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Abstract. The determination of the eigenpairs of real matrices can be treated as a local op-
timization problem. Suitable non-negative functions are constructed with coinciding local and
global minima, which are located at the points defined by the eigenvectors of the underlying
matrix. Some properties of these eigenvector functions are investigated and proved.

1. Introduction

The determination of the eigenvectors and eigenvalues of large real matrices is of considerable
importance in various fields of science and technology. The machinery for the solution of the
problem has been worked out quite well, and we do not attempt to give an overview of the
relevant literature. The methods have been devised either for determining all eigenvectors of the
matrix simultaneously or one after the other. Some problems furnish large matrices whose sizes
are beyond the scope of simultaneous determination of all eigenvectors and eigenvalues, but the
problem may be such as to only require a few of the eigenpairs.

The proposed novel algorithm is of the iterative class type. Non-negative, homogeneous func-
tions have been defined with coinciding local and global optima, which are located exactly at the
points defined by the eigenvectors of the underlying matrix. Hence the eigenvectors of the ma-
trix can be found using well-behaved optimization algorithms as the minima of these eigenvector
function. A unique property of the algorithm is that the convergence for a selected eigenvector
does not depend on the magnitude of the associated eigenvalue as is generally the case with the
iterative methods [2,4,9].

Throughout this report discussion is restricted to real eigenvectors of real matrices, but it should
be emphasized that non-symmetrical matrices with complex eigenpairs and complex matrices are
just as applicable using our algorithm. Throughout the whole paper the ‖ ‖ notation will be used
for the Euclidean norm, while ∇f denotes the gradient of a function f : IRn → IR and H(f)
denotes its Hessian. The structure of the paper is as follows. Section 2 deals with the definition
and some properties of the eigenvector-functions, Section 3 is devoted to optimization properties
and error bounds, while Section 4 contains numerical results and an example for optimization with
closely packed eigenvalues. Section 5 rounds off with a few concluding remarks.

2. The eigenvector functions

In this section non-negative, homogeneous function are defined with the property that their local
and global minima coincide with eigenvectors of a real matrix. So using a suitable optimization
method one can obtain the eigenvectors one after the other (employing a deflation technique).

Definition 2.1. Given an n× n matrix A = [aij ] and a real normalization parameter 0 ≤ ω ≤ 1,
the functions f

(ω)
A , g

(ω)
A : IRn \ {0} → IR are defined by

(2.1) f
(ω)
A (x) := x>x(Ax)>(Ax)−(x>Ax)2

||x||4ω , g
(ω)
A (x) :=

√
x>x

√
(Ax)>(Ax)±x>Ax

||x||2ω .

In g
(ω)
A (x), ± accounts for the sign of the eigenvalues, choosing the negative for positive eigenvalues

and the positive for the negative ones. The following lemma refers to the basic properties of the
eigenvector functions: homogeneity, non-negativity and proportionality.
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Figure 2.1. The graphs of f
(0)
A0

(x), g
(0)
A0

(x), f
(0)
A1

(x) and f
(1)
A1

(x).

Lemma 2.2. Function f
(ω)
A (x) and g

(ω)
A (x), 0 ≤ ω ≤ 1 exhibit the following properties:

Homogeneity. Both function are homogeneous of degree (4− 4ω) for f and (2− 2ω) for g:
f

(ω)
A (kx) = k4−4ωf

(ω)
A (x), g

(ω)
A (kx) = k2−2ωg

(ω)
A (x), k ∈ IR.

Non-negativity. f
(ω)
A (x) ≥ 0 (g(ω)

A (x) ≥ 0).
Proportionality. f

(ω)
A (x) = 0 (g(ω)

A (x) = 0) if and only if x and Ax are proportional.

Proof. The proof of homogeneity is straightforward, while non-negativity and proportionality fol-
low from applying the Cauchy-Schwartz inequality to the vectors x and Ax. Equality holds if and
only if the vectors are proportional. ¤

Figure 2.1 shows the graphs of f
(0)
A0

(x), g
(0)
A0

(x), f
(0)
A1

(x) and f
(1)
A1

(x) associated with the following
2× 2 symmetric A0 and non-symmetric A1 matrices

A0 =
(

3
2 − 1

2
− 1

2
3
2

)
, A1 =

(
3
2 1
1
4

3
2

)
.

