSRF optimization based scheme. The sample was
consisting in 861 points from the middle of a, the DFT algorithm described above
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ω ϕ A K iter δ1 δ2

0.2 0.1 200 100 7 0.2456 10−15

0.2 0.1 200 200 10 0.1858 10−16

0.2 0.1 200 400 11 0.0456 10−15

Table 2: Approximation of one sinusoidal component.

ω ϕ A K iter δ1 δ2

0.2 0.1 0.02 100 10 0.0006 10−28

0.2 0.1 0.02 200 8 0.0031 10−20

0.2 0.1 0.02 400 9 0.0131 10−18

Table 3: Approximation of one sinusoidal component.

ω ϕ A K iter δ1 δ2

0.1
0.2

−0.1
0.1

3
2

100 18 0.5452 10−17

0.1
0.2

−0.1
0.1

3
2

200 18 0.0194 10−19

0.1
0.2

−0.1
0.1

3
2

400 20 0.0727 10−16

Table 4: Approximation of two sinusoidal components.

ω ϕ A K iter δ1 δ2

0.85
0.98

−0.1
0.1

1201
1200

100 19 7.6271 10−10

0.85
0.98

−0.1
0.1

1201
1200

200 17 19.470 10−13

0.85
0.98

−0.1
0.1

1201
1200

400 20 77.481 10−11

Table 5: Approximation of two sinusoidal components.
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ω ϕ A K iter δ1 δ2

0.1
0.2

−0.1
0.1

1800
179

100 20 568.43 10−12

0.1
0.2

−0.1
0.1

1800
179

200 20 14.969 10−10

0.1
0.2

−0.1
0.1

1800
179

400 20 118.35 10−12

Table 6: Approximation of two sinusoidal components.

ω ϕ A K iter δ1 δ2

1
0.1
0.2

0
−0.1
0.1

30
3
2

100 27 0.7118 10−16

1
0.1
0.2

0
−0.1
0.1

30
3
2

200 21 0.0723 10−13

1
0.1
0.2

0
−0.1
0.1

30
3
2

400 22 0.0706 10−15

Table 7: Approximation of three sinusoidal components.

ω ϕ A K iter δ1 δ2

1
1.2
1.1

0
0.5
−0.9

1200
200
129

100 28 2178.4 10−12

1
1.2
1.1

0
0.5
−0.9

1200
200
129

200 21 41.797 10−12

1
1.2
1.1

0
0.5
−0.9

1200
200
129

400 25 57.899 10−10

Table 8: Approximation of three sinusoidal components.
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ω ϕ A K iter δ1 δ2

1
0.1
0.2

0
−0.1
0.1

130
129
128

100 29 0.3769 10−12

1
0.1
0.2

0
−0.1
0.1

130
129
128

200 25 0.3253 10−13

1
0.1
0.2

0
−0.1
0.1

130
129
128

400 26 0.4165 10−12

Table 9: Approximation of three sinusoidal components.

Figure 1:

provided the sinusoidal decomposition of the signal and the sound pattern was
synthesised from the obtained sinusoidal components. The parameters of the first
20 dominant sinusoidal components of the DFT decomposition were used as initial
parameters of the NHSRF optimization scheme and the minimization of (6) yielded
the optimum decomposition of /a/, by the NHSRF-based procedure. The sound
signal was synthesised again from the obtained components. Unfortunately the
quality of sound synthesis is not easy to measure, since the metric is not Euclidean,
but a ’perceptual’ distance function would be necessary to measure the ’goodness’
of the representation procedure. Therefore the ’comparison by listening’ of the orig-
inal and synthesised sounds had a decisive role in the judgement. However to give
an easily noticeable impression on the accuracies of approximations of the natural
sound pattern, figure 1-3 display the original signal, the signal synthesised from the
50 largest amplitude components of the DFT-based decomposition and the signal
synthesised from the 20 components of the NHSRF-based decomposition.
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Figure 2:

Figure 3:

7 Discussion

7.1 Artificial signals

The application of the proposed algorithm is especially important if either the
components of the signal are required with high accuracies, or the usual DFT-based
technics are not suitable to provide acceptably accurate results at all. This case
occurs if the sample is too short, the components are too close, or the amplitudes
differ too much. Our test functions were therefore of these types.

The proposed algorithm proved to be powerful in correcting the estimations
of the DFT-based decomposition procedure even in those cases where the former
algorithm provided quite acceptable results. Notice that the DFT-based scheme
estimated the phases very poorly, while the NHSRF-based algorithm corrected
these values.

7.2 Real sound signals

The proposed algorithm allowed to reconstruct the analysed sound signal from less
sinusoidal components (20 components) at higher accuracy than the DFT-based
method (50 components), as seen clearly on the figures. The DFT-based decom-
position of voiced sounds is generally unable to provide the sinusoidal fundamental
and overtones accurately enough and yields more overtone components than the
sample really contains. However the high-fidelity modelling of voiced sounds re-
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quires to synthesise the signal by the least sinusoidal components defined with
accurately determined parameters. This is a necessary condition for developing
and using efficient data compression technics, too.

7.3 Future Work

On the basis of the presented results, the NHSRF-optimizing algorithm proved to be
robust and efficient in applications of speech- and audio-processing. The aim is to
use the algorithm in sound coding and to develop a more advanced pitch estimation
method than the ones used nowadays. The momentarily fixed dimension of the
approximation subspace will be handled as variational parameter in the future.
This feature will help to separate the sinusoidal and the noiselike components of
the sound allowing to screen noise, to detect the unvoiced/voiced parts of the
sound, furthermore the upgraded procedure would be a candidate for being applied
in those sound coding methods, which are based on the ’sinusoidal + noise’-type
decomposition of the signal (e.g. Quatieri-McAulay).
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