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Abstract. The structure of DNA/RNA chains is determined at several different levels.
Although the primary sequence is fundamental in determining further properties, the higher
level organization may have a backward influence. Beyond the physical structure of the

chain, an abstract ’shape’ can also be defined. This is described in terms of relationships
among the building blocks. We aim to show, that matching sequences are not exclusive

representatives of relationships among nucleotide chains. Our approach is based on lattice
theory, since lattice theory especially fits the problem. Beside the qualitative recognition
of (algebraic) similarity, we also give a measure. This allows the structured quantification

of the ’similarity distance’ of two chains. Such a decomposition provides the possibility to
recognize relationships between biological phenomena and deep-lying structural similarities.

1. Introduction

The immense development of automatic DNA/RNA-sequencing resulted in huge libraries

of known genetic codes. The information content of these data banks is much larger, than

exploited today and appropriate mathematical tools will open the way to the mining of these rich

sources [1-7]. Such studies may enlighten relations between deep-rooted structural properties

of DNA/RNA-chains and some higher-level properties of a living organism.

The aim is to define a ’generalized shape’ for every DNA/RNA sequence and a way to their

comprehensive characterization [8-11]. The mathematical definition of shape is not unique, it

can be described in various ways emphazising different characteristics of the object. This is

the reason that some branches of universal algebra, topology or algebraic topology [12-19] can

serve as suitable (but not equivalent) tools of the ’shape-description’ problem. Our aim is to

define those structural similarities, which are beyond the simple matching. The structures of

nucleotide chains will be studied by tools of lattice theory, because lattice algebra especially

fits the problem. The relationship of subsequences allows a fine meshed characterization of the

chain with a similarity measure, which quantifies the basically qualitative similarity concept of

lattice theory.

The report is structured as follows: the next section is devoted to technicalities and the

basic lattices are introduced with congruence relations. Subsequently the various isomorphism

concepts are defined, then the measures with their carrier lattices and finally some simple

illustrations close the paper. To make the reading easier, the proofs of assertions are collected
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into a separate section (Appendix 1.), while some background material on lattice theory is given

in Appendix 2..

2. The primary lattice structure of nucleotide chains

A nucleotide chain will be considered exclusively as a (single) sequence of letters,

(1) AAACUAUUUUUAAAUAUGUUUUGAAAACAUGUUUU...

...GAGGUAACUCGGUAGUUUUCCA

as our example the 54-element tRNASer of the C. elegans [3]. Neither the double-stranded

structure of DNA, nor the conformation or some quantum chemical parameter will be taken

into account. All these properties are implicitly supposed to be determined by the primary

nucleotide sequence. We shall deal with the internal relationships of the chain by defining a

lattice algebra over the set of subsequences.

A word is an ensemble of juxtaposed letters chosen from a fixed alphabet, which form a

connected string. In our case the words are given over alphabet {A,G,C, T}, which is mapped

bijectively onto another (arbitrarily chosen) integer alphabet ψ : {A,G,C, T} −→ {1, 2, 3, 4},

where ψ(A) = 1, ..., ψ(T ) = 4. The actual choice of mapping does not restrict the generality

of the discussion, however the comparison of different chain molecules is only possible with

identical mapping functions. The set of words over the nucleotide alphabet is Cch (’nucleotide

chains’), that over the integer alphabet is Ciw (’integer words’). The bijective map Cch ←→ψ

Ciw uniquely associates nucleotide sequences and words of integers. The elements of Ciw are k-

words Sk = s1...sk, k ∈ N
+, where s1, ..., sk are elements of the integer alphabet and the whole

word is read in left-to-right direction coinciding with the 3′ − 5′-direction of the underlying

nucleotide chain. The elements of Ciw are distinguished by a subscript Sr, r ∈ W . If the

length of a word is stressed, a superscript appears Sn
r . If Sn = s1...sn is a general n-word,

Sn(k, l) = sk...sl, (1 ≤ k ≤ l ≤ n) is a connected sub-sequence, i.e. a sub-word.

Definition 1. Operator τ : Ciw −→ P(Ciw),

(2) τ(Sn) = { Sn(k, l) : 1 ≤ k ≤ l ≤ n }, Sn = s1...sn ∈ Ciw, n ∈ N
+

associates every word with the set of its connected sub-words.

Definition 2. Operator τ is defined also for sets. If A ⊆ Ciw,

(3) τ(A) = { τ(S) : S ∈ A }.

Definition 3. If S1, S2 ∈ Ciw, then S1 ≤ S2 ⇐⇒ S1 ∈ τ(S2).

Lemma 1. Definition 3. is a partial ordering on Ciw, 〈Ciw,≤〉 is a poset.
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The intention is to construct lattices to elements of Ciw, which provide versatile tools to char-

acterize the underlying words. If considering a word Sn, the base set of the sought lattice is

generated by τ(τ(Sn)). This is the set of sub-word sets assigned individually to elements of

the sub-word set τ(Sn). However the base set of lattice algebra 〈τ(τ(Sn)),∧,∨〉 is the closure

set τ(τ(Sn)) obtained by applying the lattice operations onto τ(τ(Sn)) (for notational con-

ventions see Appendix 2.). The lattice operations are defined in general terms for elements

a, b, c, ... ∈ τ(τ(Sn)), which means that elements of the base set are sets.

Definition 4. The join (∨) and meet (∧) will be,

(4) a ∨ b = a ∪ b, a ∧ b = a ∩ b.

The result of the join is the union of operands, that of the meet is the intersection. A finite

application of the above operations yields the closure set Ω ≡ τ(τ(Sn)). To be short in the

sequel, elements of Ω will be denoted by the letters x, y, z, ... and the algebra as word-lattice

L(Ω) = 〈τ(τ(Sn)),∧,∨〉. The least (0̂Ω) and greatest (1̂Ω) elements of L(Ω) are 0̂Ω =
∧

x

and 1̂Ω =
∨

x. The elements just above 0̂Ω are the atoms of the lattice associated with letters

of the alphabet. Sometimes for illustration the generating word will be written directly, as

x ≡< AGGCT >, y ≡< TACCU >, ..., where < AGGCT >≡ τ(ψ(AGGCT )), etc.. By

Definitions 3. and 4., for those elements of Ω, which are of form x = τ(S1), y = τ(S2) ∈ Ω,

(5) x ∧ y = x =⇒ S1 ≤ S2, x ∨ y = y =⇒ S1 ≤ S2.

Therefore, elements of Ω can be written as follows τ(< w1 >) ∪ ... ∪ τ(< wr >), where wi ∈

Cch, 1 ≤ i ≤ r and for all k, l, k 6= l, wk 6⊆ wl and wl 6⊆ wk.

