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Extended Abstract

1 Introduction

In an earlier paper[4] we compared the effect of the linear featurasfsamation methods Principal Com-
ponent AnalysidPCA), Linear Discriminant Analysi&(DA) and Independent Component AnalyE%) on
several learning algorithms. The algorithms compared WaviBL(the IB1 algorithm),C4.51D3 tree learn-
ing), OC1(oblique tree learning), Artificial Neural NeSlN), Gaussian Mixture Modelin@MM) and Hid-

den Markov ModelingiMM). The domain of the comparison was phoneme classification using a certain
segmental phoneme model, and each learner was tested with each traisfoimarder to find the best
combination. Furthermore, in that paper we experimented with severatdessts such as filter bank ener-
gies, mel-frequency cepstral coefficieMi${CC) and gravity centers. This paper reports on our experiments
to extend these investigations towards nonlinear methods. Namely, we shothéavell-known Principal
Component Analysi${CA) can be non-linearized using the so-called "kernel-idea’[5]. Begidesenting the
"Kernel-idea” we also give formulas both for the origirCA and theKernel-PCA In this paper we thor-
oughly examine how this nonlinear feature transformation effects the effic@f several learning algorithms.
As we mentioned previously in our earlier study we experimented with sefeattaire sets, and we found the
best one to be the critical band log-energies. So in this study we use ontyuitestraditional technique to
extract frame-based features from the speech signal. We also Idaonedur previous investigations that
from the learning algorithmBCA2][6] was the most beneficial faBMM[1] andANN1]. Thus, in this paper

we present classification results only for these two methods (apart frase tf anHMM recognizer, which

are given to serve as a reference point). Since the crucial point afttldyg is thekernel-PCA we give a brief
look at it in this extended abstract.

2 Feature Space Transformation Methods with Kernels

Before executing a learning algorithm, additional vector space transtiomsanay be applied on the extracted
features. The role of these methods is twofold. Firstly they may improve ctadiifi performance, and
secondly they may also reduce the dimensionality of the data. This is due tocthbdathese techniques
search for a transformation which emphasizes more important featuresipragses or even eliminates less
desirable ones.

2.1 Linear Feature Space Transformation Methods

Without loss of generality we will assume that the original data set lidR'in and that we havé elements
X1,...,X] in the training set andelementsyy, ...,y in the testing set. The feature transformation methods



2 Feature Space Transformation Methods with Kernels

in many cases require certain preprocessing steps, which usually meda Birepr transformations. The
results of this preprocessing step will be denotedkhy. .., %, andy, ...,y for the training and testing
vectors, respectively. After applying a feature space transformatitimothéor the preprocessed data, the new
data set lies ilR™ (m < n), the transformed training and testing vectors being denoted, by. ., x{ and
vi,--.,y. respectively. With the linear feature space transformation methods, wehgea an optimal (in
some cases orthogonal) linear transformafieh — IR™ of the formx! = A'%;, i € {1,...,1}, noting
that the precise definition of optimality can vary from method to method. The colgtiorsay,...,am,

of then x m matrix A supposed to be normalized. These algorithms use various objective fmetio:

IR" — IR which serves as a measure for selecting one optimal direction (i.e. a newdetsr). Usually,
linear feature space transformation methods searchfoptimal directions. Although it is possible to define
functions that measure the optimality of all thedirectionstogether we will find the directions of the optimal
transformation®ne-by-oneemploying ther measure for each direction separately. One, but quite heuristic
way of this is to look for unit vectors which form the stationary points-@f. Intuitively, if larger values of
7() indicate better directions and the chosen directions needs to be indepensi@me ways, then choosing
stationary points that have large values is a reasonable strategy.

2.2 Kernel Transformation Methods

In this subsection the symbalg and F denote real vector spaces that might as well be finite of infinite in
dimension. Also, we suppose to have a mapgingIR" — H, which is not necesseraly linear, adin ()

is either finite or infinite. Furthermore, we suppose to have given an algofthwith its input formed by
preprocessed training poirgsg, . . . , X; of the vector spac®”. (In our case this algorithm is tHeCA) The
output of the algorithn is a linear transformatiofR™ — IR, where both the degree of the dimension
reduction (represented by) and then x m transformation matriXA are determined by the algorithm itself.
We will denote the transformation matri resulting for the training data by (x4, . .., X)).

