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Abstract

In this paper we introduce a new family of hyperplane classifiers. But, in
contrast to Support Vector Machines (SVM) - where a constrained quadratic
optimization is used - some of the proposed methods lead to the unconstrained
minimization of convex functions while others merely require solving a linear
system of equations. So that the efficiency of these methods could be checked,
classification tests were conducted on standard databases. In our evaluation,
classification results of SVM were of course used as a general point of refer-
ence, which we found were outperformed in many cases.

1 Introduction

Numerous scientific areas such as bioinformatics, pharmacology and artificial in-
telligence depend on classification and regression methods which may be linear or
non-linear, but it now seems that by using the so-called kernel idea, linear methods
can be readily generalized to nonlinear ones. The key idea was originally presented
in Aizermann’s paper [1] and it was successfully applied in the context of the ubiq-
uitous Support Vector Machines [10]. The roots of SV methods can be traced back
to the need for the determination of the optimal parameters of a separating hyper-
plane, which can be formulated both in input space or in kernel induced feature
spaces. However, optimality can vary from method to method and SVM is just one
of several possible approaches.

Without loss of generality we shall assume that, as a realization of multivariate
random variables, there are m-dimensional real attribute vectors in a compact set
X over R

m describing objects in a certain domain, and that we have a finite n×m

sample matrix X = [x1, . . .xn]T containing n random observations. Let us assume
as well that we have an indicator function L : R

m → L ⊆ R, where L(xi) gives the
label of the sample xi, and let us denote the vector [L(x1), . . . ,L(xn)]T by L(X).
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Figure 1: Three possible loss functions

Here, a finite set L means a classification task. Should L be an infinite set, the task
will be a regression problem.

In this paper we will restrict our investigations only to that of binary classifica-
tion (L = {−1,+1}), as multiclass problems can be dealt with by applying binary
classifiers [3]. But regression problems will not be entirely excluded here, since
binary classifiers will be derived from regression formulae.

2 Linear classifiers with various loss-functions

Linear classification attempts to separate the sample points with different labels
via a hyperplane. A hyperplane is a set of point z:

(

zT 1
)

a = 0 z ∈ R
m, a ∈ R

m+1. (1)

For a point z the left-hand side of Eq. (1) is a signed expression with absolute
value proportional to the distance from the hyperplane. In addition, the sign of
this expression corresponds to the sign of the half-space the point lies in.

A point xi is well-separated by a hyperplane with parameter a if and only if:

L(xi) ·
(

xT
i 1

)

a > 0 i ∈ {1, . . . , n}.

Based on these products a target function - whose lower value indicates a better
separation - can be defined:

τ(a) =

n
∑

i=1

g
(

L(xi) ·
(

xT
i 1

)

a
)

, (2)

where g : R → R is a strictly monotonic decreasing function, called a loss function.
Of the many possibilities [6], three candidates are shown in Fig. 1. We should
note here that using a signum-function approximating loss function, the measure
estimates the number of poorly separated points when α → ∞.

Minimizing τ(a) we get an unconstrained minimization of a strictly convex
function, which is in marked contrast to the quadratic optimization with constraints
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in SVM. With a suitably smooth loss function, the gradient vector of τ(a) will be
smooth as well, hence one can apply quasi-Newton methods or even the Newton
iteration method.

After obtaining the optimal parameter of the separating hyperplane the binary
classification of an arbitrary point z can be carried out by:

sign
((

zT 1
)

a
)

.

3 Linear regression in classification

Linear regression attempts to optimally fit a hyperplane onto the indicator func-
tion L. The indicator function has values L(x1), . . . ,L(xn) at the sample points
x1, . . . ,xn while the regression hyperplane has function values f(x1), . . . , f(xn),
where

f(z) =
(

zT 1
)

a z ∈ R
m, a ∈ R

m+1.

Thus the error of the sample point xi can be expressed by

ǫi = L(xi) − f(xi) = L(xi) −
(

xT
i 1

)

a.

The optimal parameter of the regression hyperplane can be obtained by minimizing
the following sum:

min
a

n
∑

i=1

ǫ2i = min
a

‖L(X) − X1a‖
2
2 X1 =







xT
1 1
...

