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Abstract. This paper studies the application of automatic phoneme classifica-
tion to the computer-aided training of the speech and hearing handicapped. In
particular, we focus on how efficiently discriminant analysis can reduce the num-
ber of features and increase classification performance. A nonlinear counterpart
of Linear Discriminant Analysis, which is a general purpose class specific fea-
ture extractor, is presented where the nonlinearization is carried out by employ-
ing the so-called "kernel-idea’. Then, we examine how this nonlinear extraction
technique affects the efficiency of learning algorithms such as Artificial Neural
Network and Support Vector Machines.

1 Speech Impediment Therapy and Real-Time Phoneme
Classification

This paper deals with the application of speech recognition to the computer-aided train-
ing of the speech and hearing handicapped. The program we present was designed to
help in the speech training of the hearing impaired, where the goal is to support or re-
place their diminished auditory feedback with a visual one. But the program could also
be applied to improving the reading skills of children with reading difficulties. Experi-
ence shows that computers more readily attract the attention of young people, who are
usually more willing to practice with the computer than with the traditional drills.

Since both groups of our intended users consist mostly of young children it was
most important that the design of the software interface be made attractive and novel.
In addition, we realized early on that the real-time visual feedback the software provides
must be kept simple, otherwise the human eye cannot follow it. Basically this is why
the output of a speech recognizer seems better suited to this goal than the usual method
where only the short-time spectrum is displayed: a few flickering discrete symbols are
much easier to follow than a spectrum curve, which requires further mental processing.
This is especially the case with very young children.

From the speech recognition point of view the need for a real-time output poses a
number of special problems. Owing to the need for very fast classification we cannot
delay the response even until the end of phonemes, hence we cannot employ compli-
cated long-term models. The algorithm should process no more than a few neighbouring
frames. Furthermore, since the program has to recognize vowels pronounced in isola-
tion as well, a language model cannot be applied.



In our initial experiments we focussed on the classification of vowels, as the learning
of the vowels is the most challenging for the hearing-impaired. The software supposes
that the vowels are pronounced in isolation or in the form of two-syllable words, which
is a more usual training strategy. The program provides a visual feedback on a frame-
by-frame basis in the form of flickering letters, their brightness being proportional to the
speech recognizer’s output (see fig.1). To see the speaker’s progress over longer periods,
the program can also display the recognition scores during the previous utterance (see
fig.2). Of course it is always possible to examine the sample spectra as well, either on
a frame-by-frame or on an utterance-based basis. The utterances can be recorded and
played back for further study and analysis by the teacher.

This article describes the experiments conducted with the LDA and Kernel-LDA
transforms, intended to improve and possibly speed up the classification of vowels. As
for the classification itself we used neural nets (ANN) and support vector machines
(SVM). The section below explains the mathematical details of the Kernel-LDA trans-
form, which is a new non-linear extension of the traditional LDA technique®.
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Fig. 1. A screenshot from EasySpeech. The real-time response of the system for vowel /a/.

2 Linear Discriminant Analysis with and without Kernels

Before executing a learning algorithm it is a common practice to preprocess the data
by extracting new features. Of the class specific feature extractors Linear Discriminant
Analysis (LDA) is a traditional statistical method which has proved to be one of the

1 In [4] this method bears the name “Kernel Fisher Discriminant Analysis”. Independently of
these authors we arrived to the same formulae too, the only difference being that we derived the
formulae for the multiclass case, naming the technique “Kernel-LDA”. Although we recently
reported our results of Kernel-LDA on word recognition in [6], the method itself was not
described in great detail.
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Fig. 2. A screenshot of EasySpeech after pronouncing the word /mimi/.

most successful preprocessing techniques in classificaton2. The role of this method as
preprocessing is twofold. Firstly it can improve classification performance, and sec-
ondly it may also reduce the dimensionality of the data and hence significantly speed
up the classification.

The goal of Linear Discriminant Analysis is to find a new (not necessarily orthogo-
nal) basis for the data which provides the optimal separation between groups of points
(classes). Without loss of generality we will assume that the original data set, i.e. the
input data lies in R™, denoted by x4, ..., x,. The class label of each data vector is sup-
posed to be known beforehand. Let us assume that we have & classes and an indicator
function f() : {1,...,r} = {1,...,k}, where f(¢) gives the class label of the point
x;. Letr; (j € {1,...,k}, r =r1 +...+ry) denote the number of vectors associated
with label j in the data. In this section we now review the formalae for LDA, and also a
nonlinear extension using the so-called *Kernel-idea’.