The goal of the nonlinearization methods is to transform the training vectwrsaipoint set inH by a
mapping®, and instead of the original ones IR, we apply the algorithnP on these transformed points
in H. Thus, employing the algorithr® on the input element®(x1),...,®(%x;) € H we gain a linear
trasformation¥ : H — F. Similarly as before, we will denote the matrix of the resulting linear mapging
with P((X1),...,®(x1)). Sinced is not linear in general, the composite transformation & of ® and¥
will not necesseraly be linear either.

In the case of the Kernel transformation methods the algorfthisiturned into an equivalent algorithi®f
for which the following holds:P (X1, ...,%1) = P'(X{ X1,..., %] Xj, ..., X/ %)), for arbitraryxy,...,%;.
This will, of course, hold ir{ too, that is:P(®(X1), ..., ®(%1)) = P (®(X1) ®(X1), ..., ®(Z:) ' @(¥;),

.., (%)) T ®(%))), for arbitrary ®(%;),...,®(%;). Thus, the point of the kernel methods is to form an
algorithm”’, which is equivalent t@, but its inputs are the dot products of the input$of

The complexity of the lined?CA(P) is a non-linear function of the dimensionality of the input vectors. Thus
if dim () is much larger than, then the correspondir@’ algorithm may become practically infeasible. This
problem can be alleviated if we have a low-complexity (for example lineam&duanctions() : IR" x IR" —

IR for which®(x) ' ®(y) = s(x,y), x,y € IR". Inthis case the value df(%;) " ®(%;) can also be computed
with few (for exampleO(n)) operations, even if the dimension #{%;) and®(%;) are infinite. In practice,
however, we usually face the problem just the opposite way: givef) a IR" x IR" — IR functional as
Kernel, we are looking for a mappingyfor which ®(x) ' ®(y) = x(x,y), x,y € IR". There are many good
publications about the proper choice of the Kernel functions, and alzat éheir theory in general[5].

In our studies we employed the following Kernelsi(x,y) = (x"y)", 0 < p € IR andrs(x,y) =
exp (—|[x —y|[*/r),0 < r € IR. Thus, after choosing a Kernel function the only thing left is to take the

P’ version of the algorithm and replace the input elemetjt&s, . .., % &;, . .., %] %1 with the elements
k(X1,%1),...,6(Xi, %j), ..., (X1, %1). The algorithm that results from this substitution can perfornmRGé
transformation with practically acceptable complexity, even in a space infiniieniengion. This transforma-
tion together with a properly chosen Kernel function results in the nontlieature space transformation, i.e.
Kernel-PCA

2.3 Steps of the Methods

In the following sections the discussion of the methB@A andKernel-PCAwill be decomposed into three
steps:



3 Principal Component Analysis

e Preprocessing Step Describes the preprocessing that might be required by the method.
e Transformation Step Here we derive the algorithms themselves.

e Transformation of Test Vectors Here we discuss that, having obtained a transformation based on the
training vectors, what kind of processing it implies on the test vectors.

3 Principal Component Analysis
Preprocessing Step:

e Centering: We shift the original sample s&4, . . ., x; with its meanu, to obtain a sekq, . . ., X;, with
ameanol: X3 =x1—p,...,X =x1— N, uzl’lzlizlxi.

Transformation Step:

Normally in PCA7(a) isa' Ca/a’'a (a € IR" \ {0}), whereC is the sample covariance matrix for the
standardized dateC = I=' 3!, %%/ ). Practically speakinga’ Ca/a'a definesr(a) as the variance of
the{x4,...,%X;} n-dimensional point-set projected onto the veetof herefore this method prefers directions
having a large variance. It can be shown that stationary pointgz0f correspond to the right eigenvectors
of the sample covariance mati® where the eigenvalues form the corresponding function values. This it
worth definingPCAbased on the stationary points where the functibnhas dominant values. If we assume
that the eigenpairs of are (c1,1),...,(cn, A\p) @andA; > ... > A\, then the transformation matriAx

