
Initialization of Directions in Projection Pursuit
Learning

Gábor Faddi
Research Group on Artificial

Intelligence, Hungarian Academy of
Sciences and University of Szeged

gfaddi@rgai.inf.u-szeged.hu

András Kocsor
Research Group on Artificial

Intelligence, Hungarian Academy of
Sciences and University of Szeged

kocsor@inf.u-szeged.hu

Lászĺo Tóth
Research Group on Artificial

Intelligence, Hungarian Academy of
Sciences and University of Szeged

tothl@inf.u-szeged.hu

Abstract— The Projection Pursuit Learner is a multi-class
classifier that resembles a two-layer neural network in which
the sigmoid activation functions of the hidden neurons have
been replaced by an interpolating polynomial. This modification
increases the flexibility of the model but also makes it more
inclined to get stuck in a local minimum during gradient-based
training. This problem can be alleviated to a certain extent by
replacing the random initialization of the parameters by proper
heuristics. In this paper we propose to initialize the projection di-
rections by means of feature space transformation methods such
as independent component analysis (ICA), principal component
analysis (PCA), linear discriminant analysis (LDA) and springy
discriminant analysis (SDA). We find that with this refinement
the number of processing units can be reduced by 10 - 40%.

I. I NTRODUCTION

The projection pursuit methodology was originally proposed
as a general-purpose statistical regression technique [5], but
was soon found to be effective in probability density estima-
tion and classification as well [6][7]. When used for multiclass
classification, the structure of the projection pursuit learner
(PPL) is very similar to a two-layer neural network in which
the sigmoid activation functions of the hidden neurons have
been replaced by an interpolating polynomial. This increases
the flexibility of the model and so enables it to attain a similar
classification performance with considerably fewer neurons.
However, these more flexible activation functions also make
the system more inclined to get stuck in a local minimum
during gradient-based training. We observed this problem
in particular when the number of classes to be modeled is
relatively large. Our original implementation followed the
paper of Hwang et al. [10], who initialize the projection
directions randomly, just the same as with neural networks.In
this paper we seek better initialization heuristics that make use
of the data distributions. More precisely, we will apply linear
feature space transformation methods to find the interesting
directions of the data set, and use the resulting directions
to initialize the projections of the PPL. We hope to obtain
three kinds of improvement from this. First, the classification
results might improve if the learning process could avoid local
minima with more success. Second, fewer hidden processing
units might be sufficient to achieve the same performance.
Third, the training procedure might become faster, since after
a better initialization fewer iteration steps might be required.

The paper is organized in the following way. Section II is
an introduction to the projection pursuit model and its training
procedure. Section III presents the methods used her for
initialization, namely independent component analysis (ICA),
principal component analysis (PCA), linear discriminant anal-
ysis (LDA) and springy discriminant analysis (SDA). Section
IV contains the main results, while Sections V and VI contain
the discussion and the conclusions, respectively.

II. PROJECTION PURSUIT LEARNING

A. The PPL model

Projection pursuit learning treats the multi-class classifi-
cation problem in exactly the same way as that for multi-
layer feed-forward neural networks. That is, the model has
one output for each class and the training data is presented
according to the 1-of-r coding scheme [1], wherer is the
number of classes. Hence, in the following we shall assume
that the training data is given ask pairs in the form:

(xl, yl), xl ∈ R
n, yl ∈ R

r, l = 1, 2, . . . , k. (1)

For convenience we will also refer to the correct class ofxl

asL(l). The PPL model calculates itsith output,ŷi as:

ŷi = yi +

P
∑

p=1

βipfp(α
⊤

p xl), (2)

where the constantyi is the sample average,yi = E{yi} of
the training data.

Expressed briefly, the model consists of two layers. The
hidden layer of the network hasP processing units that receive
the input vectorx and project it onto their direction vector
αp. These projections are then smoothed by the activation
functionsfp (in our implementation these are Hermite polyno-
mials). Theith output,ŷi of the model is obtained as a linear
combination of all the hidden units according to the weight
setβi. There is one such weight set each output, hence these
linear units form the output layer of the model.