2.1 Linear Discriminant Analysis

In order to extract m informative features from the n-dimensional input data, we first
define a function 7() : R™ — R which serves as a measure for selecting the m direc-
tions (i.e. base vectors of the new basis) one at a time. For a selected direction a a new
real valued feature can be calculated as a " x. Intuitively, if larger values of () indicate
better directions and the chosen directions need to be somehow independent, choosing
stationary points that have large values is a reasonable strategy. So we define a new ba-
sis for the input data based on m stationary points of ~ with dominant function values.

Now let us define
7(a) = awa 2€ R™\ {0}, (1)

2 One should note here that it can be directly used for classification as well.



where B is the Between-class Scatter Matrix, while W is the Within-class Scatter Ma-
trix. Here Between-class Scatter Matrix B represents the scatter of the class mean vec-
tors p; around the overall mean vector p = % i x; x; while the Within-class Scat-
ter Matrix W shows the weighted average scatter of the covariance matrices C; of the
sample vectors having label j:

B= ;le Sy — )y — )’ . W = ;le Gy @
Ci= o Ef(i):j(xi — k) (x5 — p) K5 =5 Ef(i):j Xj

Since 7(a) is large when its nominator is large and its denominator is small, the within-
class averages of the sample projected onto a are far from each other, while the variance
of the classes is small. The larger the value of 7(a) the farther the classes will be spaced
and the smaller their spreads will be. It can be easily shown that stationary points of (1)
correspond to the right eigenvectors of W—1B, where the eigenvalues form the corre-
sponding function values. Since W 1B is not necessarily symmetrical the number of
real eigenvalues can be less than n and the corresponding eigenvectors will not neces-
sarily be orthogonal®. If we select the m eigenvectors with the greatest real eigenvalues
(denoted by aj,...,an), we will obtain new features from an arbitrary data vector
yeER"byar'y,...,am'y.

2.2 Kernel-LDA

Here the symbol #H denotes a real vector space that could be finite or infinite in dimen-
sion and we suppose a mapping @ : R™ — #, which is not necessarily linear. In addi-
tion, let us assume that the algorithm of Linear Discriminant Analysis is denoted by P
and its input is the points x4, . . . , X, Of the vector space R™. The output of the algorithm
is a linear transformation R™ — RR™, where both the degree of the dimension reduction
(represented by m) and the n x m transformation matrix are determined by the algo-
rithm itself. P (x4, .. ., %) will denote the transformation matrix which results from the
input data. Then the algorithm P is replaced by an equivalent algorithm P’ for which
P(X1,.yXe) = Pl(x1 " X1,...,%i ' Xj,...,%Xr ' Xp) holds for arbitrary xy,...,x,.
Thus P’ is equivalent to P but its inputs are the pairwised dot products of the inputs of
algorithm P. Then applying a nonlinear mapping & on the input data, yields a nonlinear
feature transformation matrix P’ (#(x1) ' #(x1), . - ., 8(x:) T B(x;j), . . ., D(xr) T B(%r))-
These dot products can be computed here in 4 (which may be infinite in dimension),
but if we have a low-complexity (perhaps linear) kernel function () : R® x R™ — R
for which &(x) "®(y) = k(x,y), x,y € R", then &(x;)' &(x;) can also be com-
puted with fewer operations (for example O(n)) even when the dimensions of &(x;)
and &(x;) are infinite. So, after choosing a kernel function, the only thing that remains
is to take the algorithm P’ and replace the input elements x1 "x1, ..., Xi ' Xj, -,

3 Besides this, numerical problems can occure during the computation of W =" if det(W) is
near zero. The most probable cause for this could be the redundancy of feature components.
But we know W is positive semidefinite. So if we add a small positive constant e to its diago-
nal, that is we work with W + €I instead of W, this matrix is guaranteed to be positive definite
and hence should always be invertible. This small act of cheating can have only a negligible
effect on the stationary points of (1).



xr | X, With the elements x(x1,%1), - - -, £(Xi,X;j), - - - , K(Xr, Xr). The algorithm that
arrises from this substitution can perform the transformations with a practically accept-
able complexity, whatever the spatial dimension. This transformation (together with
a properly chosen kernel function) results in a non-linear feature extraction. The key
idea here is that we do not need to know the mapping @ explicitly; we need only a
kernel function k() : R™ x R®™ — TR for which there exists a mapping ¢ such that
&(x)"®(y) = k(x,y), x,y € R" There are many good publications about the
proper choice of the kernel functions, and also about their theory in general[7]. The two
most popular kernels are the following (p € N*tand o € R1):

ri(xy) = (x"y+1)7, ka(x,y) =exp (=|jx —y|[*/0) . 3)

Practically speaking, the original LDA algorithm is executed in a transformed (proba-
bly infinite) feature space H where the kernel function « gives implicit access to the
elements of this space. In the following we present the kernel analogue of LDA by
transforming the algorithm P to P’. Let us consider the following function for a fixed
Kk, ® and H.