3. Optimization Properties of Eigenvector Functions

The following lemma describes the relationship between the gradient of eigenvector functions
and their zero values.

Lemma 3.1. Function f
(ω)
A (x) and g

(ω)
A (x), 0 ≤ ω ≤ 1 have the following properties:

i. ∇f
(ω)
A (x) = 0 ⇒ f

(ω)
A (x) = 0 (∇g

(ω)
A (x) = 0 ⇒ g

(ω)
A (x) = 0).

ii. ∇f
(ω)
A (x) = 0 ⇐ f

(ω)
A (x) = 0 (∇g

(ω)
A (x) = 0 ⇐ g

(ω)
A (x) = 0).
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Proof.

i. Since f
(ω)
A (x) is a homogeneous function of degree 4− 4ω, Euler’s theorem ensures that

x>∇f
(ω)
A (x) = (4− 4ω)f (ω)

A (x) =⇒ x>∇f
(ω)
A (x)

(4− 4ω)
= f

(ω)
A (x).

If 4− 4ω 6= 0 the statement follows immediately, while for ω = 1 L’Hospital’s rule can be
applied. The proof is analogous to g

(ω)
A (x).

ii. This inference follows from the nonnegative and continuously differentiable character of
f

(ω)
A (x) and g

(ω)
A (x).

¤

The characterization of the extremal points of eigenvector functions on the unit sphere is im-
portant. In the remaining part of this section the mathematical statements will refer to f

(0)
A (x)

assigned to a real symmetric matrix. However, much the same applies for general ω’s (ω 6= 0) as
well as for g

(ω)
A and a similar strategy can be used for non-symmetric matrices too.

Noting Lemma 3.2, the following two theorems (3.3 and 3.4) ensure that, on the unit sphere,
no local minima occur other than those associated with the eigenvectors. Moreover the peaks
which separate the troughs of eigenvectors are at the bisectrices of any two eigenvectors. Now
let the eigenvalues of the symmetric matrix A be denoted by λ1, λ2, . . . , λn, and the associated
orthonormal eigenvectors be denoted by u1,u2, . . . ,un.

Lemma 3.2. For the symmetric matrix A and real vector x = c1u1 + · · ·+ cnun,

i. f
(0)
A (x) =

∑n
i=1

∑n
j=1(λi − λj)2c2

i c
2
j

ii. ∇(f (0)
A (x)) = 2(x>xA2x + x(Ax)>Ax− 2x>Ax(Ax))

iii. ∇(f (0)
A (x)) = 2

∑n
i=1

∑n
j=1(λj − λi)2uicic

2
j

iv. H(f (0)
A (x)) = 2x>xA2 + 4xx>A2 + 4A2xx> + 2I(Ax)>Ax− 4x>AxA− 8Ax(Ax)>

v. H(f (0)
A (x)) =

∑n
i=1

∑n
j=1(λi − λj)2

(
2c2

juiui
> + 4cicjuiuj

>)

Proof.

i. The first statement follows from a direct evaluation and subsequent rearrangement of the
terms,

f
(0)
A (x) = x>x(Ax)>(Ax)− (x>Ax)2 =

(
n∑

i=1

c2
i

)


n∑

j=1

λ2
jc

2
j


−

(
n∑

i=1

λic
2
i

)2

=

=
n∑

i=1

n∑

j=1

(λi − λj)2c2
i c

2
j .

ii. From direct evaluation:

∇f
(0)
A (x) = ∇[x>x(Ax)>(Ax)]−∇(x>Ax)2

∇[x>x(Ax)>(Ax)] = 2(x>xA>(Ax) + x(Ax)>(Ax))
∇(x>Ax)2 = 2(x>Ax)(A>x + Ax).

iii. Direct evaluation and subsequent rearrangement yields,

1/2∇(f (0)
A (x)) =

(
x>x

) (
A2x

)
+ (x)

(
(Ax)>Ax

)− 2
(
x>Ax

)
(Ax) =

=




n∑

j=1

c2
j




(
n∑

i=1

λ2
i ciui

)
+

(
n∑

i=1

ciui

)


n∑

j=1

λ2
jc

2
j


− 2




n∑

j=1

λjc
2
j




(
n∑

i=1

λiciui

)
=

=
n∑

i=1

n∑

j=1

(λj − λi)2uicic
2
j .
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iv. To avoid unnecessary technicalities, only two steps of the evaluation are presented:

H(x>x(Ax)>Ax) = 2x>xA2 + 4xx>A2 + 4A2xx> + 2I(Ax)>Ax
H((x>Ax)2) = 4x>AxA + 8Ax(Ax)>.

v. The proof is obtained by simple algebraic rearrangement.
¤

Theorem 3.3. For a symmetric, non-singular matrix A with pairwise different eigenvalues,
∇f

(0)
A (x) and x are linearly dependent, if and only if, i or ii is valid.

i. x is in the linear space of a single eigenvector: x ∈ { cui : c ∈ IR, 1 ≤ i ≤ n}.
ii. x is the bisectrix of two eigenvectors: x ∈ { c (ui ± uj) : c ∈ IR, 1 ≤ i, j ≤ n}.

Proof. First we prove that for a non-singular, symmetric matrix A with pairwise different eigen-
values, ∇f

(0)
A (x) and x are linearly dependent if x is in the linear space of two eigenvectors:

x ∈ {c1 ui ± c2 uj : c1, c2 ∈ IR, 1 ≤ i, j ≤ n}.
From Lemma 3.2 ii the gradient is in the subspace of three vectors x, Ax, A2x, so Rank(x, Ax, A2x) <

3. In the space of eigenvectors this is of the form

(3.1) Rank




c1 λ1c1 λ2
1c1

...
...

...
cn λncn λ2

ncn


 < 3.

Proceeding indirectly, let us assume that cicjck 6= 0 for a triplet of indices providing that x =
c1u1 + · · ·+cnun with at least three non-zero components. This however, leads to a contradiction,
since

det




ci λici λ2
i ci

cj λjcj λ2
jcj

ck λkck λ2
kck


 = cicjck(λk − λi)(λk − λj)(λj − λi) 6= 0

and is of rank 3.
Now without restricting the generality it can be assumed that x = c1u1 + c2u2. An orthogonal

vector d is of the form ±(−c2u1+c1u2+d3u3 + · · ·+dnun), where d3, · · · , dn are free parameters.
It is enough to check the fulfilment of equality d>∇f

(0)
A (x) = 0. From Lemma 3.2 iii

d>∇f
(0)
A (x) = 2d>

2∑

i=1

2∑

j=1

(λj − λi)2uicic
2
j = 2c1c2(c2

1 − c2
2)(λ1 − λ2)2.

Since λ1 6= λ2, if c1 = 0 or c2 = 0, the point is at an eigenvector (i); if c2
1 = c2

2, the bisectrix of
two eigenvectors is obtained (ii.). ¤

Theorem 3.4. If matrix A is non-singular and symmetric with pairwise different eigenvalues
then:

i. d>H(f (0)
A (x))d ≥ 0 if d⊥x and x is in the linear space of an eigenvector.

ii. d>H(f (0)
A (x))d ≤ 0 if x is the bisectrix of two eigenvectors, d⊥x, and d is in the linear

space of the same two eigenvectors.
iii. d>H(f (0)

A (x))d ≤ 0 if x is the bisectrix of two eigenvectors, d⊥x, and d does not contain
components in the linear space of the same two eigenvectors.

iv. x>H(f (0)
A (x))x = 0 if x is in the linear space of an eigenvector.

v. x>H(f (0)
A (x))x > 0 if x is not in the linear space of an eigenvector.

Proof. i− iii It is once again presumed that x = c1u1 + c2u2 and d = d1u1 + d2u2 + d3u3 +
· · ·+ dnun. Taking into account Lemma 3.2 v,

d>H(f (0)
A (x))d =

= d>
[
4(λ1 − λ2)2c1c2(u1u2

> + u2u1
>) +

n∑

i=1

2
(
(λi − λ1)2c2

1 + (λi − λ2)2c2
2

)
uiui

>
]
d =
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(3.2) = 4(λ1 − λ2)2c1c2d1d2 +
n∑

i=1

2d2
i

(
(λi − λ1)2c2

1 + (λi − λ2)2c2
2

)
.