B. The training algorithm

It is known that when a neural network with a 1-of-r output
coding structure is trained with the minimum mean squared
error criteria then, under suitable conditions, its outputs will



approximate the corresponding class posteriors [1] which,in
turn, guarantee Bayes-optimal classification. As the proofdoes
not exploit the inner structure of the model, it holds for the
projection pursuit representation as well. According to this,
the parameters of the model are estimated by minimizing the
mean squared error(L2) function:

L2 =

r
∑

i=1

E{yi − ŷi}
2 =

r
∑

i=1

E{yi − yi −

P
∑

p=1

βipfp(α
⊤

p x)}2.

(3)
In contrast to traditional neural nets, the PPL model is trained
by adding the hidden units to the system one at a time.
This ’forward growing’ technique allows the early stoppingof
the training according to a proper stopping criterion. Having
added a new processing unit, first the parameters of this
new unit are optimized, then the parameters of the older
units should be updated in a ’backfitting’ loop. During the
training of one unit all the others are treated as fixed. When
training a particular unit, the minimization of the error function
should be performed over three parameter sets: the projection
directionsα, the projection weightsβ and the parameters of
the activation functionsf . The training process proposed by
Hwang et al. [10] is based on the Gauss-Newton method
and works in iterations. This means that the three types of
parameters of a given unit are updated independently of each
other. The iterative learning procedure (for thep-th hidden
neuron) is the following:

1) All parameters (αp, βip, fp) are initialized randomly,
2) αp is updated according to the Gauss-Newton method,
3) fp is estimated by smoothing the scatter-plot of the

pointszpl = α⊤

p xl,
4) Steps 2 and 3 are repeated for a couple of iterations,
5) βip are updated by a pseudo-inverse calculation,
6) Steps 2-5 are repeated until convergence

The update formulas for the steps can be found in [10]. For us
the only interesting point now is that the training is performed
in iterative steps, and each set of parameters is optimized
separately, assuming the other parameters are constant. This is
clearly suboptimal and makes the system inclined to get stuck
in local optima, especially when there are lots of parameters.
A good initialization of the parameters, and theα directions in
particular, might offer an easy way of alleviating this problem.
In the following we will apply feature space transformation
algorithms to find proper initializations for the directions.

III. I NITIALIZATION METHODS

The random initialization of the directions might be replaced
by more suitable initialization techniques which speed up the
convergence and/or result in a fewer number of projections.
Of the many initialization possibilities we propose here to
apply linear feature extraction techniques such as principal
component analysis (PCA), independent component analysis
(ICA), linear discriminant analysis (LDA) and springy dis-
criminant analysis (SDA) in the hope that they will provide
directions that lead to a better data representation. Each of
these methods uses an objective function for selecting optimal

directions, where the definition of optimality varies from
method to method. In the following we commence with a
concise overview of PCA, ICA, LDA and SDA.

A. Principal component analysis

One tool for data analysis is principal component analysis
(PCA) [11]. The technique is linear, hence any non-linear
correlation between variables will not be captured. It searches
for a d-dimensional subspace ofR

n which captures as much
of the variance in the data set as possible. PCA is mainly used
to reduce dimensionality, but it might reduce the noise as well.
To identify directions with a large variance we may define the
following Rayleigh-type objective function:

τ(v) =
v⊤Cv

v⊤v
, (4)

where v ∈ R
n and C is the sample covariance matrix. It

is wellknown that the optimization of Eq. (4) can be solved
exactly and efficiently via the eigenvalue decomposition ofC.

B. Independent component analysis

Independent Component Analysis [2], [9] is a general
purpose statistical method that originally arose from the study
of blind source separation (BSS). A typical BSS problem is
the cocktail-party problem where several people are speaking
simultaneously in the same room and several microphones
record a mixture of speech signals. The task is to separate
the voices of different speakers using the recorded samples.
Another application of ICA is unsupervised feature extraction,
where the aim is to linearly transform the input data into
uncorrelated components, along which the distribution of the
sample set is the least Gaussian. The reason for this is that
along these directions the data is supposedly easier to classify.
For the optimal selection of independent directions several
objective functions have been proposed. These functions have
to be non-negative and have a zero value for the Gaussian
distribution. Negentropy is one such possible measure, which
is normally estimated by the following formula:

JG(µ) ≈ (E{G(µ)} − E{G(ν)})2, (5)

whereG : R → R is an appropriate non-quadratic function,
E is the expected value andµ is a standardized Gaussian
variable. The following functions forG(ν) are commonly
used:ν4, log(cosh(ν)) and− exp(−ν2/2). New v directions
are computed by employing some optimization technique for
the objective function defined in Eq. (5), whenµ = x⊤v. In
this paper we applied an approximate quasi Newton algorithm
(FastICA) proposed in [3] for this task.

