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Abstract. This paper examines the applicability of some learning techniques to
the classification of phonemes. The methods tested were artificial neural nets
(ANN), support vector machines (SVM) and Gaussian mixture modeling. We
compare these methods with a traditional hidden Markov phoneme model (HMM)
working with the linear prediction-based cepstral coefficient features (LPCC). We
also tried to combine the learners with feature transformation methods, like linear
discriminant analysis (LDA), principal component analysis (PCA) and indepen-
dent component analysis (ICA). We found that the discriminative learners can
attain the efficiency of the HMM, and after LDA they can attain practically the
same score on only 27 features. PCA and ICA proved ineffective, apparently be-
cause of the discrete cosine transform inherent in LPCC.

1 Introduction

Automatic speech recognition is a special pattern classification problem which aims to
mimick the perception and processing of speech in humans. For this reason it clearly
belongs to the fields of machine learning (ML) and artificial intelligence (AI). For his-
torical reasons, however, it is mostly ranked as a sub-field of electrical engineering,
with its own unique technologies, conferences and journals. In the last two decades the
dominant method for speech recognition has been the hidden Markov modeling (HMM)
approach. Meanwhile, the theory of machine learning has developed considerably and
now has a wide variety of learning and classification algorithms for pattern recognition
problems. The goal of this paper is to study the applicability of some of these methods to
phoneme classification, making use of so-called feature-space transformation methods
applied prior to learning to improve classification rates. We also present results with the
application of such transformations. In essence this article deals with the neural network
(ANN), support vector machine (SVM) and Gaussian Mixture modeling (GMM) learn-
ing methods and with the transformations linear discriminant analysis (LDA), principal
component analysis (PCA) and independent component analysis (ICA). We compare
the performance of the learners with that of the HMM on the same feature set, namely
the so-called linear prediction-based cepstral coefficients (LPCC).

The structure of the paper is as follows. First, we proveide a short review of the
phoneme classification problem itself, and suggest some possible solutions. Then we
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briefly describe the acoustic features that were applied in the experiments and examine
the feature transformation methods used. The final part of the paper discusses aspects
of the experiments, especially the advantages and drawbacks of each learning method,
the effectiveness of each transformation and of course the results obtained.

2 The Task of Phoneme Classification

Speech recognition is a pattern classification problem in which a continuously vary-
ing signal has to be mapped to a string of symbols (the phonetic transcription). Speech
signals display so many variations that attempts to build knowledge-based speech rec-
ognizers have mostly been abandoned. Currently researchers tackle speech recognition
only with statistical pattern recognition techniques. Here however, a couple of special
problems arise that have to be dealt with. The first one is the question of the recognition
unit. The basis of the statistical approach is the assumption that we have a finite set of
units (in other words, classes), the distribution of which is modeled statistically from a
large set of training examples. During recognition an unknown input is classified as one
of these units, using some kind of similarity measure. Since the number of possible sen-
tences or even words is potentially infinite, some sort of smaller recognition units have
to be chosen in a general speech recognition task. The most commonly used unit of this
kind is the phoneme, thus this paper deals with the classification problem of phonemes.

The other special problem is that the length of the units may vary, that is utterances
can ”warp” in time. The only known way of solving this is to perform a search in order
to locate the most probable mapping between the signal and the possible transcriptions.
Normally depth-first search is applied (implemented with dynamic programming), but
breadth-first search with a good heuristic is also viable.

3 Generative and Discriminative Phoneme Modeling

Hidden Markov models (HMM)[10] synchronously handle both the problems men-
tioned above. The speech signal is given as a series of observation vectors O = o1...oT,
and one has one model for each unit of recognition C. These models eventually return a
class-conditional likelihood P (O|C). The models are composed of states, and for each
state we model the probability that a given observation vector belongs to (“was omit-
ted by”) this state. Time warping is handled by state transition probabilities, that is the
probability that a certain state follows the given state. The final “global” probability is
obtained as the product of the proper omission and state-transition probabilities.

When applied to phoneme recognition, the most common state topology is the three-
state left-to-right model (see fig.1). We use three states because the first and last parts
of a phoneme are usually different from the middle due to coarticulation. This means
that in a sense we do not really model phonemes but rather phoneme thirds.

