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Extended Abstract

1 Introduction

In an earlier paper[4] we compared the effect of the linear feature transformation methods Principal Com-
ponent Analysis(PCA), Linear Discriminant Analysis(LDA) and Independent Component Analysis(ICA) on
several learning algorithms. The algorithms compared wereTiMBL(the IB1 algorithm),C4.5(ID3 tree learn-
ing), OC1(oblique tree learning), Artificial Neural Nets(ANN), Gaussian Mixture Modeling(GMM) and Hid-
den Markov Modeling(HMM). The domain of the comparison was phoneme classification using a certain
segmental phoneme model, and each learner was tested with each transformation in order to find the best
combination. Furthermore, in that paper we experimented with several feature sets such as filter bank ener-
gies, mel-frequency cepstral coefficients(MFCC) and gravity centers. This paper reports on our experiments
to extend these investigations towards nonlinear methods. Namely, we show how the well-known Principal
Component Analysis(PCA) can be non-linearized using the so-called ”kernel-idea”[5]. Besidespresenting the
”Kernel-idea” we also give formulas both for the originalPCA and theKernel-PCA. In this paper we thor-
oughly examine how this nonlinear feature transformation effects the efficiency of several learning algorithms.
As we mentioned previously in our earlier study we experimented with severalfeature sets, and we found the
best one to be the critical band log-energies. So in this study we use only thisquite traditional technique to
extract frame-based features from the speech signal. We also learnedfrom our previous investigations that
from the learning algorithmsPCA[2][6] was the most beneficial forGMM[1] andANN[1]. Thus, in this paper
we present classification results only for these two methods (apart from those of anHMM recognizer, which
are given to serve as a reference point). Since the crucial point of thisstudy is theKernel-PCA, we give a brief
look at it in this extended abstract.

2 Feature Space Transformation Methods with Kernels

Before executing a learning algorithm, additional vector space transformations may be applied on the extracted
features. The role of these methods is twofold. Firstly they may improve classification performance, and
secondly they may also reduce the dimensionality of the data. This is due to the fact that these techniques
search for a transformation which emphasizes more important features andsupresses or even eliminates less
desirable ones.

2.1 Linear Feature Space Transformation Methods

Without loss of generality we will assume that the original data set lies inIRn, and that we havel elements
x1, . . . ,xl in the training set andt elementsy1, . . . ,yt in the testing set. The feature transformation methods
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2 Feature Space Transformation Methods with Kernels

in many cases require certain preprocessing steps, which usually mean simple linear transformations. The
results of this preprocessing step will be denoted byx̂1, . . . , x̂l and ŷ1, . . . , ŷt for the training and testing
vectors, respectively. After applying a feature space transformation method for the preprocessed data, the new
data set lies inIRm (m ≤ n), the transformed training and testing vectors being denoted byx′

1, . . . ,x′

l and
y′
1, . . . ,y′

r respectively. With the linear feature space transformation methods, we search for an optimal (in
some cases orthogonal) linear transformationIRn → IRm of the formx′

i = A⊤x̂i, i ∈ {1, . . . , l}, noting
that the precise definition of optimality can vary from method to method. The columnvectorsa1, . . . ,am

of then × m matrix A supposed to be normalized. These algorithms use various objective functions τ() :
IRn → IR which serves as a measure for selecting one optimal direction (i.e. a new base vector). Usually,
linear feature space transformation methods search form optimal directions. Although it is possible to define
functions that measure the optimality of all them directionstogether, we will find the directions of the optimal
transformationsone-by-one, employing theτ measure for each direction separately. One, but quite heuristic
way of this is to look for unit vectors which form the stationary points ofτ(). Intuitively, if larger values of
τ() indicate better directions and the chosen directions needs to be independent in some ways, then choosing
stationary points that have large values is a reasonable strategy.

2.2 Kernel Transformation Methods

In this subsection the symbolsH andF denote real vector spaces that might as well be finite of infinite in
dimension. Also, we suppose to have a mappingΦ : IRn → H, which is not necesseraly linear, anddim(H)
is either finite or infinite. Furthermore, we suppose to have given an algorithm P, with its input formed by
preprocessed training pointŝx1, . . . , x̂l of the vector spaceIRn. (In our case this algorithm is thePCA.) The
output of the algorithmP is a linear transformationIRn → IRm, where both the degree of the dimension
reduction (represented bym) and then × m transformation matrixA are determined by the algorithm itself.
We will denote the transformation matrixA resulting for the training data byP(x̂1, . . . , x̂l).

The goal of the nonlinearization methods is to transform the training vectors into a point set inH by a
mappingΦ, and instead of the original ones inIRn, we apply the algorithmP on these transformed points
in H. Thus, employing the algorithmP on the input elementsΦ(x̂1), . . . ,Φ(x̂l) ∈ H we gain a linear
trasformationΨ : H → F . Similarly as before, we will denote the matrix of the resulting linear mappingΨ
with P(⊕(x̂1), . . . ,⊕(x̂l)). SinceΦ is not linear in general, the composite transformationΨ ◦ Φ of Φ andΨ
will not necesseraly be linear either.