...
xT

n 1






,

whose well-known solution is given by

a = (XT
1 X1)

+XT
1 L(X), (3)

where + denotes the Moore-Penrose pseudo-inverse.
Though the regression makes use of the hyperplane in a different sense from

that in the classification problem, the regression-based binary classification of an
arbitrary point z can still be performed in the same way as that for a linear classifier:

sign
((

zT 1
)

a
)

.

4 Minor Component Classifier

Let us take the sample points X with the corresponding labels L(X), and repre-
sent (xT

1 ,L(x1))
T , . . . , (xT

n ,L(xn))T as vectors in R
n+1. In this extended space a

hyperplane with parameter ā contains points z where

(

zT L(z) 1
)

ā = 0, z ∈ R
m, ā ∈ R

m+2.
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The distance of (xi L(xi)) from the hyperplane is

δ(xi,L(xi)) =

(

xT
i L(xi) 1

)

ā

‖a‖2

,

so there exists an optimal hyperplane fitting on the extended sample points with
least error:

min
ā

n
∑

i=1

δ(xi,L(xi))
2 = min

ā

āT XT
2 X2ā

āT ā
X2 =







xT
1 L(x1) 1
...

...
...

xT
n L(xn) 1






. (4)

It can be proved that eigenvectors of XT
2 X2 are the stationary points of the above

functional with the corresponding eigenvalues as function values. Thus the solution
of the minimization problem can be readily obtained by finding the eigenvector of
XT

2 X2 which has the smallest eigenvalue [4].
We should note that the better the fit of a hyperplane onto the points, the

lower the deviation of the sample points projections onto the normal vector of the
hyperplane. Finding the best hyperplane means performing a Minor Component
Analysis (MCA) [5] in the extended space, as MCA searches for directions with a
small deviation of the sample points projections.

The binary classification of a point u in the original space can be performed
by computing the absolute distances in the extended space for both labels {−1, 1}
and probabilities can be assigned to the labels via normalization:

P (L(u) = 1) =
|δ (u,−1)|

|δ (u, 1)| + |δ (u,−1)|

P (L(u) = −1) =
|δ (u, 1)|

|δ (u, 1)| + |δ (u,−1)|

5 Kernel-based nonlinearization

The proposed methods, linear classifiers, linear regression and minor component
classifier performs linear separation in the original sample space. Making the sepa-
ration nonlinear with kernels it must be shown that the methods optimal solutions
are in the linear subspace of the appropriate extended points:

a = X1α α ∈ R
n,

and
ā = X2β β ∈ R

n.

Regarding a linear classifier the parameter vector a can be decomposed into two
perpendicular components a1 and a2, where the first component lies in the subspace
of the extended sample points X1:

a = a1 + a2 a1 = X1α, α ∈ R
n, a1⊥a2.
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The form of the measure τ then becomes

τ(a) =
∑n

i=1
g

(

L(xi) ·
(

xT
i 1

)

(a1 + a2)
)

=
=

∑n

i=1
g

(

L(xi) ·
(

xT
i 1

)

a1 + L(xi) ·
(

xT
i 1

)

a2

)

=
=

∑n

i=1
g

(

L(xi) ·
(

xT
i 1

)

a1

)

,

because a2 is orthogonal to all the extended sample points
(

xT
i 1

)

.
Because the measure depends only on a1, thus the minimization in fact can be

performed in the linear subspace of the extended sample points X1. Actually, this
result holds true far the other methods as well.

Utilizing the introduced formulas the solutions of the proposed methods can be
found by optimizing α and β respectively:

min
α

n
∑

i=1

g(L(xi) ·
(

xT
i 1

)

XT
1 α), (5)

α = (XT
1 X1X1X

T
1 )+XT

1 X1L(X), (6)

min
β

βT X2X
T
2 X2X

T
2 β

βT X2X
T
2 β

. (7)

Supposing that the pairwise dot products of the extended sample points are
known the above optimizations have some polynomial time complexity that depends
on the sample points number. Since the time complexity of these methods is not
a function of dimension, the original vectors can be transformed to a new space F
with φ : X → F (see Fig. 2) where the separation can be achieved perhaps more
effectively. Now let the dot product be implicitly defined by the kernel function κ in
this finite or infinite dimensional feature space F with the associated transformation
φ:

κ(x,y) = φ(x) · φ(y)

Algorithms using only the dot product can be executed in the kernel feature
space by kernel function evaluations alone. Moreover, since φ is generally nonlinear
the resultant method is nonlinear in the original sample space. Knowing φ explic-
itly - and, consequently, knowing F - is not necessary. We need only define the
kernel function, which then ensures an implicit evaluation. The construction of an
appropriate kernel function (i.e. when such a function φ exists) is a non-trivial
problem, but there are many good suggestions about the sorts of kernel functions
[2, 7, 10] which might be adopted along with some background theory. Among the
functions available, the two most popular kernels are:

Polynomial kernel: κ(x,y) =
(

xT y + 1
)d

, d ∈ N

Gaussian RBF kernel: κ(x,y) = e−
‖x−y‖2

r , r ∈ R
+

For a given kernel function the dimension of the feature space F is not always
unique as in the case of a polynomial kernel, where it is at least

(

m+d−1

d

)

, while
with the Gaussian RBF kernel we get an infinite dimension feature space.
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Figure 2: The ”kernel-idea”. F is the closure of the linear span of the mapped
data. The dot product in the kernel feature space F is defined implicitly. The dot
product of φ(x) and φ(y) is κ(x,y).

Employing the kernel-idea to make the proposed methods (5), (6) and (7) non-
linear, we obtain the following three expressions:

min
α

n
∑

i=1

g



L(xi) ·

n
∑

j=1

αiκ
((

xT
i 1

)

,
(

xT
j 1

))



, (8)

α = (KT K)+KTL(X), (9)

min
β

βT K̄K̄β

βT K̄β
, (10)

where the matrices K and K̄ contain the pairwise dot products of transformed
points:

Kij = κ
((

xT
i 1

)

,
(

xT
j 1

))

K̄ij = κ
((

xT
i L(xi) 1

)

,
(

xT
j L(xj) 1

))

.

The solution of (10) can be obtained by finding the eigenvector corresponding
to the smallest nontrivial eigenvalue of the generalized eigenproblem K̄K̄β = λK̄β.
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Table 1: The best training and testing results using tenfold cross validations. A set
of kernel functions with different parameters were used during the tests, but only
the best results are summarized here.

linear
classifier

linear
regression

MCC SVM

BUPA 72.29 71.70 73.10 72.40
65.98 65.40 62.24 65.60

chess 100.0 97.42 95.98 100.0

98.08 90.73 88.49 98.08

echo 100.0 92.35 91.57 100.0

89.54 89.57 90.32 90.10

hheart 86.64 85.96 85.27 87.10

80.08 79.73 80.40 80.40

monks 100.0 93.35 93.35 100.0

87.88 88.81 89.60 89.10

spiral 100.0 100.0 100.0 100.0

88.48 87.23 90.80 89.20

Note here that if the transformed sample points lies entirely on a hyperplane in
the space F then the normal vector of the hyperplane is not in the subspace of the
transformed sample points. Thus perfect fitting of the hyperplane is never realized
in regression methods nonlinearized with kernels.

6 Experimental Results and Evaluation

When evaluating the efficiency of a new algorithm the usual method is to assess its
performance by making use of standard databases. To this end we selected a set
of databases from the UCI Repository [9]. Namely, we carried out tests using the
BUPA liver, chess, echo, Hungarian heart, monks and spiral databases. All sets
were normalized so that each feature had a zero mean and unit deviation and we
applied a tenfold cross-validation on all the sets. Since a recent study [3] compared
five different Support Vector algorithms using the UCI Repository and concluded
that the methods have no significant difference in efficiency, we will employ [8] as
the SVM classifier. The numerical results of tenfold cross-validations are shown in
Table 1, where the best result is emphasized in bold. It confirms that regression
based classification methods are indeed just as effective as the original separation
algorithms. Moreover, making use of the labels in the regression task with the
Minor Component Classifier the usual classification methods were surpassed in
many cases so MCC can now be considered as a rival classification method.
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