C. Linear discriminant analysis

Linear discriminant analysis (LDA) is a supervised method
to find projections that maximize the ratio of between-class
variance over within-class variance [4], [8]. The objective
function for selecting new features is

τ(v) =
v⊤Bv

v⊤Wv
, (6)



wherev ∈ R
n, B is defined as

B =

r
∑

i=1

kj

k
(mj − m)(mj − m)⊤ (7)

m =
1

k

k
∑

i=1

xi, mj =
1

k j

∑

L(i)=j

xi. (8)

and W is the weighted average of matricesCj (the covariance
matrix of the data having class labelj):

W =
r

∑

j=1

kj

k
Cj , (9)

Cj =
1

k j

∑

L(i)=j

(xi − mj)(xi − mj)
⊤. (10)

The optimization can be performed by solving the generalized
eigenvalue problemBv = λWv.

D. Springy discriminant analysis

Springy discriminant analysis (SDA) is a linear transfor-
mation similar to LDA, but it is orthogonal and avoids some
numerical problems that arise in LDA. SDA creates attractive
forces between samples belonging to the same class and
repulsive forces between samples of different classes via
“springs & anti-springs” [13]. Then it chooses those directions
along which the potential energy of the system is maximal. Let
τ(v), the potential of the spring model along the directionv,
be defined by

τ(v) =
v⊤Dv

v⊤v
, (11)

where

D =
k

∑

i,j=1

(xi − xj)(xi − xj)
⊤[Θ]ij (12)

and

[Θ]ij =

{

−1, ifL(i) = L(j)
1, otherwise

i, j = 1 . . . k. (13)

Each element of theΘ matrix can be considered as a kind of
force constant and can be set to a different value for any pair
of data points.

The larger the value ofτ(v) the farther the classes will be
spaced and the smaller their spreads will be. The optimization
of τ(v) leads to the eigenvalue decomposition ofD, as in the
case of PCA. BecauseD is symmetric, its eigenvalues are real
and its eigenvectors are orthogonal.

IV. EXPERIMENTAL RESULTS

For the first set of experiments we chose several data sets
from the UCI repository [14]. Namely, those calledGlass Iden-
tification, Letter Image Recognitionand Shuttle (STATLOG
version). Besides these, we also performed tests on a ’real-life’
data set from our main field of application, speech recognition.
Due to lack of space here we will not describe the details of
this data set, but just briefly mention that it corresponds toa
phoneme classification task based on a set of spectral features.

The details of how the feature representation was obtained can
be found in [12].

In pilot studies we observed that PPL tends to perform
worse than other learners (such as standard ANNs) when the
number of the classes is relatively large. To investigate this
further we decided to reorganize the class labels of the speech
recognition data set. The original 28 labels were reduced toa
set of 11 and 5 classes by fusing certain classes. The 28-, 11-
and 5-class data sets here will be referred to as “Speech(28)”,
“Speech(11)” and “Speech(5)”, respectively.

To compensate for the variance of the results when using
random initialization, every experiment was run 5 (speech
recognition databases) or 10 (UCI databases) times, and the
averages over the runs were calculated. In every case we were
interested in how the mean squared error decreased by the
addition of more and more processing units. The graphs of
Figure 1 depict the mean squared error as a function of the
number of projections (hidden units) in the system.

V. D ISCUSSION

When examining the figures, we see that some of the
proposed initialization methods consistently outperformed ran-
dom initialization. Unfortunately, the winning method varies
from database to database, so we cannot claim one method to
be superior over the others. In general, the supervised methods
– and SDA in particular – seem to have performed the best.
Although the differences in the absolute error level are in many
cases relatively small, it is important that the same error level
was attained with 10 - 40% fewer projections (when the best
method was compared with the random one). This means that
the number of projections can be reduced with the proposed
methods, and so both the training process and the evaluation
of the model can be made much faster.