Because the observation vectors usually have continuous values the state omission
probabilities have to be modeled as multidimensional likelihoods. The usual procedure
is to employ a mixture of weighted Gaussian distributions of the form

p(o) =

k
∑

i=1

ciN (o, µi,Ci), (1)
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Fig. 1. The three-state left-to-right phoneme HMM.

where N (o, µi,Ci) denotes the multidimensional normal distribution with mean
µi and covariance matrix Ci, k is the number of mixtures, and ci are non-negative
weighting factors which sum to 1.

In the following experiments we apply these Gaussian mixture models (GMM)[3]
not only in HMMs but also in isolation, so as to model the conditional likelihood
P (X|C) of a set of features X having been generated by a phoneme class C.

The final goal of classification is to find the most probable class C. We can com-
pute the probabilities P (C|X) from P (X|C) given by class-conditional or generative
models like HMM and GMM making use of Bayes’ law. Another aproach is to em-
ploy discriminative learners which model P (C|X) directly. Instead of describing the
distribution of the classes, these methods model the surfaces that separate the classes
and usually perform slightly better than generative models. Their drawback in speech
recognition tasks is that they cannot implicitly handle the ”time-warping” characteristic
os speech as HMM can, so on the word-level they have to be combined with some sort
of search method.

From the family of discriminative learners we chose to experiment with the now tra-
ditional artificial neural networks (ANN)[11], and a relatively new technology called
support vector machines (SVM). Rather than describing this method in detail here we
refer the interested reader to an overview in [14].

4 Evaluation Domain

The feature space transformation and the classification techniques were compared using
a relatively small corpus which consists of several speakers pronouncing Hungarian
numbers. More precisely, 20 speakers were used for training and 6 for testing, and
52 utterances were recorded from each person. The ratio of male and female talkers
was 50%-50% in both the training and testing sets. The recordings were made using a
cheap commercial microphone in a reasonably quiet environment, at a sample rate of
22050 Hz. The whole corpus was manually segmented and labeled. Since the corpus
contained only numbers we had samples of only 32 phones, which is approximately
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two thirds of the Hungarian phoneme set. Since some of these labels represented only
allophonic variations of the same phoneme some labels were fused together, hence in
practice we only worked with a set of 28 labels. The number of occurrences of the
different labels in the training set was between 40 and 599.

5 Frame-Based and Segmental Features

There are numerous methods for obtaining representative feature vectors from speech
data[10], but their common property is that they are all extracted from 20-30 ms chunks
or ”frames” of the signal in 5-10 ms time steps. The HMM system employed in our
experiments was the FlexiVoice speech engine[12] trained and tested by Máté Szarvas
at the Technical University of Budapest. In his tests he worked with the so-called lpc-
based cepstral coefficients (LPCC)[10], so for comparison we conducted a series of
experiments with this feature set. To be more precise, 17 LPCC coefficients (including
the zeroth one) were extracted from 30 ms frames. The HMM system used the deriva-
tives of these as well, so a speech frame was characterised by 34 features altogether.

All the other classifiers were tested within the framework of our speech recognizer
called OASIS[8][13]. This is a segment-based recognizer which means that the frames
are not evaluated separately and then combined as in the HMM, but certain segmen-
tal features are first calculated. The aim of using these segmental features is to model
the evolution of the frame-based features in time. In our case the 17 LPCC coefficients
were averaged over segment-thirds, and the differences of these were also calculated to
model their dynamics. These derivative-like features were also extracted at the segment
boundaries. We found that the so-called modulation spectrum[4] also facilitates the clas-
sification process. It was evaluated as the 4 Hz Fourier-coefficient of 250 ms sections
of the LPCC trajectories. Further segmental features were the variance of LPCC coef-
ficients over the segment and the length of the segment. Thus altogether 154 features
were used to describe a complete phoneme.

Having found earlier that LPCC is not the optimal representation for our system,
we also report findings obtained via the bark-scaled filterbank log-energies (FBLE).
This means that the signal is decomposed with a special filterbank and the energies in
these filters are used to parameterize speech on a frame-by-frame basis. The filters were
approximated from Fourier analysis with triangular weighting as described in[10]. The
segmental features were calculated from FBLE in the same way as from LPCC.

6 Linear Feature Vector Transformations

Before executing a learning algorithm, additional vector space transformations may be
applied on the extracted features. The role of these methods is twofold. Firstly they can
improve classification performance, and secondly they can also reduce the dimension-
ality of the data.