TR®
s, ,_a B%a
T (a) - aTWq,aJ ac H \ {0}7 (4)
where the matrices needed for LDA are now given in #:
k i I e i
B® =30 Z(uf - p®)(uf - p®)T W® =537 “cp

CF =I5 0 (00x) — ud)@(xi) — u)T uF = L5 0 o) O

We may suppose without loss of generality thata = ), aisﬁ(mi) holds during the
search for the stationary points of (4)*.
Now

aTB% = (T, ad(xe)T) [y 2 ([ 20 200)] = [2 Ty 2(x0)])
([3 S 2607 = [E X 26)T] )| (21, @0®(x2)

|3

(6)
. D
Sincea” B®a can also be expressed as o T KB” aowhere a = [a1, . .., ] | and where

the matrix KB is of size r xr, and for its elements KtB: with index (¢, s) the following

holds.:
KB — Zf 17 ([TJ 2 f(i)=j (Xt;Xi)] - m(xt,xi)]) -
([ Sreomy w0, x0)] = [ Sy w1, %2)])

Then
aTW2a = (Y1, ad(xe)T) [ S 1 ey (P00 = [ 50500, @0x0)])
(200)T = [ 0 200)7] )| (St o))
(8)
4 This assumption can be arrived at in several ways, for instance we can decompose

an arbitrqry vector a into a; + a2, where a; is the component of a which falls in
SPAN(®(x1),...,P(xr)), while az gives the component perpendicular to it. Then from

the derivation of 7% (a) it can be proved that az'az = 0 for stationary points.



. 4 . b . .
We can now expressa ' W®a in the forma " K" «, where the matrix K" is of size
r x rand

Kg(p = E§:1 %Ef(i):j (”(Xtaxi) - [% Ef(i):j K(Xt,Xi)])

; )
(i, %8) — | X oy (%, %)
Combining the above equations we obtain the equality
a'B%a oK o (10)

a'lW®a oTKW?q

This means that (4) can be expressed as dot products of &(x4),...,%(x,) and that
the stationary points of this equation can be computed using the real eigenvectors® of

-1
(KW‘}) KB” . We will use only those eigenvectors which correspond to the m domi-

nant real eigenvalues, denoted by !, . . ., ™. Consequently, the transformation matrix
A of Kernel-LDA is
1/2
1 T ) 1 T T T .k
aZaié(xi),...,a—Zazﬂé(xi) , O = ZZai aj k(Xi, Xj) ,
i=1 m =1 i=1 j=1
(11)

where the value of the normalization parameter € is chosen such that the norm of the
column vectors remains unity. For an arbitrary data vector y, new features can be com-

puted via Ag ' B(y) = [% S k(xLY), -, ﬁ Y ol k(xi, y)} i

3 Experimental Results

Corpus. For training and testing purposes we recorded samples from 25 speakers,
mostly children aged between 8 and 15, but the database used contained some adults
too. The speech signals were recorded and stored at a sampling rate of 22050 Hz in 16-
bit quality. Each speaker uttered 59 two-syllable Hungarian words of the CVCVC form,
where the consonants (C) were mostly unvoiced plosives to ease the detection of the
vowels (V). The distribution of the vowels was approximately uniform in the database.
Because we decided not to discriminate their long and short versions, we worked with
9 vowels althogether. In the experiments 20 speakers were used for training and 5 for
testing.

Feature Sets. The signals were processed in 10 ms frames, the log-energies of 24
critical-bands being extracted using FFT and triangular weighting [5]. The energy of
each frame was normalized separately, which means that only the spectral shape was
used for classification. Our previous results showed that an additional cosine transform
(which would lead to the most commonly used MFCC coefficients) does not affect the

5 Since in general K" isa positive semidefinite matrix with its determinant sometimes near
zero, it can be forced to be invertible using the technique presented in the subsection of LDA.
Please see footnote 3 as well.



performance of the classifiers we had intended to apply, so it was omitted. Brief tests
showed that neither varying the frame size nor increasing the number of filters gave any
significant increase in classifier performance.