We should mention that a smaller MSE does not automat-
ically mean a better classification as the learning process is
always prone to overfitting. However, the forward growing
procedure of the PPL training process offers a natural way
of managing it. As the stopping criterion is usually related
to the MSE (on the training or cross-validation data), the
proposed techniques will result in fewer components. When
examining this issue we observed that the different initializa-
tion methods lead to quite similar classification results, the
random initialization one being slightly, but not consistently
worse. However we did find that, in accordance with the MSE
graphs, the proposed initialization methods do indeed enable
the system to attain the same classification performance with
fewer components.

VI. CONCLUSIONS

In this paper four methods for initializing the directions in
PPL were proposed. We found that they can reduce the number
of components required for a given regression performance by
10 - 40%. This means that both the training process and the
evaluation of the model can be made much faster, which is
very important in many applications.



3 4 5 6 7
0.025

0.03

0.035

0.04

0.045

0.05

0.055

No. of Projections

M
SE

Glass Identification

Random
PCA
ICA
LDA
SDA

4 6 8 10 12 14 16 18
0.04

0.045

0.05

0.055

0.06

No. of Projections

M
SE

Letter Image Recognition

Random
PCA
ICA
LDA
SDA

3 4 5 6 7 8 9
0.006

0.008

0.01

0.012

0.014

No. of Projections

M
SE

Shuttle

Random
PCA
ICA
LDA
SDA

5 10 15 20
5

6

7

8

9

10

11
x 10

−3

No. of Projections

M
SE

Speech (28)

Random
PCA
ICA
LDA
SDA

5 10 15 20
2

3

4

5

6

7
x 10

−3

No. of Projections

M
SE

Speech (11)

Random
PCA
ICA
LDA
SDA

5 10 15 20
1

1.5

2

2.5
x 10

−3

No. of Projections

M
SE

Speech (5)

Random
PCA
ICA
LDA
SDA

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 

Fig. 1. Regression errors for UCI and speech recognition databases

REFERENCES

[1] C. M. Bishop,Neural Networks for Pattern Recognition, Oxford Univer-
sity Press, 1995.

[2] P. Comon, ”Independent component analysis, a new concept?” Signal
Processing, Vol. 36, pp. 287-314, 1994.

[3] FastICA Wab Page, “http://www.cis.hut.fi/projects/ica/fastica/index.shtml”
[4] R. A. Fisher, “The use of multiple measurements in taxonomic problems”,

Annals of Eugenics, Vol. 7, pp. 179-188, 1936.
[5] J. H. Friedman, W. Stuetzle, “Projection Pursuit Regression”, J. of the

American Statistical Association, Vol. 76, No. 376, pp. 817-823, 1981.
[6] J. H. Friedman, W. Stuetzle, A. Schroeder, “Projection pursuit density

estimation”,Journal of the American Statistical Association, Vol. 79, pp.
599-608, 1984.

[7] J. H. Friedman, “Classification and multiple regression through projection
pursuit”, Techn. Rep. No. 12, Dep. of Statistics, Stanford University, 1985.

[8] K. Fukunaga,Statistical Pattern Recognition, Acad. Press, 1989.
[9] A. Hyvarinen, J. Karhunen, E. Oja,Independent Component Analysis,

Wiley, 2001.
[10] J. N. Hwang, S. R. Lay, M. Maechler, R. D. Martin, J. Schimert, “Re-

gression modelling in back-propagation and projection pursuit learning,”
IEEE Trans. on Neural Networks, Vol. 5, No. 3, pp. 342-353, 1994.

[11] I. J. Jolliffe, Principal Component Analysis, Springer, New York, 1986.
[12] A. Kocsor, L. T́oth, A. Kuba Jr., K. Kov́acs, M. Jelasity, T. Gyiḿothy,

J. Csirik, ”A Comparative Study of Several Feature Transformation and
Learning Methods for Phoneme Classification,”Int. Journal of Speech
Technology, Vol. 3., No. 3/4, pp. 263-276, 2000.

[13] A. Kocsor, L. T́oth, “Application of Kernel-Based Feature Space Trans-
formations and Learning Methods to Phoneme Classification”, accepted
for Applied Intelligence, 2004.

[14] C. J. Merz, P. M. Murphy, UCI repository of machine learning databases,
www.ics.uci.edu/mlearn/MLRepository.html, 1998.