Lemma 2. Word-lattice L(Ω) is distributive.

Unfortunately the Hasse-diagram of L(Ω) is generally too complicated to be drawn, therefore

the S4(14, 17) = ψ(AUAU) sub-word of (1) is separated together with the homogenous sub-

word S4(19, 22) = ψ(UUUU) and their associated Hasse-diagrams are displayed on figure 1..

Taking into account AUAU , elements just above 0̂ are the atoms < A >, < U > of the lattice.

The covering elements are images of disconnected sub-sequences < A > ∨ < U >. The next

level contains images of words < AU > and < UA > and in the next higher level again non-

words follow. The dual atom element is generally a non-word, while the unit element refers to

the < AUAU > image of the full word. If the nucleotide chain is built homogenously, such as

UUUU , L(Ω) is a chain lattice. The length of longest maximal chain of the lattice depends
3
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Figure 1. Hasse-diagrams of L(τ(< AUAU >)) and L(τ(< UUUU >)).

on the length and diversity of the full word and the length of longest anti-chain depends on its

diversity. By the definition of lattice operations and that of the words, clearly not all elements

of the lattice are assigned to words.

Lemma 3. An element of L(Ω) is join-irreducible if and only if it is a word.

Theorem 1. The partially ordered set of join-irreducible elements in L(Ω) uniquely determines

the word-lattice, therefore L(Ω1) ∼= L(Ω2) ⇐⇒ 〈τ(Sn
1 ),≤〉 ∼= 〈τ(Sn

2 ),≤〉.

Along any ascending chain of L(Ω), join-irreducible elements represent the monotone ’construc-

tion’ of the nucleotide chain, which is born from a single letter. The various chains of the lattice

belong to differently positioned nucleotides as germinating centers.

The investigation of congruencies of an algebra generally enlightens its inherent structure.

Definition 5. A congruency denoted λ, which is generated by the lattice interval [v : w] means

for elements x, y, v, w ∈ L(Ω),

(6) x ≡ y (mod λ) ⇐⇒ x ∧ v = y ∧ v, x ∨ w = y ∨ w,

where the lattice interval [v : w] is the set of elements { x : v ≤ x ≤ w }.

Lemma 4. Definition 5. yields a congruence relation.
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The lattice interval is generated by the intersection of the ’principal ideal’ (w] and ’principal

filter’ [v) (see Appendix 2.). A congruence relation will be denoted shortly as λ (or λq) and

the congruent elements as x ≡ y (mod λ). We call ’basis’ congruence relations those, which are

generated by a single lattice interval λ ∼ [v : w], where ∼ means ’associated with’. Elements

congruent with a given x ∈ Ω are in the congruence class x/λ.

Lemma 5. The congruence classes form convex sublattices in L(Ω).

The congruence relations themselves can be ordered by inclusion obtaining the lattice of con-

gruencies Con(L(Ω)) (see Appendix 2.). The operations λi ∧ λj and λi ∨ λj are defined in the

usual ways [24].

Lemma 6. Lattice Con(L(Ω)) is distributive.

A given congruence relation partitions a lattice collapsing several elements into disjoint classes

and yielding the factor lattice L(Ω)/λ. The zero element (0̂C) collapses zero-length intervals

inducing single-element congruence classes, the atoms collapse two elements, while the unit

element (1̂C) of Con(L(Ω)) collapses all elements into a single class,

(7) if x = y (x ≡ y (mod 0̂)) and ∀x, y (x ≡ y (mod 1̂)).

For the structure of the word, the composition of congruence classes bears importance. Con-

gruence class x/λ includes x and all y having mutual meet and join in the lattice interval

determined by λ. The join-irreducible elements (images of words) of the lattice and the re-

ducible elements are not of equivalent value for the construction of nucleotide chain. Therefore

the concept of the ’skeleton class’ (SC) is introduced,

(8) x̂/λ ≡ SC(x/λ) := { S0 ∈ τ(Sn) : ∃y((y ≡ x (mod λ))
∧

(y = τ(S0))}.

This set contains only the pre-images of join-irreducible elements in x/λ. Every ascending chain

in Con(L(Ω)) generates a sequence of SC-s by the following lemma.

Lemma 7. SC(x/λq) ⊆ SC(x/λp) if λq ≤ λp.

The congruence classes and SC-s assemble those elements, which are inherently related by the

lattice structure. The relationship between two words S1 and S2 is characterized qualitatively

by the mutual mapping properties of associated word-lattices L(Ω1) and L(Ω2). In this report

our interest is focused onto different kinds of isomorphisms, while the weaker mapping properties

are discussed separately [25].
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3. Isomorphism with condition

When comparing two words by the mapping properties of their associated word algebras, the

expectable information refers to the similarity of the internal structures of the words, but not to

their direct correspondence. The associated word algebras may have isomorphic, homomorphic

maps into each other or partial embeddings, but these concepts do not imply the matching

of the words and the obtained information is incomparable in nature with the usual matching

percentages.

Definition 6. Two words are isomorphic, if their associated word-lattices are isomorphic.

Definition 7. Two lattices are isomorphic L(Ω1) ∼=φ L(Ω2) with bijection φ, if

(9) φ(x ∧ y) = φ(x) ∧ φ(y), φ(x ∨ y) = φ(x) ∨ φ(y), x, y ∈ Ω1.

There is a variety of isomorphic words, but the relation between isomorphism and the structures

of underlying words is not transparent, but rather deep-lying.

Definition 8. Transposition operation πab interchanges elements a, b in the integer alphabet,

(10) πa,b(s1...sn) = l1...ln, li =







b, if si = a,
a, if si = b,
si, otherwise.

Reflection operation ρ mirrors the indexes of elements ρ(s1...sn) = sn...s1.

Lemma 8. Transposing two letters in the integer alphabet generates an isomorphic word.

Since the transposition of two letters does not change the structure of word-lattice, words

containing all four elements of the alphabet have 4! isomorphic counterparts from the possible

permutations of nucleotides. The complementation of a double-stranded DNA-chain is one

realization of these transformations.

Lemma 9. Reflection of a word generates an isomorphic word.

Lemma 10. The reflection and transposition operations form the transformation group 〈G, ·〉,

where G = {πa,b : a, b ∈ ′alphabet′ } ∪ {ρ}

Although under the action of transformation group 〈G, ·〉 isomorphic words are created, the

operations allow only a tight relationship of the words. The considered operations are global

in the sense that their effect is spread onto the whole word. In spite of this the genetical

mechanism of mutation is rather local. Therefore the unrestricted isomorphism is too strong a

relationship for nucleotide chains and we introduce two weaker concepts.
6



Distributive lattices have several useful properties, for instance a height function is defined.