In the case of the Kernel transformation methods the algorithmP is turned into an equivalent algorithmP ′

for which the following holds:P(x̂1, . . . , x̂l) = P ′(x̂⊤
1 x̂1, . . . , x̂⊤

i x̂j, . . . , x̂⊤

l x̂l), for arbitraryx̂1, . . . , x̂l.
This will, of course, hold inH too, that is:P(⊕(x̂1), . . . ,⊕(x̂l)) = P ′(⊕(x̂1)⊤⊕(x̂1), . . . , Φ(x̂i)

⊤Φ(x̂j),

. . . , Φ(x̂l)
⊤Φ(x̂l)), for arbitraryΦ(x̂1), . . . ,Φ(x̂l). Thus, the point of the kernel methods is to form an

algorithmP ′, which is equivalent toP, but its inputs are the dot products of the inputs ofP.
The complexity of the linearPCA(P) is a non-linear function of the dimensionality of the input vectors. Thus

if dim(H) is much larger thann, then the correspondingP ′ algorithm may become practically infeasible. This
problem can be alleviated if we have a low-complexity (for example linear) Kernel functionκ() : IRn×IRn →
IR for whichΦ(x)⊤Φ(y) = κ(x,y), x,y ∈ IRn. In this case the value ofΦ(x̂i)

⊤Φ(x̂j) can also be computed
with few (for exampleO(n)) operations, even if the dimension ofΦ(x̂i) andΦ(x̂j) are infinite. In practice,
however, we usually face the problem just the opposite way: given aκ() : IRn × IRn → IR functional as
Kernel, we are looking for a mappingΦ for whichΦ(x)⊤Φ(y) = κ(x,y), x,y ∈ IRn. There are many good
publications about the proper choice of the Kernel functions, and also about their theory in general[5].

In our studies we employed the following Kernels:κ1(x,y) =
(

x⊤y
)p

, 0 < p ∈ IR andκ2(x,y) =

exp
(

−||x − y||2/r
)

, 0 < r ∈ IR. Thus, after choosing a Kernel function the only thing left is to take the
P ′ version of the algorithm and replace the input elementsx̂⊤

1 x̂1, . . . , x̂⊤

i x̂j, . . . , x̂
⊤

l x̂l with the elements
κ(x̂1, x̂1), . . . , κ(x̂i, x̂j), . . . , κ(x̂l, x̂l). The algorithm that results from this substitution can perform thePCA
transformation with practically acceptable complexity, even in a space infinite in dimension. This transforma-
tion together with a properly chosen Kernel function results in the non-linear feature space transformation, i.e.
Kernel-PCA.

2.3 Steps of the Methods

In the following sections the discussion of the methodsPCAandKernel-PCAwill be decomposed into three
steps:
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3 Principal Component Analysis

• Preprocessing Step Describes the preprocessing that might be required by the method.

• Transformation Step Here we derive the algorithms themselves.

• Transformation of Test Vectors Here we discuss that, having obtained a transformation based on the
training vectors, what kind of processing it implies on the test vectors.

3 Principal Component Analysis

Preprocessing Step:

• Centering: We shift the original sample setx1, . . . ,xl with its meanµ, to obtain a set̂x1, . . . , x̂l, with
a mean of0: x̂1 = x1 − µ, . . . , x̂l = xl − µ, µ = l−1

∑l
i=1

xi.

Transformation Step:
Normally in PCA τ(a) is a⊤Ca/a⊤a (a ∈ IRn \ {0}), whereC is the sample covariance matrix for the
standardized data(C = l−1

∑l
i=1

x̂ix̂
⊤

i ). Practically speaking,a⊤Ca/a⊤a definesτ(a) as the variance of
the{x̂1, . . . , x̂l} n-dimensional point-set projected onto the vectora. Therefore this method prefers directions
having a large variance. It can be shown that stationary points ofτ(a) correspond to the right eigenvectors
of the sample covariance matrixC where the eigenvalues form the corresponding function values. Thus itis
worth definingPCAbased on the stationary points where the functionτ() has dominant values. If we assume
that the eigenpairs ofC are (c1, λ1), . . . , (cn, λn) andλ1 ≥ . . . ≥ λn, then the transformation matrixA
will be [c1, . . . , cm], i.e. the eigenvectors with the largestm eigenvalues. Since the sample covariance matrix
C is symmetric positive semidefinite, the eigenvectors are orthogonal and the corresponding real eigenvalues
are nonnegative. After this orthogonal linear transformation the dimensionality of the data will bem. It is
easy to check that the samplex′

i = A⊤x̂i, i ∈ {1, . . . , l} represented in the new orthogonal basis will be
uncorrelated,i.e. the covariance matrixC′ of it is diagonal. The diagonal elements ofC′ are them dominant
eigenvalues ofC. In our experiments,m (the dimensionality of the transformed space) was chosen to be the
smallest integer for which(λ1 + . . . + λm)/(λ1 + . . . + λn) > 0.99 holds. Note that there are many other
alternatives, however, for finding a reasonablem.
Transformation of test vectors:
For an arbitrary test vectory the transformation isy′ = A⊤ŷ, whereŷ denotes the preporecessedy.