Without loss of generality we will assume that the original data set lies in IRn, and
that we have l elements x1, . . . ,xl in the training set and t elements y1, . . . ,yt in the
testing set. After applying a feature space transformation method, the new data set lies in
IRm (m ≤ n), the transformed training and testing vectors being denoted by x′1, . . . ,x

′

l
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and y′1, . . . ,y
′

t respectively. With the linear feature space transformation methods, we
search for an optimal (in some cases orthogonal) linear transformation IRn → IRm of
the form x′i = A>xi (y′j = A>yj), noting that the precise definition of optimality can
vary from method to method. The column vectors a1, . . . ,am of the n×m matrix A are
assumed normalized. These algorithms use various objective functions τ() : IRn → IR
which serve as a measure for selecting one optimal direction (i.e. a new base vector).
Usually linear feature space transformation methods search for m optimal directions.
Although it is possible to define functions that measure the optimality of all the m

directions together, we will find the directions of the optimal transformations one-by-
one, employing the τ measure for each direction separately. One rather heuristic way of
doing this is to look for unit vectors which form the stationary points of τ(). Intuitively,
if larger values of τ() indicate better directions and the chosen directions needs to be
independent in some ways, then choosing stationary points that have large values is a
reasonable strategy.

In the following subsections we describe three linear statistical methods. Princi-
pal component analysis (PCA), linear discriminant analysis (LDA) and independent
component analysis (ICA), which will be dealt with in a unified way by defining a τ

measure. Although some nonlinear extensions of these methods have been presented in
recent years, in this paperwe restrict our investigations to their linear versions.

6.1 Principal Component Analysis

Principal component analysis[7] is a ubiquitous technique for data analysis and dimen-
sion reduction. Normally in PCA

τ(a) =
a>Ca

a>a
, (2)

where C is the sample covariance matrix. Practically speaking, (2 defines τ(a) as the
variance of the {x1, . . . ,xl} n-dimensional point-set projected onto vector a. So this
method prefers directions having a large variance. It can be shown that stationary points
of (2 correspond to the right eigenvectors of the sample covariance matrix C where the
eigenvalues form the corresponding optimum values. If we assume that the eigenpairs
of C are (c1, λ1), . . . , (cn, λn) and λ1 ≥ · · · ≥ λn, then the transformation matrix A

will be [c1, . . . , cm], i.e. the eigenvectors with the largest m eigenvalues. Notice that
the new data represented in the new orthogonal basis is uncorrelated, i.e. its covariance
matrix is diag(λ1, . . . , λm).

6.2 Linear Discriminant Analysis

The goal of linear discriminant analysis[1] is to find a new (not necessarily orthogo-
nal) basis for the data that provides the optimal separation between groups of points
(classes). The class label of each point is supposed to be known beforehand. Let us as-
sume that we have k classes and an indicator function f() : {1, . . . , l} → {1, . . . , k},
where f(i) gives the class label of the point xi. Let lj (j ∈ {1, . . . , k}, l = l1+ . . .+ lk)
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denote the number of vectors associated with label j in the data. The function τ(a) is
similar to that employed in PCA:

τ(a) =
a>Ba

a>Wa
, (3)

where W is the within-class scatter matrix, while B is the between-class scatter ma-
trix. Here the within-class scatter matrix W shows the weighted average scatter of the
covariance matrices Cj of the sample vectors having label j:

W =

k
∑

j=1

lj

l
Cj, (4)

Cj =
1

lj

∑

f(i)=j

(xi − µj)(xi − µj)
>, µj =

1

lj

∑

f(i)=j

xi (5)

and the between-class scatter matrix B represents the scatter of the class mean vectors,
µj around the overall mean vector µ:

B =

k
∑

j=1

lj

l
(µj − µ)(µj − µ)>. (6)

The value of τ(a) is large when its nominator is large and its denominator is small.
Therefore the within-class averages of the sample projected onto a are far from each
other, while the variance is small in each of the classes. The larger the value of τ(a),
the farther the classes are spaced out and the smaller their spreads will be.

Much like in the case of PCA it can be shown that stationary points of (3 corre-
spond to the right eigenvectors of W−1B, where the eigenvalues form the correspond-
ing optimal values. As in PCA, we again select those m eigenvectors with the greatest
real eigenvalues. Since W−1B is not necessarily symmetric, the number of the real
eigenvalues can be less than n. In addition, the corresponding eigenvectors will not
necessarily be orthogonal.