If x is an element of the distributive lattice, h(x) is the length of longest maximal chain in the

lattice interval [0̂, x], (while another statement ensures to be every maximal chain of the same

length [24].)

Definition 9. The lower partial isomorphism (pr − isomorphism) (L(Ω1) ∼=φ,r L(Ω2)) of

degree r and bijection φ requires the isomorphism of partial lattices [24] Lp(H1,r) ∼=φ Lp(H2,r),

where the base sets of lattices are restricted to subsets of Ω1 and Ω2, respectively with elements

H1,r := {x : h(x) ≤ r} ⊆ Ω1, H2,r := {y : h(y) ≤ r} ⊆ Ω2,

(11) φ(x ∧ y) = φ(x) ∧ φ(y), φ(x ∨ y) = φ(x) ∨ φ(y), ∀x, y, x ∨ y ∈ H1,r.

The upper partial isomorphism (ps−isomorphism) (L(Ω1) ∼=φ,s L(Ω2)) of degree s and bijection

φ sets similar requirements, H1,s := {x : h(x) ≥ h(1̂1) − s} ⊆ Ω1, H2,s := {y : h(y) ≥

h(1̂2) − s} ⊆ Ω2,

(12) φ(x ∧ y) = φ(x) ∧ φ(y), φ(x ∨ y) = φ(x) ∨ φ(y), ∀x, y, x ∧ y ∈ H1,s.

By a little lose, qualitative explanation pr-isomorphism and ps-isomorphism mean that sub-

words assigned to elements h(x), h(x′) ≤ r or h(x) ≥ h(1̂1) − s and h(x′) ≥ h(1̂2) − s and

(x ∈ L(Ω1), x′ ∈ L(Ω2)) are ’arranged’ among themselves in the same ways in both lattices.

The p-isomorphism allows local changes in the nucleotide chain providing a realistic approach

to describe algebraic effects of biological mutation mechanism.

Theorem 2. If L(Ω1) ∼=φ1,r L(Ω2) and L(Ω1) ∼=φ2,s L(Ω2) (h(1̂1) = h(1̂2) = r + s), then

the simultaneous pr-isomorphism and ps-isomorphism imply the unrestricted isomorphism of

lattices, if the mappings φ1, φ2 are identical for the common elements,

(13)
(

L(Ω1) ∼=r L(Ω2)
)

∧

(

L(Ω1) ∼=s L(Ω2)
)

∧

(

∀x(φ1(x) = φ2(x), if h(x) = r)
)

⇐⇒ L(Ω1) ∼= L(Ω2).

If given L(Ω1) and L(Ω2) the maximal degrees of partial isomorphisms rmax := maxr{r :

L(Ω1) ∼=r L(Ω2)} and smax := maxs{s : L(Ω1) ∼=s L(Ω2)} can be determined. The differences

∆1 = (h(1̂1)−s)−r and ∆2 = (h(1̂2)−s)−r are closely related to the tightness of relationship

of the underlying nucleotide chains. While unrestricted isomorphism (∆1 = ∆2 = 0) (under

the conditions of Theorem 2.) allows a relatively small number of isomorphic, but different

nucleotide chains (2 · 4!), ∆ > 0 difference implies a rapidly growing set of partially isomorphic
7



and different chain molecules. However unrestricted isomorphism is a strong requirement for

the structures of underlying chains, still does not ensure complete matching and p-isomorphism

allows much more freedom. Therefore a measure is needed to define the ’similarity distance’ of

two words and the next section is devoted to this question.

4. Shape lattice and measure

While nucleotide chains are compared primarily by the mapping properties of associated lat-

tices L(Ωi) and Con(L(Ωi)), beyond the comparison of associated algebras practical demands

also require a direct comparison of two words. This direct comparison should be detailed and

well structured, which means that an individual ’measure of correspondence’ is needed for every

relevant set of sub-words, instead of a global parameter for the whole word.

In any distributive lattice, one can define a non-negative function µ with the following

properties. If x, y are elements of the lattice, then

(14) x = y =⇒ µ(x) = µ(y),

(15) x ∧ y = 0̂ =⇒ µ(x ∨ y) = µ(x) + µ(y).

Under these circumstances µ is a finitely additive measure and it is strictly positive, if

(16) µ(x) = 0 =⇒ x = 0̂.

Though L(Ω) is distributive, if rejecting non-words and retaining only words in the congruence

classes (SC), the remaining part of the base set can not be ordered into a distributive lattice.

To remedy this difficulty, the sceleton classes are mapped onto a set of n-vectors. The closure

of this vector set is lattice-ordered into a distributive lattice, which is finally furnished with a

measure.

Definition 10. For every x̂/λq, x ∈ L(Ω), λ ∈ Con(L(Ω)),

(17) αx̂/λq
(i) =

{

1, if exists indexes k, l, 1 ≤ k ≤ i ≤ l ≤ n and Sn(k, l) ∈ x̂/λq,
0, otherwise.

and the n-vector ~αx̂/λq
≡ [αx̂/λq

(1), ..., αx̂/λq
(n)]T is called ’shape characteristic vector’.

Definition 11. For every x̂/λq, x ∈ L(Ω), λ ∈ Con(L(Ω)),

(18)

βx̂/λq
(i) =

{

si ≡ Sn(i, i), if exists indexes k, l, 1 ≤ k ≤ i ≤ l ≤ n and Sn(k, l) ∈ x̂/λq,
0, otherwise.

and the n-vector ~βx̂/λq
≡ [βx̂/λq

(1), ..., βx̂/λq
(n)]T is called ’shape property vector’.

8



Vector ~α contains 1-s in all those positions, where letters of the words of the given SC are

located, while ~β contains directly the letters. The images of all congruence classes are the

vector sets E = {~αx̂/λq
} and F = {~βx̂/λq

}. Lattices are constructed over E and F , by the

following operations. (To proceed in a formal generality, the operands will be denoted as

~a,~b,~c, ....)

Definition 12. The meet and join are constructed component-by-component, as the minimum

and the maximum of operands,

(19) ~a ∧~b = ~c, ci := min{ai, bi}, ~a ∨~b = ~c, ci := max{ai, bi}, i ∈ I.

The order relations and lattice operations are connected in the usual way (see Appendix 2.). The

closure sets E, F are obtained by finite applications of the specified operations. The constructed

lattices, L(E) = 〈E,∧,∨〉 and L(F ) = 〈F ,∧,∨〉 are characteristic to the generalized ’shape’

of the underlying nucleotide chain and will be called ’shape characteristic lattice’ and ’shape

property lattice’. The universal bounds arise by the operations 0̂E =
∧

~a∈E ~a and 1̂E =
∨

~a∈E ~a,

as similarly 0̂F =
∧

~b∈F
~b and 1̂F =

∨

~b∈F
~b, ~a ∈ E, ~b ∈ F .

