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Abstract. In this paper we consider two novel kernel machine
based feature extraction algorithms in a regression settings. The first
method is derived based on the principles underlying the recently in-
troduced Maximum Margin Discimination Analysis (MMDA) algo-
rithm. However, here it is shown that the orthogonalization principle
employed by the original MMDA algorithm can be motivated us-
ing the well-known ambiguity decomposition, thus providing a firm
ground for the good performance of the algorithm. The second algo-
rithm combines kernel machines with average derivative estimation
and is derived from the assumption that the true regressor function
depends only on a subspace of the original input space. The proposed
algorithms are evaluated in preliminary experiments conducted with
artificial and real datasets.

1 FEATURE EXTRACTION BASED ON
AMBIGUITY DECOMPOSITION

In this article we consider regression problems, where the data
(Xi, Yi) are independent, identically distributed random variables,
L is loss function such as e.g. quadratic loss function L(y, z) =
(y − z)2, and we seek to determine the regressor f(x) =
argminy E[L(Y, y)|X = x].

Let us first consider the model Y =
∑

i
βigi(X) + ε, where gi :

X → R are unknown functions, and ε is noise variable, independent
of Y, X . We shall consider estimating gi by means of an iterative
procedure. One view of the model is then to treat the Y = βT γ + ε
as a linear regression problem, where γ = (g1, . . . , gm).

1.1 Ambiguity decomposition

In this section we shall assume that the vector β is such that 0 ≤
β ≤ 1, βT e = 1, where e = (1, 1, . . . , 1)T , i.e., the output
can be obtained as a noisy convex combination of the ‘features’
g1(X), . . . , gm(X). We shall further assume that the loss function
is the quadratic loss.

Let g =
∑

i
βigi, f arbitrary. Then, it is not hard to see that

Loss(g) =
∑

i
βi Loss(gi) −

∑

i
βiE[(gi(X) − g(X))2] and

Loss(g) = E[(g(X) − f(X))2]. This formula, first given in [2]
is called “ambiguity decomposition” (AD). The ensemble loss can
be decreased if the ambiguity of the ensemble is maximized whilst
keeping the loss of the individual members low.
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Now, we obtain easily

∑

i

βiE[(gi(X) − g(X))2] =
∑

i

(β2
i − βi)

(

E[gi(X)]2

+ Var[gi(X)]
)

−
∑

i6=j

βiβj Cov(gi(X), gj(X)).

Therefore, given two ensembles (gi), (ĝi) satisfying E[gi(X)] =
E[ĝi(X)], Var[gi(X)] = Var[ĝi(X)], if

∑

i6=j

βiβjE[gi(X) gj(X)] <
∑

i6=j

βiβjE[ĝi(X) ĝj(X)]

then Loss(g) < Loss(ĝ). The assumption of equal expected values
and variances is motivated by assuming that each gi should match
the regressor function f as closely as it is possible and hence the
expected value and variance of gi(X) are controlled by this desire.

As a conclusion, we have that one way of have a small ensemble
loss is to enforce orthogonality: E[gi(X)gj(X)] = 0, i 6= j.

1.2 Kernel Machines
Now, let k : R

d × R
d → R be a positive definite kernel, H be the

RKHS corresponding to k. Let {(xi, yi)}
n
i=1 denote the observed

data (again, xi, yi are i.i.d.) and let L(y, z) be a loss function, e.g.
L(y, z) = (y − z)2, f ∈ H. Define

R(f) =
1

n

n
∑

i=1

L(f(xi), yi) + λ‖f‖, (1)

where ‖f‖ is in the norm of H (i.e. this is ridge regression in the case
of the quadratic loss). By the “Representer Theorem” of Wahba [5]
f ∈ span(Φ), where Φ = (φ1, . . . , φn) and φi : R

d → R is defined
by φi(x) = k(xi, x). E.g. assume f = Φα for some α ∈ R

n.
Equation (1) can be solved by

R(α; X; k) =
1

n

n
∑

i=1

L((Φα)(xi), yi) + λαT Kα, (2)

where Kij = k(xi, xj) and X = (x1, . . . , xn). When the dataset
X and the kernel k are fixed we will often write R(α) instead of
R(α; X; k). Similarly, when the kernel is fixed we will use R(α; X).

Now assume gi = Φαi, gj = Φαj . By replacing the expectation
operation with the the empirical mean in orthogonality criterion we
obtain

0 =
n

∑

k=1

gi(xk)gj(xk) = αT
k K2αj .



(λ = 10k) k -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
LS-SVM 84.8 84.7 83.7 76.9 64.6 58.9 47.1 33.3 26.2 22.5 17.0 15.2 17.8

DLR 81.0 56.9 17.7 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2

Table 1. Comparison of DLR and LS-SVM on the Boston Housing data. Columns correspond to different regularization parameters.