In our most basic tests we used only the filter-bank log-energies from the middle
frame of the steady-state part of each vowel (“FBLE” set). Then we added the deriva-
tives of these features to model the signal dynamics (“FBLE+Deriv” set). In another
experiment we smoothed the feature trajectories to remove the effect of transient noises
and disturbances ("FBLE Smooth” set). In yet another set of features we extended the
log-energies with the gravity centers of four frequency bands, approximately corre-
sponding to the possible values of the formants. These gravity centers allegedly give
a crude approximation of the formants (“FBLA+Grav” set) [1]. Lastly, for the sake of
curiosity we performed a test with the feature set of our segmental model(“Segmental”
set) [6]. This describes a whole phonemic segment rather than just one frame, it clearly
could not be applied in a real-time system. So our aim then was simply to see the ad-
vantages of a segmental classifier over a frame-based one.

Classifiers. In all the experiments with Artificial Neural Nets (ANN) [2] the well-
known three-layer feed-forward MLP networks were employed with the backpropaga-
tion learning rule. The number of hidden neurons was equal to the number of features.

In the Support Vector Machine (SVM) [7] experiments we always made use of the
radial basis kernel function k4 (see eq. (3)).

Transformations. In our tests with LDA and Kernel-LDA the eigenvectors belong-
ing to the 16 dominant eigenvalues were chosen as basis vectors for the transformed
space and for Kernel-LDA the third-order polynomial kernel 1, where p = 3 was used
(see eq. (3)) .

4 Results and Discussion

Table 1 lists the recognition errors where the rows represent the five feature sets while
the columns correspond to the applied transformation and classifier combinations.

On examining the results on the different feature sets we saw that adding the deriva-
tive did not increase performance. On the other hand smoothing the trajectories proved
beneficial. Most likely a good combination of smoothing and derivation (or even better,
RASTA filtering) would give better results.

As regards the gravity center features, they brought about on improvement, but only
a slight one. This result accords with our previous experiments [3]. Lastly, the full seg-
mental model clearly performed better than all the frame-based classifiers. This demon-
strates the advantage of modeling full phonetic segments over frame-based classifica-
tion.

When examining the effects of LDA and Kernel-LDA, it can be seen that a non-
linear transformation normally performs better in separating the classes than its linear
counterpart owing to its larger degree of freedom. One other interesting observation
is that although the transformations retained only 16 features, the classifiers attain the
same or better scores. Since the computation of LDA is fast, the reduction in the number
of features speeds up not only the training but also the recognition phase. As yet, this



does not hold for the Kernel-LDA algorithm we currently use, but we are working on a
faster implementation.

Finally, as regards the classifiers, SVM consistently outperformed ANN by a few
percentage. This can mostly be attributed to the fact that the SVM algorithm cope with
overfitting, which is a common problem in ANN training.

none none LDA LDA K-LDA K-LDA
ANN SVM ANN SVM ANN SVM
(16) (16) (16) (16)
FBLE (24) 26.71% | 22.70% | 25.82% | 24.01% | 2452% | 21.05%

FBLE+Deriv (48) | 25.82% | 24.01% | 27.30% | 24.34% | 24.34% | 21.21%
FBLE+Grav (32) | 24.01% | 22.03% | 24.67% | 23.85% | 22.87% | 20.72%
FBLE Smooth (24) | 23.68 % | 21.05% | 23.03% | 21.87 % | 22.70% | 19.90 %
Segmental (77) 1957 % | 19.08% | 20.04% | 18.42% | 18.09% | 17.26 %

Table 1. Recognition errors for the vowel classification task. The numbers in parenthesis corre-
spond to the number of features.

5 Conclusion

Our results show that transforming the training data before learning can definitely in-
crease classifier performance, and also speed up classification. We also saw that a non-
linearized transformation is more effective than the traditional linear version, although
they are currently much slower. At present we are working on a sparse data representa-
tion scheme that is hoped will give an order of magnitude increase in calculation speed.
As regards the classifiers, SVM always performes slightly better than ANN, so we plan
to employ it in the future. From the application point of view, our biggest problem at
the moment is the feature set. We are looking for more phonetically-based features so
as to decrease the classification error, since reliable performance is very important in
speech impediment therapy.
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