6.3 Independent Component Analysis

Independent component analysis [2] is a useful feature extraction technique, originally
developed in connection with blind source separation. The goal of ICA is to find direc-
tions along which the distribution of the sample set is the least Gaussian. The reason
for this is that along these directions the data is supposedly easier to classify. Several
measures can be used to assess non-Gaussianity. We always choose from those ones
which are non-negative and give zero for the Gaussian distribution. A useful measure
of non-Gaussianity is negentropy, but obtaining this quantity via its definition is com-
putationally very difficult. Fortunately, there exist some simpler, readily-computable
approximations of the negentropy of a variable y with zero mean and unit variance, e.g.

J(y) ≈ (E [G(y)]− E [G(ν)])
2 (7)
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where G() : IR → IR is an appropriate doubly-differentiable contrast function, E()
denotes the expected value and ν is a standardized Gaussian variable. Three conven-
tionally used contrast functions are G1, G2 and G3:

G1(y) = y4

G2(y) = log(cosh(y))
G3(y) = − exp(− 1

2y
2)

(8)

It is worth noting that in (7) E(G(ν)) is a constant, its value depending on the contrast
function G. For instance in the case of G1() its value is 3.

Hyvärinen proposed a fast iterative algorithm called FastICA, which uses these con-
trast functions [5], [6]. This method defines the functional τ() used for the selection of
the base vectors of the transformed space by replacing y with a>x in the negentropy
functions above:

τG(a) =
(

E(G(a>x))− E(G(ν))
)2

. (9)

Before running FastICA, however, some preprocessing steps need to be performed:

– Centering: An essential step is to shift the original sample set x1, . . . ,xl with its
mean µ so as to obtain a set x̃1, . . . , x̃l, with a mean of 0.

– Whitening: The goal of this step is to transform the x̃1, . . . , x̃l samples via an
orthogonal transformation Q into a space where the covariance matrix Ĉ of the
points x̂1 = Qx̃1, . . . , x̂l = Qx̃l is the unit matrix.
With the PCA discussed earlier we can transform the covariance matrix into a di-
agonal form, the elements in the diagonal being the eigenvalues of the original
covariance matrix. Thus it only remains to transform each diagonal element to 1.
This can be done by dividing the normalized eigenvectors of the transformation
matrix by the square root of the corresponding eigenvalue.
Consequently, the whitening procedure with a dimension reduction(dim = m) can
be computed via:

Q :=
[

c̃1λ̃
−1/2
1 , . . . , c̃mλ̃−1/2

m

]>

(10)

where the eigenpairs of the matrix

C̃ =
1

l

l
∑

i=1

x̃ix̃
>

i (11)

are (c̃1, λ̃1), . . . , (c̃n, λ̃n).

After centering and whitening the following statements hold:

– Firstly, for any normalized a the mean of a>x̂1, . . . ,a
>x̂l is 0, and its variance is

1. In fact we need this since (7) requires that y has a zero mean and variance of 1,
and so because of the substitution y = a>x̂, a>x̂ must also have this property.

– Secondly, for any matrix R the covariance matrix ĈR of the transformed points
Rx̂1, . . . ,Rx̂l remains the unit matrix if and only if R is orthogonal, since

ĈR =
1

l

∑

Rx̂1(Rx̂1)> = R

(

1

l

∑

x̂1x̂
>

1

)

R> = RIR> = RR> (12)
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Actually FastICA is an approximate Newton iteration method which seeks such
an orthogonal basis for the centered and whitened data, where the values of the non-
Gaussianity measure τG() for the base vectors are large. Note that as the data remain
whitened after an orthogonal transformation, ICA may be considered an extension of
PCA.

7 Experiments

All the experiments were run on the LPCC and FBLE features described in section 5.
As mentioned, HMM results were obtained only for the LPCC case. Overall, the exact
parameters for the learners and the transformations were as follows.

Hidden Markov modeling (HMM). In the HMM experiments the phoneme mod-
els were of the three-state strictly left-to-right type, that is each state had one self tran-
sition and one transition to the next state. In each case the observations were modeled
using a mixture of four Gaussians with diagonal covariance matrices. The models were
trained using the Viterbi training algorithm.