4 Formulas for Kernel-PCA

Having chosen a properκ Kernel function for whichκ(x,y) = Φ(x)⊤Φ(y), x,y ∈ IRn holds for a mapping
Φ : IRn → H, we now give theLDA transformation inH.
Preprocessing Step:

• Kernel Centering: We shift the dataΦ(x1), . . . ,Φ(xl) with its meanµΦ, to obtain a set̂Φ(x1), . . . ,

Φ̂(xl) with a mean of0: Φ̂(x1) = Φ(x1) − µ
Φ, . . . , Φ̂(xl) = Φ(xl) − µ

Φ, µ
Φ = 1

l

∑l
i=1

Φ(xi).

Transformation Step:
We employed the following measure inH : τ Φ̂(a) = a⊤CΦ̂a/a⊤a, a ∈ H \ {0}, whereCΦ̂ (=

l−1
∑l

i=1
Φ̂(xi)Φ̂(xi)

⊤) is the covariance matrix of the samplêΦ(x1), . . . , Φ̂(xl). Analogously toPCA,

we defineKernel-PCAbased on the stationary points ofτ Φ̂(a), which are given as the eigenvectors of the
symmetric positive semidefinite matrixCΦ̂. Because of the special form ofCΦ̂ we can suppose thata =
∑l

i=1
αiΦ̂(xi). The following formulas giveτ Φ̂(a) as the function ofαt andκ(xi,xj)

τ Φ̂(a) =
a⊤CΦ̂a

a⊤a
=

(

∑l
t=1

αtΦ̂(xt)
⊤

)

CΦ̂
(

∑l
s=1

αsΦ̂(xs)
)

(

∑l
t=1

αtΦ̂(xt)⊤
) (

∑l
s=1

αsΦ̂(xs)
) =

α
⊤ 1

l
KΦ̂KΦ̂

α

α⊤KΦ̂α

, (1)
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where1 KΦ̂
ts =

(

Φ(xt)
⊤ −

(

1

l

∑l
i=1

Φ(xi)
⊤

)) (

Φ(xs) −
(

1

l

∑l
i=1

Φ(xi)
))

=

κ(xt,xs) −
(

1

l

∑l
i=1

(κ(xi,xs) + κ(xt,xi))
)

+ 1

l2

∑l
i=1

∑l
j=1

κ(xi,xj). From differentiatingτ Φ̂() with

respect toα we get that the stationary points are the solution vectors of the general eigenvalue problem
1

l
KΦ̂KΦ̂

α = λKΦ̂
α, which in this case is obviously equivalent to the problem1

l
KΦ̂

α = λα. Further-

more, sinceκ(xt,xs) = κ(xs,xt) and2
α

⊤ 1

l
KΦ̂

α = 1

l
a⊤a ≥ 0, the matrix 1

l
KΦ̂ is symmetric positive

semidefinite, and thus its eigenvectors are orthogonal and the corresponding real eigenvalues are non-negative.
Let them positive dominant eigenvalues of1

l
KΦ̂ be denoted byλ1 ≥ . . . ≥ λm > 0 and the correcponding

normalized eigenvectors byα1, . . . ,αm. Then the orthogonal matrix of the transformation we need can be
calculated as below.

A
Φ̂

:=

[

1√
lλ1

l
∑

i=1

α1

i Φ̂(xi), . . . ,
1√
lλm

l
∑

i=1

αm
i Φ̂(xi)

]

, (2)

where the factors1/
√

lλ are needed to keep the columnvectors ofA
Φ̂

normalized.
Transformation of Test Vectors:
Let y be an arbitrary test vector. After preprocessingΦ(y) we get that̂Φ(y) = Φ(y) − µ

φ. Then

y′ = A
Φ̂
⊤Φ̂(y) ==

[

1√
lλ1

l
∑

i=1

α1

i ci, . . . ,
1√
lλm

l
∑

i=1

αm
i ci

]⊤

, (3)

whereci = Φ̂(xi)
⊤Φ̂(y) = κ(xi,y) −

(

1

l

∑l
j=1

(κ(xi,xj) + κ(xj,y))
)

+ 1

l2

∑l
j=1

∑l
k=1

κ(xj,xk). In our

experience the strategy for obtaining a suitablem was the same as in PCA.
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