Lemma 11. The shape characteristic and shape property lattices are distributive.

Theorem 3. The isomorphism of word-lattices implies the isomorphism of shape characteristic

and shape property lattices and the reverse implication is true as well,

(20) (L(Ω1) ∼= L(Ω2)) ⇐⇒ ((L(E1) ∼= L(E2))
∧

(L(F 1) ∼= L(F 2))).

Lemma 12. Function

(21) µ(~αx̂/λq
) := ~αx̂/λq

◦ ~αx̂/λq
, ~αx̂/λq

∈ E, λq ∈ Con(L(Ω1)).

(where ◦ denotes the scalar product) is a strictly positive measure on the distributive lattice

L(E).

If normalizing the vectors (~αx̂/λq
/||~αx̂/1̂E ||), measure µ(~αx̂/λq

/||~αx̂/1̂E ||) becomes a density func-

tion. It provides information on the distribution of considered property. For example, the

density function value µ((~αx̂/0̂E

∧

~α<̂A>/0̂E )/||~αx̂/1̂E ||) is the relative A-content of the word

b ∈ τ(S), x = τ(b).

The correspondence of two differing nucleotide chains of the same lengths is characterized

by their ’similarity distance’. This measure is based on the number of differing nucleotides. Let

be given two n-vectors 1~βx̂/λp
∈ F 1 and 2~βŷ/λq

∈ F 2 and the following ’characteristic operator’

κ,
9



Definition 13.

(22) κ(~a) = ~b, ~b =

{

bi = 1, if ai 6= 0,
0, otherwise.

where ~a, ~b are two n-vectors in general notations.

The characteristic operator assigns 1 to every non-zero element of the vector, therefore the

difference vector (1~βx̂/λp
− 2~βŷ/λq

) will contain 1-s in every position, where the component

vectors do not match and 0-s, where do. The measure of ’similarity distance’ depends on the

number of non-matching elements.

Lemma 13. Function

(23) µ(κ(1~βx̂/λp
− 2~βŷ/λq

)) := κ(1~βx̂/λp
− 2~βŷ/λq

) ◦ κ(1~βx̂/λp
− 2~βŷ/λq

)

1~βx̂/λp
∈ F 1,

2~βŷ/λq
∈ F 2, λp ∈ Con(L(Ω1)), λq ∈ Con(L(Ω2)).

satisfies the conditions to be a metric.

The constructed similarity distance is a ’measure of correspondence’ for every individual pair

of SC-s. All similarity distances, which are assigned to a fixed (x, y) couple of elements, but

systematically to every congruence relation form the ’Similarity Distance’ matrix

(24) SD(x, y) := [µ(κ(1~βx̂/λp
− 2~βŷ/λq

))]p,q, x ∈ L(Ω1), y ∈ L(Ω2).

If the associated lattices are isomorphic (L(Ω1) ∼=φ L(Ω2)), the diagonal elements (for which

p = q) of the matrix SD(x, φ(x)), x ∈ L(Ω1), φ(x) ∈ L(Ω2) measure the similarity distances

of the isomorphism coupled SC-s. That element in each matrix SD(x, y) for which λp = 1̂F
1

(λq = 1̂F
2 respectively ) agrees for every x ∈ L(Ω1) and y ∈ L(Ω2) providing the ’global

similarity distance’,

(25) gsdF1,F2
:= µβ(1~βx̂/1̂F1

− 2~βŷ/1̂F2
), x ∈ L(Ω1), y ∈ L(Ω2)

characterizing the overall correspondence of two selected words. While matrix SD(x, y) collects

all similarity distances referring to the fixed lattice elements (x, y) and all congruence relations

(λp, λq), the total available metric information is collected in the hyperlattice TSD ’Total

Similarity Distance’,

(26) TSD := [SD(x, y)]x,y, x ∈ L(Ω1), y ∈ L(Ω2).
10



This matrix comprises similarity distances between all congruence classes. Because β-measure

depends on the choice of alphabet, only words over identical alphabets can be compared. Al-

though these last considerations referred to vectors associated with different lattices, all con-

siderations apply to vectors of the same lattice, too.

As to the meaning of obtained information, the established lattice algebra orders the images

of words over a fixed alphabet. The obtained lattice L(Ω) depends on the coupling mode

and diversity of the words. For example, if taking into account a join-irreducible element of

the lattice, the number of upper closest join-irreducibles depend on the number of different

words including the selected one considering every occurrence of it along the whole chain. The

obtained lattice is decomposed into sub-algebras, which are congruence classes composed of

specifically relating elements of the lattice. The distribution of any lattice property expressible

by lattice polynomials [24] is characterized by a density function, the mutual correspondence

of congruence classes is measured by an appropriate similarity distance, which provides metric

informations for the local, as well as global correspondences of the compared nucleotide chains.

5. Illustrations and conclusions

In this section some simple examples are given to elucidate advantages of lattice theoretical

characterization of nucleotide chains over simple string matching schemes. In our opinion, even

though direct matching of nucleotide chains is important since it defines identical transcripts,

the relationship of lattice-based ’global structures’ of two nucleotide chains say more then mere

matching percentage.

Since word-lattices are generally too large for displaying the Hasse-diagrams, we restrict

illustrations to lattices associated with small portions of the following nucleotide sequences,

Ca.) TTAGGGTTAGGGTTAGGG, Cb.) AATCCCAATCCCAATCCC,

Cc.) TTCCATTCCATTCCATTCCA.

We do not attempt to present ’results of practical utility’, because the necessary huge lattices

would totally destroy our goal to make us understood. Therefore the forthcoming examples

serve exclusively purposes of illustration of some selected ideas of this report.

The first two words Ca and Cb are complementary, the largest repeating elementary units

consist of six letters. Their word-lattices are isomorphic by Lemma 8., but figure 2. displays only

the Hasse-diagrams of corresponding 4-letter units AGGG and TCCC. Choosing the sceleton

class SC(x/λ), x =< AG >, λ ∼ [< A > ∨ < G > : < AG > ∨ < GG >] in L(τ(< AGGG >)),

the associated vectors are ~αx̂/λ = [1, 1, 0, 0]T and ~βx̂/λ = [1, 2, 0, 0]T . In L(τ(< TCCC >)) the
11
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Figure 2. Complementary words with isomorphic word-lattices.

corresponding sceleton class and vectors are SC(x′/λ′), x′ =< TC >, λ′ ∼ [< T > ∨ <

C > : < TC > ∨ < CC >] and ~αx̂′/λ′ = [1, 1, 0, 0]T , ~βx̂′/λ′ = [4, 3, 0, 0]T . The number of

differing letters is provided by β-measure µ(κ(1~βx̂/λ − 2~βx̂′/λ′)) = [1, 1, 0, 0] ◦ [1, 1, 0, 0] = 2.