Gaussian mixture modeling (GMM). Unfortunately there is no closed formula for
getting the optimal parameters of the mixture model, so the expectation-maximization
(EM) algorithm is normally used to find proper parameters, but it only guarantees a
locally optimal solution. This iterative technique is very sensitive to initial parameter
values, so we utilised k-means clustering [10] to find a good starting parameter set.
Since k-means clustering again only guaranteed finding a local optimum, we ran it 15
times with random parameters and used the one with the highest log-likelihood to ini-
tialize the EM algorithm. After experimenting the best value for the number of mixtures
k was found to be 2. In all cases the covariance matrices were forced to be diagonal.

Artificial neural networks (ANN). In the ANN experiments we used the most
common feed-forward multilayer perceptron network with the backpropagation learn-
ing rule. The number of neurons in the hidden layer was set at 150 in all experiments
except in the case of LDA where a value of 50 was found sufficient because of enor-
mous dimension reduction (these values were chosen empirically based on preliminary
experiments). Training was stopped when, for the last 20 iterations, the decrease in the
error between two consecutive iteration steps stayed below a given threshold.

Support Vector Machine (SVM). In all experiments with SVM a third-order poly-
nomial kernel function was applied.

As regards the transformations, in the case of LDA the original 154 dimensions
were reduced to only 27, the number of classes minus one. In the case of PCA and ICA
we kept the largest m components that retained 95% of the spectrum. In our case m

turned out to be 93.
Naturally when we applied a certain transformation on the training set before learn-

ing, we applied the same transformation on the test data during testing.

8 Results and Discussion

Table 1 shows the recognition accuracies where the columns represent the feature sets
(transformed/not-transformed) while the rows correspond to the applied learning meth-
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ods. For the HMM we have only one score, as in this case no transformation could be
applied.

none

variable

none

154

LDA

27

PCA

93

ICA

93

ANN - 92.67 91.12 90.89 88.29
GMM - 89.83 91.08 84.57 80.56
SVM - 92.11 92.37 88.12 88.07
HMM 92.53 - - - -

Table 1. Recognition accuracies for the phoneme classification. The maximum is typeset in bold.

Upon inspecting the results the first thing one notices is that the discriminative learn-
ers (ANN, SVM) always outperform the generative one (GMM). Hence there is a clear
advantage of modeling the classes together rather than separately. Another important
observation is that the HMM, in spite of being a generative model, has produced the
second highest score. But one has to keep in mind that the HMM uses many more fea-
tures per phoneme (the exact number depending on the segment length), and also a
quite different integration technique. Moreover, it can optimize the division of the ob-
servation into thirds (states), while our segmental feature calculation works with rigid
phoneme segments. Actually, we consider the fact that we could attain practically the
same score with our quite simple feature extraction method as proof that the HMM
technology can be easily surpassed with a more sophisticated discriminative segmental
phoneme model. We should aslo mention here that our segmental feature calculation
method was invented with the FBLE preprocessing in mind and that it works much bet-
ter with those features. Our current best result with FBLE is 95.55%, which shows that
LPCC is definitely not an optimal choice for our system - but the goal of this paper was
to compare HMM and the other learners with the same preprocessing technique.

As regards the transformations, one can see that after LDA the learners could pro-
duce the same or similar scores in spite of the drastic dimension reduction performed
(154 features reduced to 27). In an earlier study[9] we found that PCA also retains the
recognition accuracy after the dimension reduction. Here, however, one can see that
PCA was definitely detrimental. We attribute this to the fact that LPCC inherently con-
tains an orthogonal transformation (the discrete cosine transform), so PCA could not
bring any additional gain. ICA was even slightly worse, which accords with our earlier
findings, where we could find no could no real advantage of using ICA in the phoneme
recognition task.

9 Conclusions and Future Work

The main goal of this paper was to test our classification and transformation methods
on the LPCC feature set. In previous experiments we used the FBLE features and we
clearly outperformed the HMM recognizer (which used LPCC). In contrast to these
scores, we now found that we could only reach the same performance. We conclude
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that our segmental feature calculation method is quite sensitive to the frame-based fea-
tures, and also that it requires further development. In addition, we plan to make further
comparisons with the HMM, but using the same feature set.

As regards the transformations, we ascertained that LDA is the most useful one,
while PCA and ICA are advantageous only under certain conditions. In the future we
intend to study the non-linearized version of these transformations.

As regards the applicability of the classifiers in a continuous speech recognizer,
with the application of the learners and transformations presented in this paper on the
number recognition task we can attain results equivalent to those of the HMM. The
interested reader can read about our full recognition system in [13].
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