will be [cq,. .., cm], i.€. the eigenvectors with the largesteigenvalues. Since the sample covariance matrix
C is symmetric positive semidefinite, the eigenvectors are orthogonal andrtiesmonding real eigenvalues
are nonnegative. After this orthogonal linear transformation the dimeagipof the data will bem. It is
easy to check that the sampt§ = AT%;, i € {1,...,1} represented in the new orthogonal basis will be
uncorrelatedi.e. the covariance matri&’ of it is diagonal. The diagonal elements©f are them dominant
eigenvalues o€C. In our experimentsyn (the dimensionality of the transformed space) was chosen to be the
smallest integer for whicli\; + ... + Ay)/(A1 + ...+ Xy) > 0.99 holds. Note that there are many other
alternatives, however, for finding a reasonatle

Transformation of test vectors:

For an arbitrary test vectgr the transformation ig’ = A T§, wherey denotes the preporecessed

4 Formulas for Kernel-PCA

Having chosen a properKernel function for whichs(x,y) = ®(x)"®(y), x,y € IR™ holds for a mapping
® : IR" — H, we now give thd_DA transformation ir#+.
Preprocessing Step:

e Kernel Centering: We shift the datab(xy), ..., ®(x;) with its meanu®, to obtain a sefb(x;), .. .,
d(x;) withamean oD:  &(x1) = B(xq) — p®,..., (x1) = B(x1) — p®, p® =131 o(x).

Transformation Step:

We employed the following measure #f : 7%(a) = a'C®a/a’a, a € M\ {0}, whereC?® (=
1715 ®(x;)®(x;) ) is the covariance matrix of the sampligx;),. .., ®(x;). Analogously toPCA

we defineKernel-PCAbased on the stationary points ﬁ%(a), which are given as the eigenvectors of the
symmetric positive semidefinite matr®@®. Because of the special form a® we can suppose that =

Zﬁzl a;P(z;). The following formulas give‘i)(a) as the function ofy; andx(x;, x;)

T(i)(a) = a'C%a _ (Zi:l ati’(mt)T) c? <Zi:1 Otsfb(xs)) _ aT%K‘i’K@a
ala (Zfsq a@(l}ﬁ) (Zizl as‘i)(xs)> o Kea

: (1)
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wheré K2, = (0(x0)7 ~ (} S, 06x0) 7)) (xe) = ($ 0, 0x0)) ) =

K(Xg, Xs) — (% S (k(xi, %s) —i—/i(xt,xi))) + 530 3 k(xi,x;). From differentiatingr® () with

respect tooe we get that the stationary points are the solution vectors of the generavaige problem
lK‘i’K‘I’a — AK®a, which in this case is obV|oust equalent to the probl%:lﬁ‘l’a = \a. Further-

more, sincex(x¢, xs) = k(xs,x;) and T 1K®a = laTa > 0, the matrix . K® is symmetric positive
semidefinite, and thus its eigenvectors are orthogonaf and the cordisgoeal elgenvalues are non-negative.
Let them positive dominant eigenvalues éK‘I’ be denoted by; > ... > ), > 0 and the correcponding

normalized eigenvectors y!, ..., a™. Then the orthogonal matrix of the transformation we need can be
calculated as below.

: (2)

l l
1 . 1 .
Ay = o(x;), ..., —— MO (x;
i3 [ /_lAliZ:;az (X) /—l)\m;az (X)

where the factor$/v/I\ are needed to keep the columnvectordgf normalized.
Transformation of Test Vectors: .
Lety be an arbitrary test vector. After preprocessing ) we get thatb(y) = ®(y) — u®. Then

l l T
R 1 1
/ T 1 E m
y = A (I)y == | — O Ciyevoy —F—— Q; G ) (3)
& ®) ! o, Z“ Vi = ]

wherec; = (x;) " d(y) = r(xi,y) — (% > (R(xi,5) + K(xj, y))) + 5 et D £, %) Inour
experience the strategy for obtaining a suitahlevas the same as in PCA.
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lSch")lkopf et al. giveK~1i> in a matrix form using additional matrices. Our formula, however, tumgdo be easier to code, and
resulted in a more effective program.

2Here we temporarily disregard the constraing 0.