Though direct correspondence does not exist between the words, their internal structures are

of the same construction. The images of various repeat units in both words form sub-lattices of

L(τ(τ(ψ(Ca)))) and L(τ(τ(ψ(Cb)))) and the isomorphism forces pairing of corresponding units.

The CCCA unit of Cb may result from AGGG of Ca by a reflection ρ(AGGG) = GGGA

and a subsequent transposition πG,C(GGGA) = CCCA. (For the sake of simple notation the

operators were applied directly to the letters). The Hasse-diagrams corresponding to the words

AGGG and GGGA are shown on figure 3.

If taking into account Cc also, the isomorphism of full words is clearly lost, because even their

lengths are different. However there are several isomorphic sub-lattices and corresponding sub-

words. The largest elementary repeat unit CCATT of Cc is isomorphic with TTAGG of Ca. It

is generated by transpositions πC,G(πC,T (CCATT )) = TTAGG. CCATT of Sc is also isomor-

phic with AATCC of Sb, when it is generated by the transpositions πC,A(πA,T (CCATT )) =

AATCC.

Finally the partial isomorphism is illustrated by the examples AGAG, AGAGAG and

AGGG, AAGG, where most of them have isomorphic counterparts in Ca, Cb or Cc. The
12
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Figure 3. Mirror image words with isomorphic word-lattices.

first two words contain the same 2-letter elementary repeat unit and differ only in their full

lengths. Their lattices are displayed on figure 4.. It is clear that up to h(x) = 6 height the two

words have the same structures implying lower partially isomorphic lattices L(Ω1) ∼=6 L(Ω2).

The upper parts of the lattices are isomorphic as well implying the upper partial isomorphism

L(Ω1) ∼=7 L(Ω2). This means for example that sub-words AGAGA and GAGAG are in similar

relation to each other as the sub-words AGA and GAG. Let us consider the word AGAG and

an ascending chain of congruence relations by selecting the generator lattice intervals to be of

the following forms λi ∼ [0̂ : xi] with the convention i < j =⇒ h(xi) < h(xj). The selected

chain of congruencies is λ1 ∼ [< 0̂ >:< A > ∨ < G >], λ2 ∼ [< 0̂ >:< AG > ∨ < GA >

], λ3 ∼ [< 0̂ >:< AGA > ∨ < GAG >], λ4 ∼ [< 0̂ >:< 1̂ >]. The associated vectors are

α ˆ<AG>/λq
= [1, 1, 1, 1]T (q = 1, ..., 4) expressing the homogenous construction of the word. The

density is therefore uniform with value µ(~α ˆ<AG>/λq
/||~α ˆ<AG>/1̂E ||) = 1. A similarly uniform

distribution can be obtained for the word AUAUAU , too.

The next example refers to words AGGG and AAGG. Their lattices are displayed on figure

5.. The lattice associated with the first word is already well known, the second looks quite

complicated although only one position (G −→ A) has been changed. It is apparent that

increasing the symmetry of the word, the symmetry of the lattice is also increased. The par-

tial isomorphisms are significantly weaker then in the previous example and the lower partial
13
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Figure 4. Lower and upper partial isomorphisms of word-lattices.

isomorphism is only of first degree, L(Ω1) ∼=1 L(Ω2), while the upper partial isomorphism is

of second degree L(Ω1) ∼=2 L(Ω2). Beyond the partial isomorphism there are a number of

isomorphic sub-lattices, as the intervals [< G >:< AGG >]1 and [< A >,< AAG >]2 or

[< G >,< AGG >]1 and [< G >,< AGG >]2, what we call ’local isomorphism’. When

investigating the distribution of the word AG, again an ascending chain of bracketing lattice

intervals is chosen. For AGGG the obtained congruence relation generating lattice intervals

and congruence classes are listed in table 1.. The corresponding ~α vectors and density function

values are listed in table 2. The congruence relations and lattice intervals assigned to the word

AAGG are listed in table 3., while the corresponding ~α vectors and density function values are

listed in table 4.. As seen on tables 2. and 4., the distributions of < ÂG > /λq among the

selected sceleton classes show basic similarity and minor differences in the words AGGG and

AAGG. If taking into account the full set or only a well chosen subset of lattice elements and

congruence relations, the associated density functions characterize the word quite well.

Of course the above examples were very simple, but sufficiently complex for demonstrating

the power of lattice-algebraic characterization of nucleotide chains. The global isomorphism

of lattices, the local isomorphism of sub-lattices or the partial isomorphism of lattices give a

colourful description of the chain structure, which is essentially different in nature from simple
14



u

u

u

u

u

u u

u

u

u

u

u

u

u

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
@

@
@

@
@

@
@

@
@

@
@¡

¡
¡

¡
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@
¡

¡
¡

¡
¡

¡
¡

¡

<AGGG>

<AGG>∨<GGG>

<AGG>

<AG>

<A>

<AG>∨<GG>

<A>∨<G>

<A>∨<GG>

<AG>∨<GGG>

<A>∨<GGG>

<GGG>

<GG>

<G>

0̂ v

vv

v v v

vvv

v vv

v vv

v v

v

v

@
@

@
@

@
@

@
@¡

¡
¡

¡
¡

¡
¡

¡
@

@
@

@
@

@
@

@¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@
¡

¡
¡

¡
¡

¡
¡

¡@
@

@
@

@
@

@
@
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

0̂

<A>

<AA>

<AA>∨<G>

<AA>∨<AG>

<AAG>

<AAG>∨<GG>

<AAG>∨<AGG>

<AAGG>

<AA>∨<AGG>

<AGG>

<AG>

<A>∨<G>

<G>

<GG>

<A>∨<GG>

<AG>∨<GG>

<AA>∨<AG> ∨<GG>

<AA> ∨<GG>

L(τ(<AGGG>)) L(τ(<AAGG>))

Figure 5. Lower and upper partial isomorphisms of word-lattices.

h(x) λ ∼ [v : w] SC(< AG > /λ)