Therefore an iterative procedure that optimizes R(α) and respects
the orthogonality criterion is as follows: Given α1, . . . , αi, let

αi+1 = argminα{R(α) |αT
j K2α = 0, 1 ≤ j ≤ i }. (3)

Once α1, . . . , αk are computed for some k > 0, one may estimate
the optimal mixing coefficients βi by e.g. ordinary or regularized
(linear) least squares. We call the method obtained by solving (3)
together with the method used to obtain the mixing coefficients βi,
decorrelation learning regression (DLR).

The solution of (3) can be obtained by solving the Langrangian
dual of the quadratic programming problem (3). For this, assume that
the solutions up to step i are obtained in the form ΦAi where we have
collected the vectors α1, . . . , αi into the matrix Ai. Also, consider
now the ε-loss of function of Vapnik [4]: L(y, z) = max(0, |y −
z| − ε). It is relatively easy to derive that the problem reduces to the
following quadratic programing problem:

L(α, α∗, β) = −
1

2
(α − α∗)T K(α − α∗) − (α − α∗)T K2Aiβ

−
1

2
βT AiK

3Aiβ + (α − α∗)T y − ε(α + α∗)T e → max

s.t. 0 ≤ αi, α
∗
i ≤ C ∀i.

2 AVERAGE DERIVATIVE ESTIMATION
The other class of algorithms we consider assumes that the unknown
regressor function f can be written in the form

f(x) = f0(Bx) (4)

for some matrix B ∈ R
m×d with m � d (i.e. BBT = Im). Here

f0 is an unknown link function. Our goal here is to find the effective
dimension m and to describe the effective dimension reducing space
S = =BT [3]. The basic idea of average derivative estimation is as
follows: Considering the derivative of f we get that for all x ∈ R

d

and for
F (x)

def
= BT f ′

0(Bx)

we have F (x) ∈ S.
The basic idea now is to estimate f using a non-parametric esti-

mator. Let f̂ denote such an estimate obtained and let x1, . . . , xn be
the data points used. Then define F̂ (x) = d/dxf̂ and compute the
eigenvalue decomposition of M =

∑

i
F̂ (xi)F̂ (xi)

T . If F̂ = F
then it is easy to see that only the first m eigenvalues of M differ
from zero. Since F̂ is only an approximation of F we may expect
that M will have more than m non-zero eigenvalues. However, the
hope is that the dimensionality of the effective dimension reducing
subspace can be recovered by detecting a gap in the spectrum.

Here we propose to use kernel machines to obtain f̂ , an estimate
of f . We shall call the resulting method K-ADE (Kernel based Aver-
age Derivative Estimation). The choice of using kernel machines is
motivated by the widely accepted view that kernel machines are less
sensitive to the dimensionality of the input space which is important
in the first step of the algorithm.

3 EXPERIMENTS
We ran experiments on the Boston Housing Data database with DLR.
In this case we used least-squares ridge regression with 3rd order
cosinus polynomial kernels. DLR used ridge regression for estimat-
ing the mixture parameters. We have varied λ and observed the error
rate. Error was measured as the relative mean squared error, using 5-
fold cross-validation. On the top of the extracted features we trained
a linear ridge regression model. Results are shown in Table 1. Given
the table one may conclude that the tolerance of DLR to the regular-
ization parameter is indeed larger than that of LS-SVM alone. Also,
notice that we have obtained consistently better results with DLR
than with LS-SVM with identical settings.

With KADE we used the synthetic datasets of [1]. The first dataset
has 100 samples and is two dimensional, X1, X2 ∼ N(0, 2.52) and
Y = 1/(1+e−X1)+N(0, 0.12). We have used least-squares SVMs
with 3rd order polynomial kernels. The eigenvalues we obtain are
0.0317,0.0002, i.e., λ2/λ1 < 0.01. The angle between b = [1, 0]T

and the first eigenvector is −0.0100 (measured in radian). The sec-
ond dataset is also two dimensional, it has 200 samples and X1,X2

are as before, but now Y = 2 ∗ e−X2

1 + N(0, 0.12). In this case
we tried LS-SVM with the Gaussian RBF kernel with σ = 0.1. The
eigenvalues are 0.1728 and 0.02209. The angle between b and the
first eigenvector is 0.0091. Note that according to [1] SIR, PhD, CCA
(Canonical Correlation Analysis), and PLS yield good acceptable re-
sults on the first dataset, whilst they do not perform very well on
the second (the smallest absolute angle is obtained for CCA and it is
0.1818. For KDR the respective values are −0.0014 and 0.0052.

4 CONCLUSION
In this paper we have proposed two methods for feature extraction
for regression problems, decorrelation learning regression (DLR) and
an adaptation of the “Average Derivative Estimation” algorithm to
kernel machine based regression (KADE). We have shown experi-
mentally that DLR is more robust to the choice of the regularization
parameter than ridge-regression. KADE would be competitive with
alternative methods, especially since our method is straightforward
to implement.
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