When the statements in points i-iii are considered, the special cases of (3.2) imply that

i. d>H(f (0)
A (x))d ≥ 0 if (c1d2 = 0) or (c2d1 = 0) .

ii. d>H(f (0)
A (x))d ≤ 0 if





c1 = −c2 = −d1 = d2, d3 · · · dn = 0
c1 = c2 = −d1 = d2, d3 · · · dn = 0
c1 = c2 = d1 = −d2, d3 · · · dn = 0

iii. d>H(f (0)
A (x))d ≥ 0 if

(
c2
1 = c2

2, d1d2 = 0
)
.

iv − v From points i and v of Lemma 3.2

x>H(f (0)
A (x))x = 6

n∑

i=1

n∑

j=1

(λi − λj)2c2
i c

2
j = 6f

(0)
A (x),

which together with Lemma 2.2 (non-negativity and proportionality) yield the required
proof.

¤

By approximating the true eigenpairs (u, λ) of a given matrix with (x, ν), various measures can
be used for the pairwise distances of the true and approximate eigenvalues as well as those of true
and approximate eigenvectors. The following lemma gives an error bound for the approximation
of eigenvalues. It will be shown in the proof that the widely-used norm ‖Ax− xν‖/‖x‖ [7,8] is
closely related to f

(0)
A (x) and the statement follows immediately from Wilkinson’s result.

Lemma 3.5. With any non-zero x ∈ IRn and symmetric matrix A, if

(3.3) f
(0)
A (x)

1/2
/||x||2 ≤ ε,

an eigenvalue λ necessarily exists which satisfies |λ− σ| ≤ ε, where σ = x>Ax/x>x is the
Rayleigh-quotient and ε is a suitable bound.

Proof. Firstly, for any non-zero x ∈ IRn and for any matrix A,

(3.4) f
(0)
A (x)

1/2
/||x||2 = ‖Ax− xσ‖/‖x‖.

Direct computation yields the following sequence of equalities that proves this statement:

‖Ax− xσ‖2 (x>x)2 =
∥∥Ax− x(x>Ax/x>x)

∥∥2
(x>x)2 =

= x>x((x>x)(Ax)>(Ax)− (x>A>x)(x>Ax)) = x>xf
(0)
A (x).

Secondly, from Wilkinson’s result, for any non-zero x ∈ IRn and any scalar ν, there is an eigenvalue
λ of a symmetric matrix A which satisfies the following inequality

(3.5) |λ− ν| ≤ ‖Ax− xν‖/‖x‖.
Taking into account the first statement and substituting ν with the Rayleigh-quotient into the
second, we obtain the above proposition. ¤

The following lemma furnishes a bound for the approximation of the eigenvectors. Let the eigen-
values of the symmetric matrix A be denoted by λ1, λ2, . . . , λn, the associated normalized eigen-
vectors be u1,u2, . . . ,un, and the angles between the eigenvectors and vector x be α1, α2, . . . , αn.
The least upper bound of the angle between the eigenvector um (which is associated with the
best approximated eigenvalue λm by Lemma 3.5) and x provides a measure for the accuracy of
approximation.

Lemma 3.6. For an arbitrary non-zero x ∈ IRn and real, symmetric matrix A,

(3.6) f
(0)
A (x)

1/2
/||x||2 ≤ ε =⇒ sin2 αm ≤ ε/|λm − µm|,
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where λm 6= 0 is the eigenvalue nearest to σ (Rayleigh quotient) and µm is the convex linear
combination of the complementary part of the spectrum,

(3.7) µm =

∑
j, j 6=m λj cos2 αj∑

j, j 6=m cos2 αj
.

Proof. Taking into account |λm − σ| = mini |λi − σ| and lemma 3.5, the bound |λm − σ| ≤ ε and
cos αj = u>j

x
‖x‖ ,

(3.8) |λm − σ| =
∣∣∣∣∣∣
λm −




(
x
‖x‖

)> ∑

j

λjuju>j
x
‖x‖




∣∣∣∣∣∣
=

=

∣∣∣∣∣∣
λm − λm cos2 αm − µm

∑

j, j 6=m

cos2 αj

∣∣∣∣∣∣
=

∣∣(λm − µm) sin2 αm

∣∣ ≤ ε.

¤
The essence of the lemma is that the accuracy of the approximation of an eigenvector depends on
the bound ε and on the magnitude of the associated eigenvalue λm. However, it depends on the
’effective degeneracy’ of the complementary part of the spectrum as well. This effective degener-
acy is encoded in µm, which depends on the eigenvalues as well as on the relative position of x
with respect to the eigenvectors. This relationship makes the error estimation for the eigenvectors
fundamentally different from the error estimation of the approximation of eigenvalues. If the spec-
trum is near-degenerate, or the position vector x (and consequently cos2 (αj)) makes it effectively
near-degenerate, the bound loses its predictive power. If an estimation for |λm − µm| is available
using other information about the spectrum, the relation offers a powerful tool for estimating a
bound for the accuracy of actual calculations.