2 λ20 ∼ [< 0̂ >:< A > ∨ < G >] {< AG >}
λ21 ∼ [< 0̂ >:< GG >] {< AG >}

3 λ30 ∼ [< 0̂ >:< AG >] {< A >,< G >,< AG >}
λ31 ∼ [< 0̂ >:< A > ∨ < GG >] {< AG >}
λ32 ∼ [< 0̂ >:< GGG >] {< AG >}

4 λ40 ∼ [< 0̂ >:< AG > ∨ < GG >] {< A >,< G >,< AG >,< GG >}
λ41 ∼ [< 0̂ >:< A > ∨ < GGG >] {< AG >}

5 λ50 ∼ [< 0̂ >:< AGG >] {< A >,< G >,< AG >,< GG >,
< AGG >}

λ51 ∼ [< 0̂ >:< AG > ∨ < GGG >] {< A >,< G >,< AG >,< GG >,
< GGG >}

6 λ60 ∼ [< 0̂ >:< AGG > ∨ < GGG >] {< A >,< G >,< AG >,< GG >,
< GGG >,< AGG >}

7 λ1̂ ∼ [< 0̂ >:< AGGG >] {< A >,< G >,< AG >,< GG >,
< GGG >,< AGG >,< AGGG >}

Table 1. Selected congruence relations and generating lattice intervals of L(τ(< AGGG >)).

15



h(x) ~α ˆ<AG>/λq
µ(~α/||~α||) µaverage

2 [1, 1, 0, 0]T 1/2 1/2
[1, 1, 0, 0]T 1/2

3 [1, 1, 1, 1]T 1 2/3
[1, 1, 0, 0]T 1/2
[1, 1, 0, 0]T 1/2

4 [1, 1, 1, 1]T 1 3/4
[1, 1, 0, 0]T 1/2

5 [1, 1, 1, 1]T 1 1
[1, 1, 1, 1]T 1

6 [1, 1, 1, 1]T 1 1
7 [1, 1, 1, 1]T 1 1

Table 2. Selected density function values associated with L(τ(< AGGG >)).

h(x) λ ∼ [v : w] SC(< AG > /λ)

2 λ20 ∼ [< 0̂ >:< AA >] {< AG >}

λ21 ∼ [< 0̂ >:< A > ∨ < G >] {< AG >}

λ22 ∼ [< 0̂ >:< GG >] {< AG >}

3 λ30 ∼ [< 0̂ >:< AA > ∨ < G >] {< AG >}

λ31 ∼ [< 0̂ >:< AG >] {< A >, < G >, < AG >}

λ32 ∼ [< 0̂ >:< A > ∨ < GG >] {< AG >}

4 λ40 ∼ [< 0̂ >:< AA > ∨ < AG >] {< A >, < G >, < AA >, < AG >}

λ41 ∼ [< 0̂ >:< AA > ∨ < GG >] {< AG >}

λ42 ∼ [< 0̂ >:< AG > ∨ < GG >] {< A >, < G >, < AG >, < GG >}

5 λ50 ∼ [< 0̂ >:< AAG >] {< A >, < G >, < AA >, < AG >,
< AAG >}

λ51 ∼ [< 0̂ >:< AA > ∨ < AG > ∨ < GG >] < A >, < G >, < AG >, < AA >,
< GG >}

λ52 ∼ [< 0̂ >:< AGG >] {< A >, < G >, < GG >, < AG >,
< AGG >}

6 λ60 ∼ [< 0̂ >:< AAG > ∨ < GG >] {< A >, < G >, < AA >, < GG >,
< AG >, < AAG >}

λ61 ∼ [< 0̂ >:< AA > ∨ < AGG > {< A >, < G >, < AA >, < GG >,
< AG >, < AGG >}

7 λ70 ∼ [< 0̂ >:< AAG > ∨ < AGG >] {< A >, < G >, < AA >, < GG >,
< AG >, < AAG >, < AGG >}

8 λ
1̂
∼ [< 0̂ >:< AAGG >] {< A >, < G >, < AA >, < GG >,

< AG >, < AAG >, < AGG >, < AAGG >}

Table 3. Selected congruence relations and generating lattice intervals of L(τ(< AAGG >)).

matching comparisons. The multitude of distribution functions of properties expressible by

lattice-polynomials provide all-round picture about the chain molecule. Finally the β-measure

yields a vaste amount of deeply structured informations in essence similar to string matching

based results, but significantly more detailed.
16



h(x) ~α ˆ<AG>/λq
µ(~α/||~α||) µaverage

2 [0, 1, 1, 0]T 1/2 1/2
[0, 1, 1, 0]T 1/2
[0, 1, 1, 0]T 1/2

3 [0, 1, 1, 0]T 1/2 2/3
[1, 1, 1, 1]T 1
[0, 1, 1, 0]T 1/2

4 [1, 1, 1, 1]T 1 5/6
[0, 1, 1, 0]T 1/2
[1, 1, 1, 1]T 1

5 [1, 1, 1, 1]T 1 1
[1, 1, 1, 1]T 1
[1, 1, 1, 1]T 1

6 [1, 1, 1, 1]T 1 1
[1, 1, 1, 1]T 1

7 [1, 1, 1, 1]T 1 1
8 [1, 1, 1, 1]T 1 1

Table 4. Selected density function values associated with L(τ(< AAGG >)).

6. Appendix 1. (Proofs of the assertions)

Lemma 1.

Proof. Reflexivity and transitivity fulfills trivially, anti-symmetry follows from the simultaneous

relations (S1 ≤ S2)
∧

(S2 ≤ S1) =⇒ S1 = S2. Definition 3. is an order-relation, 〈Ciw,≤〉 is a

poset. ¤

Lemma 2.

Proof. The base set τ(τ(Sn)) of L(Ω) is the closure completion of τ(τ(Sn)) with all unions and

intersections. Since the lattice operations agree with the set-theoretical union and intersection,

the set-theoretical identities

a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)

a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c)

are satisfied for all a, b, c,∈ τ(τ(Sn)). ¤

Lemma 3.

Proof. The statement follows directly from the definition of the word. Since a word w ∈ τ(S)

by definition is a connected ensemble of juxtaposed letters, τ(w) is the image of a word, if

τ(w) ∈ τ(τ(S)). Join-irreducibility means x ∨ y = z =⇒ z = x or z = y, which means that

no two elements exist in the principal ideal (z], which are different from z, but generate it.

Since z = τ(w) can not be generated by two elements, it must be the image of a word. In the
17



reverse order, the z = τ(w) ∈ τ(τ(S)) element (the image of a word) can not be generated

from two smaller elements and must be join-irreducible because the lattice operations are the

set-theoretical union and intersection. ¤

Theorem 1.

