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Abstract. Making use of the ubiquitous kernel notion, we present a new nonlin-
ear supervised feature extraction technique called Kernel Springy Discriminant
Analysis. We demonstrate that this method can efficiently reduce the number of
features and increase classification performance. The improvements obtained ad-
mittedly arise from the nonlinear nature of the extraction technique developed
here. Since phonological awareness is a great importance in learning to read, a
computer-aided training system could be most beneficial in teaching young learn-
ers. Naturally, our system employs an effective automatic phoneme recognizer
based on the proposed feature extraction technique.

1 A Phonological Awareness Teaching System

The most important clue to the process of learning to read is the ability to separate
and identify consecutive sounds that make words and to associate these sounds with
its corresponding written form. To learn to read in a fruitful way young learners must,
of course, also be aware of the phonemes and be able to manipulate them. Many chil-
dren with learning disabilities have problems in their ability to process phonological
information. So we decided to construct a computer-aided training software package
which makes use of a very effective automatic phoneme recognizer in the background
and provides visual feedback, on a frame-by-frame basis, in the form of flickering let-
ters (see Fig. 1a). So as to make the sound to grapheme association easier a unique
picture is attached to each letter. In addition, the transparency of letters is proportional
to the output of the speech recognizer. Our experiments and general observations show
that young people are more willing to practice with the computer than with traditional
drills. To reinforce this point we found we could make impressive progress in a very
short training period.

Since a highly efficient automatic phoneme recognizer can make the teaching sys-
tem reliable, we decided to develop a novel feature extraction technique which proved
to be suitable for this task. In the next section we describe this method, followed by
results and concluding remarks.�

This work was supported under the contract IKTA No. 2001/055 from the Hungarian Ministry
of Education.
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Fig. 1. (a) A phonological awareness teaching system. (b) The kernel idea. $ is the closure of
the linear span of the mapped data. The dot product in the kernel feature space $ is implicitly
defined. The dot product of %'&( ) �+* (�,�-/.10�2 and %'&( ) �43 (5,�-/.10�2 is %'(/6 7 * ( 3 798:-/.10�;�.=<>2 .
2 Kernel Springy Discriminant Analysis

The approach of feature extraction could be either linear or nonlinear, but it seems there
is a technique (which is most topical nowadays) that is, in some sense, breaking down
the barrier between the two types. The key idea was originally presented in [1] and was
again applied in connection with the general purpose Support Vector Machine [2][3].
In the following this notion is also used to derive a novel nonlinear feature extractor.

Without loss of generality we shall assume that, as a realization of multivariate
random variables, there are 	 -dimensional real attribute vectors in a compact set ?
over @BA describing objects in a certain domain, and that we have a finite CED 	 sample
matrix F  HG ��IJ�9#9#9#����LK+M�N

containing C random observations. Let us assume as well
that we have

�
classes and an indicator function OQP"RTS �9U9U9UV� CXWZY[RTS �9U9U9U\�]� W , whereO ��^�� gives the class label of the sample

�"_
.

Now let the dot product be implicitly defined (see Fig. 1b) by the kernel function
�

in some finite or infinite dimensional feature space ` with associated transformation
�

:�����������a b�����"��#��������VU
(1)

Kernel Springy Discriminant Analysis (KSDA) searches for a linear transformation in` having the form cedF , where c is a real C by C orthogonal matrix containing vari-
ational parameter values obtained by the method, while dF is a short-hand notation
for the image matrix

G �����XI4�V�9#9#9#��]�����LK1�fM N
. If we have a new attribute vector

�
, the

transformation can be employed by cgdF �������h c ��� F ����� , where the column vector��� F ����� is
G ������IJ�����V�9#9#9#L�]�����LK������fM�N

. Thus in the kernel feature space ` this type of
linear transformation can be expressed only by dot products, which requires only kernel
function evaluations. Moreover, since

�
is generally nonlinear the resultant transforma-

tion is a nonlinear transformation of the original sample data. Knowing
�

explicitly
– and, consequently, knowing ` – is not necessary. We need only define the kernel



function, which then ensures an implicit evaluation. The construction of an appropriate
kernel function (i.e. when such a function

�
exists) is a non-trivial problem, but there

are many good suggestions about the sorts of kernel functions which might be adopted
along with some background theory [2], [3]. From the functions available, the two most
popular are1:

Polynomial kernel:
� � ���������a ji5� N ��k�l�� mEnpoq�

(2)