4. Numerical Results

The following results refer to numerical performance tests computed on symmetric and non-
symmetric matrices of various sizes with uniformly distributed random elements in the interval
[−1, 1]. As mentioned at the beginning, non-symmetrical and complex matrices have not been dealt
with in this report, but an application for the non-symmetric case is given here for illustrative
purposes. For optimization of the eigenvector functions the BFGS [1,3,6] (for huge matrices the
’limited memory’ L-BFGS version is recommended) algorithm was used, which was started with
a random trial vector and it was terminated by the condition ‖Ax− xσ‖/‖x‖ < ε, where σ is the
Rayleigh-quotient and ε is a suitable bound. Taking into account that the zero-vector is also an
optimum point of f

(0)
A (and g

(0)
A ) an appropriate normalization technique was used with various

normalization parameters ω.

4.1. Numerical result for the symmetric case. The rows in the tables are arranged according
to matrix size and the columns to the accuracies referred. Table elements are the average number
of iteration steps necessary to reach the accuracies obtained from averaging over 100 random
matrices. Tables 1 (ω = 0), 2 (ω = 0.25), 3 (ω = 0.5) and 4 (ω = 0.75) refer to f

(ω)
A (x), while

table 5 refers to g
(0)
A (x).

SYMMETRIC 10−1 10−2 10−3 10−4 10−5 10−6 10−7

n=25 5 27 37 39 40 41 42
n=50 7 53 77 83 85 85 86
n=100 18 102 141 162 163 163 164
n=200 33 140 209 222 227 230 232

Table 1. Convergence data for f
(ω)
A (x), ω = 0
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SYMMETRIC 10−1 10−2 10−3 10−4 10−5 10−6 10−7

n=25 5 21 34 39 41 43 43
n=50 13 45 58 62 65 67 68
n=100 24 80 119 132 138 141 143
n=200 41 131 220 249 261 268 269

Table 2. Convergence data for f
(ω)
A (x), ω = 0.25

SYMMETRIC 10−1 10−2 10−3 10−4 10−5 10−6 10−7

n=25 4 17 25 28 29 30 31
n=50 7 30 50 52 54 55 56
n=100 10 46 92 100 103 104 105
n=200 13 69 171 196 200 203 204

Table 3. Convergence data for f
(ω)
A (x), ω = 0.5

SYMMETRIC 10−1 10−2 10−3 10−4 10−5 10−6 10−7

n=25 4 16 25 28 30 31 32
n=50 5 27 47 52 55 57 59
n=100 7 42 94 105 110 112 114
n=200 10 66 171 197 203 207 210

Table 4. Convergence data for f
(ω)
A (x), ω = 0.75

SYMMETRIC 10−1 10−2 10−3 10−4 10−5 10−6 10−7

n=25 3 17 25 27 29 30 30
n=50 5 31 47 52 54 55 56
n=100 8 55 93 102 105 107 107
n=200 12 92 181 200 206 208 209

Table 5. Convergence data for g
(0)
A (x)

4.2. Numerical results for the non-symmetric case. Although with symmetric matrices the
eigenvector function f

(0)
A rarely converges to the zero-vector, this occurs more frequently with

non-symmetric matrices. To avoid this pitfall, when searching for minima with non-symmetric
matrices the normalized eigenvector function f

(ω)
A , ω > 0 should be used. Tables 6 (ω = 0.25),

7 (ω = 0.5), 8 (ω = 0.75) show the same specified data obtained with non-symmetric matrices.
However, the non-normalized g

(0)
A eigenvector function proved to be generally ’zero-vector safe’

and highly effective in non-symmetric cases as well. Table 9 lists the data obtained using g
(0)
A (x).