Proof. It is supposed that L(Ω1)(≡ L(τ(τ(S1)))) ∼=φ L(Ω2)(≡ L(τ(τ(S2)))). Bijection φ

uniquely and order-preserving couples images of words exclusively with images of words. For

the relationship of order-relations and lattice-operations this implies the isomorphism of posets

〈τ(S1),≤〉 ∼=φ 〈τ(S2),≤〉 consisting exlusively in the words of the base sets of lattices. In the

reverse order the isomorphism of full lattices L(Ω1) ∼=φ L(Ω2) follows from the isomorphism of

posets 〈τ(S1),≤〉 ∼=φ 〈τ(S2),≤〉. This is because their base sets Ω1 and Ω2 are generated by

the same order-preserving procedures τ(S1) −→ τ(τ(S1)) and τ(S2) −→ τ(τ(S2)), as well as

identical order-presrving closure formation by lattice operations given in Definition 4.. ¤

Lemma 4.

Proof. The proof is found in [24]. ¤

Lemma 5.

Proof. Textbook [22] is referred. ¤

Lemma 6.

Proof. Textbook [24] is referred. ¤

Lemma 7.

Proof. Using Definition 5.,

λq ≤ λp =⇒ x/λq ≤ x/λp =⇒ x̂/λq ≤ x̂/λp (≡ SC(x/λq) ≤ SC(x/λp)).

¤
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Lemma 8.

Proof. By Theorem 1., it is enough to show that 〈τ(S1),≤〉 ∼=φ 〈τ(πa,b(S1)),≤〉. By Definition

8. the transposition operation is invertible, therefore the mapping φ : τ(S1) ←→ τ(πa,b(S1)) is

a bijection, ∀w(φ(w) := πa,b(w), w ∈ τ(S1)). Since the inclusion relation is preserved by the

transposition operation, the mapping is order-preserving and the isomorphism of posets and

lattices is maintained. ¤

Lemma 9.

Proof. The proof is along the same line as in Lemma 8.. ¤

Lemma 10.

Proof. There is a neutral element πa,a ≡ πb,b ≡ ..., the associativity follows trivially and because

the operations π, ρ are invertible, an inverse exists for every element. ¤

Theorem 2.

Proof. By assumption L(Ω1) ∼=φ1,r L(Ω2) and L(Ω1) ∼=φ2,s L(Ω2), h(1̂1) = h(2̂1) = s + r and

φ1(x) = φ2(x), ∀x (h(x) = r), x ∈ L(Ω1). It is asserted that L(Ω1) ∼=φ L(Ω2), where

φ =

{

φ1, if h(x) ≤ r
φ2, if h(x) ≥ r.

Let us consider two elements x, y ∈ L(Ω1), h(x), h(y) ≥ r but h(x∧y) < r. Let the elements be

associated with the generated principal filters [x), [y) and ([x) ∨ [y)), since the join of the two

principal filters is the principal filter of the meet of the generating elements [x) ∨ [y) = [x ∧ y).

On the other hand [x ∧ y) = {z : z ≥ (x ∧ y)} and z ≤ z′ if z ∨ z′ = z′ and z ∧ z′ = z. If

the lower partial isomorphism is satisfied for all elements {z : z ∈ [x ∧ y), h(z) ≤ r}, as well

as the upper partial isomorphism is satisfied for all elements {z : z ∈ [x ∧ y), h(z) ≥ r} and

a bijective mapping φ exists, which satisfies the stated condition, then the unique coupling of

the elements of filters implies that the isomorphism condition fulfills for x, y and x∧ y. Similar

considerations based on the associated ideals ((x], (y] and (x ∨ y]) prove the isomorphism, if

(x, y) belong to the lower partial lattice, but their join belongs to the upper partial lattice

φ(x ∨ y) = φ(x) ∨ φ(y), h(x), h(y) ≤ r, h(x ∨ y) ≥ r. ¤

Lemma 11.

Proof. The lattices L(E) and L(F ) can be considered for products of chain lattices given over

the components with elementary operations specified in Definition 12.. Since these chain lattices

are distributive, their Cartesian products have the same property. ¤
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Theorem 3.

Proof. Since L(Ω1) ∼=φ L(Ω2) ⇐⇒ 〈τ(S1),≤〉 ∼=φ 〈τ(S2),≤〉, the following assertion is proved,

〈τ(S1),≤〉 ∼=φ 〈τ(S2),≤〉 ⇐⇒ L(E1) ∼=φ L(E2)

implying L(E1) ∼=φ L(E2) ⇐⇒ L(F 1) ∼=φ L(F 2) because of the construction of involved

lattices. Let us consider the following sets

E′

1 = {~αx̂/1̂0 : x ∈ SC(x/1̂1)}, E′

2 = {~αφ(x̂)/2̂0 : φ(x) ∈ SC(x/2̂1)}

Every vector ~e1 ∈ E1 and ~e2 ∈ E2 is of the form ~e1 = ~t1 ∨ ... ∨ ~tk, ~e2 = ~u1 ∨ ... ∨ ~us, where

~t1, ...,~tk ∈ E′

1 and ~u1, ..., ~us ∈ E′

2. Because of the construction of the closure of sets

L(E
′

1) ≡ L(E1), L(E
′

2) ≡ L(E2)

and the bijections φ1 : τ(S1) ←→ E′

1 and φ2 : τ(S2) ←→ E′

2 coupling images of words and

generator vectors of sets E1 and E2

〈τ(S1),≤〉 ∼=φ 〈τ(S2),≤〉 ⇐⇒ L(E
′

1)
∼=φ L(E

′

2)

proving the statement. The second assertion fulfills by definition of vector lattice operations

generating the closure set in an order-preserving way. ¤

Lemma 12.

Proof. Conditions (14) and (16) are fulfilled trivially. As to the condition (15)

~a ∧~b = 0̂, ~a,~b ∈ E =⇒
(

((ai = 0 =⇒ bi 6= 0)
∧

(bi = 0 =⇒ ai 6= 0).

Taking into account the scalar product structure of measure µ, also (15) is ensured. ¤

Lemma 13.

Proof. For all ~a(≡ 1~βx̂/λp) ∈ L(F 1), ~b(≡ 2~βŷ/λq) ∈ L(F 2), ~c(≡ 3~βẑ/λr) ∈ L(F 3), vectors and

associated lattices

µ(κ(~a −~b)) = µ(κ(~b − ~a)) ≥ 0 = µ(κ(~a − ~a)) = µ(κ(~b −~b))

µ(κ(~a −~b)) + µ(κ(~b − ~a)) ≥ µ(κ(~a − ~c)).