Gaussian RBF kernel:
� � ���������a sr\tJu i�vxw w � v � w w �zy�{ k � { n @B| U (3)

The stationary points of the Rayleigh quotient formula will furnish the row vectors of
the orthogonal matrix } of the KSDA transformation2:~ �5���� b� N dF���dF N � y � N �x� (4)

where �  ������ �>� � �������L_5� v �����+�\���L�5�����L_5� v �����+�\��� NZ� � � (5)

and � � �  �� v S � if O ��^��� O � �+�S � otherwise
^]�f�h S �9U9U9U9� C U (6)

It is straightforward to prove that (4) takes the following form:~ �5���� b� N��9���� ��N v � � ��N�� � y � N �x�
(7)

where
�  dF[dF N� �G �����L_����+�\�fM

and
��

is a diagonal matrix with the sum of each row
of
�

in the diagonal. After taking the derivative of (4) we readily see that the station-
ary points of ~ �5��� can be obtained via an eigenanalysis of the following symmetric
eigenproblem:3 � ���� � N v � � � N����� ����

. If we assume that the eigenvectors are� I+�9#9#9#��>�¢¡
then the orthogonal matrix c is defined by

G �xIz£ � �9#9#9#L�>�¢¡�£ � M�N , where
the normalization parameter

£ � is equal to
�5�¢¤>N � �¢¤>�]¥ ��¦>�

. This normalization factor
ensures that the two-norm of row vectors of the transformation matrix cgdF is unity.

1 For a given kernel function , is not always unique as the kernel 8 � , the dimension of the
feature space $ , is at least §z¨�©Jª\« �ª­¬ while with 8 � we get infinite dimension feature spaces.

2 The name of this method stems from the utilization of a spring & antispring model, which
involves searching for directions with optimal potential energy using attractive and repulsive
forces. In our case sample pairs in each class are connected by springs, while those of dif-
ferent classes are connected by antisprings. New features can be easily extracted by taking
the projection of a new point in those directions where a small spread in each class is at-
tained, while different classes are spaced out as much as possible. Let ® -/¯�2 be defined by% &(/6 7>) � -�-�°!-/.10�2"±²°!-/.=<]2�2�³´¯�2 �]µ ( 7 . Using this term, which in $ defines the potential of the
spring model along the direction ¯ , we find that ¶ -�·�2 is equal to ® -¹¸º ³"·»2�¼9·�³L· . Technically
speaking, KSDA searches for those directions ¯ of the form ¸º ³L· along which a large po-
tential is obtained. Intuitively, if larger values of ¶ indicate better directions and the chosen
directions need to provide independent feature information, then choosing stationary points
that have large values is a reasonable strategy.

3 In contrast to [4], KSDA can be performed by solving a symmetric eigenproblem rather than
an unsymmetrical one.
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Fig. 2. KSDA transformation of artificial data. (a) is the initial data, and (b) is the result.

3 Results

In Fig. 2 we can see the result of a KSDA transformation using a Gaussian RBF kernel
on artificial data with three different class labels. Without a doubt, the classes are well
separated. For training and testing purposes we also recorded samples from 120 speak-
ers (children of age 6-7) at a sampling rate of 22050 Hz in 16-bit quality. Each speakers
uttered all the Hungarian vowels, one after the other, separated by a short pause. Since
we decided not to discriminate their long and short versions, we worked with 9 vowels
altogether. Initially, the signals were processed in 10 ms frames, from which the log-
energies of 24 critical-bands were extracted using FFT and triangular weighting. In our
tests we used the filter-bank log-energies from the centremost frame of the steady-state
part of each vowel and smoothed the feature trajectories to remove the effect of brief
noises and disturbances (“FBLE Smooth” set, 24 features). Afterwards, in a second
set of features we extended the smoothed log-energies with the gravity centers of four
frequency bands, approximately corresponding to the possible values of the formants
(“FBLE+Grav” set, 24+4 features). These gravity centers are supposed to give a crude
approximation of the formants. Naturally, both initial feature sets were transformed by
KSDA using the third-order polynomial kernel. Since c was defined by only those
eigenvectors with the largest 16 eigenvalues we also performed a dimension reduction
when applying the KSDA transformation. Then, as a classifier the well-known Support
Vector Machine [2][3] was employed using the same kernel as before. In the trials 80
speakers were used for training and 40 for testing. For the sets “FBLE Smooth” and
“FBLE+Grav” the recognition errors were 6.08% and 5.27%, respectively, while after
a KSDA transformation they were 3.24% and 2.8%, respectively.
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