4.3. Discussion of the results. As the tables show, when increasing the size of the matrix
the convergence speeds up in both the symmetric and non-symmetric cases. Also the degree of
homogeneity affects the convergence speed, and ω = 0.5 proved to be the best parameter value
here. In both cases the average numbers of BFGS iteration steps were quite low. It was close to n
for symmetric matrices, but about 1.5n for non-symmetric matrices (n is the dimension). When
using the eigenvector function g

(0)
A for symmetric matrices the results were found to be similar,

but for non-symmetric matrices g
(0)
A proved to be significantly better, with no clear indication of
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NON-SYMMETRIC 10−1 10−2 10−3 10−4 10−5 10−6 10−7

n=25 3 31 64 71 72 74 74
n=50 12 57 108 113 116 118 119
n=100 15 71 168 186 192 196 198
n=200 25 110 274 318 322 324 325

Table 6. Convergence data for f
(ω)
A (x), ω = 0.25

NON-SYMMETRIC 10−1 10−2 10−3 10−4 10−5 10−6 10−7

n=25 3 20 48 57 59 60 61
n=50 4 34 82 112 115 117 119
n=100 6 52 136 172 172 173 173
n=200 9 83 224 289 293 294 295

Table 7. Convergence data for f
(ω)
A (x), ω = 0.5

NON-SYMMETRIC 10−1 10−2 10−3 10−4 10−5 10−6 10−7

n=25 3 20 42 48 51 52 53
n=50 4 33 69 80 81 84 85
n=100 6 52 128 147 150 154 154
n=200 9 83 238 288 300 305 307

Table 8. Convergence data for f
(ω)
A (x), ω = 0.75

NON-SYMMETRIC 10−1 10−2 10−3 10−4 10−5 10−6 10−7

n=25 3 18 39 40 42 43 44
n=50 4 32 61 67 68 68 69
n=100 7 52 114 128 130 131 132
n=200 10 80 207 228 235 238 239

Table 9. Convergence data for g
(0)
A (x)

convergence to the zero-vector. Furthermore, the structure of g
(0)
A is also simpler than that for

f
(ω)
A with ω > 0 so evaluation of the function value and the gradient required fewer operations.

Overall, g
(0)
A seemed to be the most efficient for the selective determination of eigenvectors.

4.4. An example for closely packed eigenvalues. Closely packed eigenvalues are not easily
handled with most iterative methods. But the example of a 3×3 symmetric matrix illustrates the
power of our algorithm in determining eigenvectors belonging to closely packed eigenvalues. The
target matrix is constructed in factorized form with eigenvalues 1.002, 1.001, 1,

(4.1) A3 = 1.002u1u1
> + 1.001u2u2

> + 1u3u3
>,

and the convergence data values for the optimization of g
(0)
A are listed in Table 10. The first

column depicts the various starting vectors, the second the eigenvalues, the third the necessary
steps to reach the required accuracy in the approximation of the eigenvalue, and the fourth shows
the accuracy of approximation of the eigenvalue. As can be seen, the closely packed eigenvalues did
not cause any special problem in the searching procedure, which is a good feature of the method
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x0 λ steps accuracy(λ)
[ 2√

29
,− 3√

29
, 4√

29
] 1 7 10−11

[ 2√
29

, 3√
29

, 4√
29

] 1.001 7 10−11

[ 2√
29

, 3√
29

,− 4√
29

] 1.002 8 10−9

Table 10. Convergence data for the approximation of eigenvectors belonging to
closely packed eigenvalues

especially since it is known that the convergence speed of methods based on the QR transformation
breaks down if the ratio of eigenvalues |λi|/|λi−1| is close to 1.

5. Conclusions

This short paper presents a novel algorithm for determining eigenvectors and eigenvalues of large
real matrices. Although complex matrices and vectors are not discussed here, the method can be
applied to complex matrices or complex eigenpairs of non-symmetric matrices as well. Eigenvector
functions have been defined with various degree of homogeneity. It was shown that the local optima
of these functions are also global optima, which coincide with the eigenvectors of the underlying
matrix. Since the eigenvector functions are well-behaved, the known optimization procedures
[1,3,5,6] can efficiently determine their minima, as the numerical investigation using the BFGS
algorithm has clearly shown. The selection of the approximated eigenvector is independent of the
distribution of the eigenvalues. The algorithm also behaves well with closely packed eigenvalues,
which is generally a headache for most methods. The procedure does not assume the storage
of the whole matrix in the core and requires only one matrix-vector, vector-vector and some
scalar multiplications per step. The mathematical statements presented provide bounds for the
accuracies of the obtained approximate eigenvalues and eigenvectors.
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