The last two elations are quite obvious because the measure provides the usual Euclidean

distance of shape property vectors. ¤
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7. Appendix 2. (Basics of lattice theory)

The content of this section can be found in many textbooks of algebra or lattice theory

[20-24]. It is included here only for convenience, therefore the statements are given without

formal proofs. The forthcoming discussion refers to finite lattices. It is more general than our

actual topic and the notation will distinctly differ from the previous symbolism.

Lattice theory, as a branch of algebra refers to a set endowed with some operations. The

ordered pair 〈L,Γ〉 specifies a lattice, if L is a non-empty set and Γ = {γi : i ∈ I} is an

ensemble of operations obeying some conditions. Set L is the ’universe’ of the (lattice) algebra

and γi ∈ Γ, (i ∈ I) are the basic operations in it. The operations can be of rank 0, 1, 2 and they

are functions from the product sets L0, L1, L2 into L. Set L0 is identified with {∅}, therefore the

rank 0 operation selects only a special element of L, but in the actual report only operations of

rank two appear explicitly. By a convention we shall use boldface letters (L) to denote algebras

and simple uppercase letters (L) for their universes. Lattices can be seen equivalently as special

(partially) ordered sets or binary (rank 2) algebras. To be a (partially) ordered set, the (order)

relation must be,

• i.) reflexive, i.e. ∀b(bρb)

• ii.) anti-symmetric, i.e. bρb′, b′ρb =⇒ b = b′

• iii.) transitive, i.e. bρb′, b′ρb′′ =⇒ bρb′′.

If considering lattices as binary algebras with operations denoted by ∨ and ∧, the following

identities must be satisfied, x, y, z ∈ L:

• λ1.) x ∧ x = x; x ∨ x = x (idempotency).

• λ2.) x ∧ y = y ∧ x; y ∨ x = x ∨ y (commutativity).

• λ3.) x ∧ (y ∧ z) = (x ∧ y) ∧ z; x ∨ (y ∨ z) = (x ∨ y) ∨ z (associativity).

• λ4.) x ∧ (x ∨ y) = x ∨ (x ∧ y) = x (absorption law).

If L is a (partially) ordered set with order relation ≤, properties i.)-iii.) are obeyed, if every

non-void subset X ⊆ L has a least upper bound (l.u.b.), [a ∈ L is an upper bound of X, if

x ≤ a for all x ∈ X and a ∈ L is a least upper bound of X, if b is also an upper bound of X

and a ≤ b] and a greatest lower bound (g.l.b.), [a ∈ L is a lower bound of X, if a ≤ x for all

x ∈ X and a ∈ L is a greatest lower bound of X, if b is also a lower bound of X and b ≤ a].

The lattice operations and order relations are consistent in the following way,

a ≤ b, if a = a ∧ b and b = a ∨ b.
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The lattice operations assign to each couple of elements their l.u.b. (supremum, ∨) and g.l.b.

(infimum, ∧). The lattice is complete if every subset has a g.l.b and a l.u.b.. The least element

is the 0̂, the greatest is the 1̂. An element b covers a, if a < b and a ≤ c ≤ b =⇒ a = c or c = b.

The upper covers of the 0̂ are the ’atoms’ of the lattice, while elements exactly below 1̂ are the

’dual atoms’. Elements a, b are comparable, whenever a ≤ b or b≤ a and incomparable (a||b),

otherwise. Those elements, which are comparable pairwise form a chain, while those which are

incomparable form an anti-chain. Using the covering relation, finite lattices can be displayed

by drawing a Hasse diagram. Here the elements of L are represented by points on a plane,

where each point is connected to the (point-)representatives of upper and lower cover elements.

Some subsets of L are closed with respect to one or both of the lattice operations. If U is

non-empty, U ⊆ L and for all b ∈ L, if b ≤ a =⇒ b ∈ U , furthermore a, b ∈ U =⇒ (a ∨ b) ∈ U ,

then U is an ’ideal’ of the lattice denoted by (U ]. By dualization we arrive at the concept of

the ’filter’ of the lattice. If U is non empty, U ⊆ L and for all b ∈ L, if b ≥ a =⇒ b ∈ U ,

furthermore a, b ∈ U =⇒ (a ∧ b) ∈ U , then U is a filter (dual ideal) of the lattice denoted by

[U). A sublattice is closed with respect to both of the operations, i.e. if U is non-empty, U ⊆ L

and (a, b) ∈ U =⇒ (a ∨ b) ∈ U , (a ∧ b) ∈ U , then U is a sublattice. The sets of ideals (filters,

sublattices) can be ordered by the set-theoretic inclusion giving the ideal lattice I(L).

The morphism concept covers mappings from a lattice into a lattice (possible the same one).

Let φ : L1 → L2 be a function from L1 to L2. The mapping is isotone, if x ≤ y ⇐⇒ φ(x) ≤ φ(y).

It is a meet morphism, if φ(x∧ y) = φ(x)∧φ(y), a join morphism, if φ(x∨ y) = φ(x)∨φ(y) and

a lattice (homo)morphism, if both properties are fulfilled. The mapping is an isomorphism, if

it is a bijection, an epimorhism, if it is onto, an endomorphism, if it is a homomorphism and

L1 = L2 and an automorphism, if it is isomorphism with L1 = L2.

A congruence relation is a special kind of equivalence relation. An equivalence relation

exhibits similar properties as i.)-iii.), except ii.), which is replaced by

• ii’.) symmetric, i.e. bρb′ =⇒ b′ρb.

An equivalence relation ρ is a congruence relation, if the so called ’substitution property’ is

fulfilled, x0 ≡ y0 ( mod ρ), x1 ≡ y1 ( mod ρ) =⇒ x0 ∧ x1 ≡ y0 ∧ y1 ( mod ρ), x0 ∨

x1 ≡ y0 ∨ y1 ( mod ρ), where xρy was substituted with the notation x ≡ y( mod ρ).

All congruences of a lattice L can be ordered by inclusion to form the congruence lattice

Con(L(L)) =< Con(L(L)),∧,∨ >, where the meet is the set-theoretic intersection and the

join is the transitive closure [22].
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The lattices can be classified by those identities, which their elements satisfy. The ’modular’

lattices are characterized by the modular identity,

x ∧ (y ∨ z) = (x ∧ y) ∨ z, ∀(x, y, z) ∈ L, z ≤ x.

In the class of ’distributive’ lattices, the modular law appears in unrestricted form,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), ∀(x, y, z) ∈ L.

The Boolean lattices are distributive, contain the universal bounds 0̂ and 1̂ and every element

has a unique complement x′, with the following properties x ∧ x′ = 0̂, x ∨ x′ = 1̂.

We do not intend to pick out further elements of lattice theory, this short overview hopefully

covers the topic we are interested in.
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