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Abstract. In this paper we deal with the heuristic exploration of gen-
eral hypothesis spaces arising both in the HMM and segment-based ap-
proaches of speech recognition. The generated hypothesis space is a tree
where we assign costs to its nodes. The tree and the costs are both gen-
erated in a top-down way where we have node extension rules and aggre-
gation operators for the cost calculation. We introduce a special set of
mean aggregation operators suitable for speech recognition tasks. Then
we discuss the efficiency of some heuristic search methods like the Viterbi
beam search, multi-stack decoding algorithm, and some improvements
using these aggregation operators. The tests showed that this technique
could significantly speed up the recognition process. The run-times we
obtained were 2 times faster than the basic multi-stack decoding method,
and 4 times faster than the Viterbi beam search method.
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In speech recognition the importance of efficient search techniques is well known.
In the literature numerous improvements to speed up the search process while
keeping the recognition performance constant are available [2, 3]. In an earlier
paper we proposed some refinements for the well-known Viterbi beam search and
the multi-stack decoding algorithm [1]. In this one we substitute the aggregation
operators used for the recognition cost calculation by others that can further
speed up the speech recognition process. In fuzzy theory [8] many aggregation
operators are available, and we find that the family of the mean aggregation
operators offers enough freedom for carrying out exhaustive trials. Out of cu-
riosity we also introduced a special λ factor for weighting the cost values of the
parameters in the mean aggregation operators so that, by advancing in time, the
older cost values would be even less dominant.

The structure of the paper is as follows. First, we briefly define the probability-
based approach for the speech recognition problem, the hypothesis spaces that
arise, then the possible aggregation functions. Second, we discuss the basic search
algorithms and the search improvements we applied to them. Finally we inves-
tigate how the aggregation operators influence both the performance and speed
of the recognition system.

? This work was supported under the contract IKTA No. 2003/00056 from the Hun-
garian Ministry of Education.
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1 The Hypothesis Space

In speech recognition problems we have a speech signal given by the series of
observations A = a1a2 . . . at, and the set of possible phoneme sequences (words
or word sequences) which will be denoted by W . Our task is to find the word
ŵ ∈W defined by

ŵ = arg max
w∈W

P (w|A), (1)

which, using the Bayes’ theorem, is equivalent to the following maximization
problem: ŵ = arg max

w∈W
(P (A|w) · P (w))/P (A). Further, taking into account the

fact that P (A) is the same for all w ∈W , we have that

ŵ = arg max
w∈W

P (A|w)P (w). (2)

Speech recognition models can be divided into two groups (the discriminative
and the generative ones), depending on whether they use Eq. (1) or Eq. (2).
Throughout this paper we will apply the generative approach [2].

Unified view. Both the generative and discriminative models exploit frame-

based and/or segment-based features, which allows us to have a unified view
of the HMM and segment-based recognition techniques. First, we give a brief
description of this scheme along with the generated hypothesis structure.

Now let us commence with some definitions. Let us define w as o1o2 . . . on,
where oj is the jth phoneme of word w. Furthermore, let A1, A2, . . . , An be
non-overlapping segments of the observation series A = a1a2 . . . at, where Aj =
atj−1

. . . atj
, j ∈ {1, . . . , n}. An Aj segment is defined by its start and end times

and is denoted by [tj−1, tj ]. For a segmentation A = A1, A2, . . . , An we collect
the time indices corresponding to each segment into a vector Tn = [t0, t1, . . . tn]
(1 = t0 < t1 < . . . < tn = t). We use the conventional assumption that the
phonemes in a word are independent so that P (A|w) can be obtained from
P (A1|o1), P (A2|o2), . . . , P (An|on) in some way. To calculate P (A|w), various
aggregation operators can be used at two distinct levels. In the first one the
P (Aj |oj) probability values are supplied by a g1 operator, i.e. P (Aj |oj) =
g1([tj−1, tj ], oj), which combines a value for measuring how well the Aj segment
represents the oj phoneme based on local information sources. In the second one
another operator g2 is used to construct the whole P (A|w) probability from the
P (A1|o1), . . . , P (An|on) values.

The well-known Hidden Markov Model (HMM) [3] is basically a frame-based
approach, i.e. it handles a speech signal frame by frame. Usually a GMM is
applied to compute the P (al|oj) values (for delta and delta-delta features neigh-
boring observations are also required) and for the Aj segment the g1([tj−1, tj ], oj)

value is defined by
∏tj

l=tj−1
coj
·P (al−k . . . al+k|oj), where 0 ≤ coj

≤ 1. Practically
speaking, g1 includes all the information we have when we are in a particular
state of a HMM model. We note here that, instead of GMM, Artificial Neural
Networks and other machine learning algorithms which can be used for density
estimation are also viable. This provides a way for creating model hybrids. As for
the P (A|w) value, the g2 operator is defined by P (An|on)

∏n−1
j=1 (1−coj

)P (Aj |oj).
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In the segment-based speech recognition approach – like the SUMMIT system
of MIT [4] or our OASIS [5] – , g1 will usually be the direct output of some
machine learning algorithm using features that describe the whole [tj−1, tj ] seg-
ment. Among the many possibilities the most conventional choice of g2 is simply
to multiply the probabilities. However, later we show that using other operators
is beneficial for both speed and performance.

The hypothesis space. The task of speech recognition is a selection prob-
lem over a Cartesian product space where the first dimension is a set of word
hypotheses, while the second is a set of segmentations.

Given a set of words W , we use Prefk(W ) to denote the k-long prefixes of
all the words in W having at least k phonemes. Let

T k = {[t0, t1, . . . , tk] : 1 = t0 < t1 < · · · < tk ≤ t} (3)

be the set of sub-segmentations made of k segments over the observation series
a1a2 . . . at. The hypotheses will be object pairs, i.e. they are elements of H =
⋃∞

k=0(Prefk(W )×T k). We will denote the root of the tree – the initial hypoth-
esis – by h0 = (∅, [t0]) (h0 ∈ H). Here Pref1(W )×T 1 will contain the first-level
nodes. For a (o1o2 . . . oj , [t0, . . . , tj ]) leaf we link all (o1o2 . . . ojoj+1, [t0, . . . , tj , tj+1]) ∈
Prefj+1(W )× T j+1 nodes.

Now we need to evaluate the nodes of the search tree. To this end let the
g1 and g2 functions be defined by some aggregation operators. Then, for a node
(o1o2 . . . oj , [t0, . . . , tj ]), the value is defined by

g2(g1([t0, t1], o1), . . . , g1([tj−1, tj ], oj)). (4)

Note that, in practice, it is worth calculating Eq. (4) recursively. After defining
the evaluation methodology we will look for a leaf with the highest probability.

2 Aggregation Operators

In this section we will first give a brief overview of mean aggregation operators,
self-consistent mean operators and root-power mean operators. Then, based on
these definitions, we will give a new set of aggregation operators useful for defin-
ing g2 in the speech recognition task.

The term mean aggregation operators is well-known in fuzzy literature [11].
We will use the definitions of [8], but extend the terms to handle values outside
the [0, 1] interval. This is because, instead of a probability p, a cost c = log p
value is used in practice, which induces addition instead of multiplication.

Definition 1. A mapping G : [0,∞)
j → [0,∞) is called a mean aggregation

operator if it satisfies the following conditions:

M1. Commutativity G is indifferent to the order of the arguments.

M2. Monotonicity G(x1, . . . , xj) ≥ G(y1, . . . , yj) if xi ≥ yi holds for 1 ≤ i ≤ j.
M3. Idempotency If xi = c for all 1 ≤ i ≤ j, G(x1, . . . , xj) = c.
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Next, we need the concept of a bag. A bag associated with the set [0,∞) is
any collection of elements drawn from [0,∞), which differs from a set in that it
allows multiple copies of the same element. B[0,∞) will denote the set of all bags
associated with the interval [0,∞). In other words, B[0,∞) =

⋃

j≥1[0,∞)j .

Definition 2. A mapping G : B[0,∞) → [0,∞) is a self-consistent mean operator

if G satisfies the following conditions:

1. Naturalness: G(x) = x.

2. Commutativity: G is indifferent to the order of the arguments.

3. Monotonicity: For bags of the same dimension condition, M2 applies.

4. Self-Identity: If e := G(x1, . . . , xj), then G(x1, . . . , xj , e) = G(x1, . . . , xj).

We will apply a special family of self-consistent mean operators – the root-

power mean operator –, which is defined as

Gα(x1, . . . , xj) =

(

xα
1 + . . . + xα

j

j

)
1

α

, α ∈ R. (5)

for making g2 functions. It is well-known [9, 10], that if α→−∞, Gα→min(x1, . . . , xj);
G−1 equals the harmonic mean; if α → 0, Gα keeps to the geometrical mean;
G1 equals the arithmetical mean; and if α → ∞, Gα → max(x1, . . . , xj). By
changing the α parameter we have a continuous transition from the minimum
operator to the maximum operator.

Now let us define a variant of the root-power mean operator as

Gα,λ(x1, . . . , xj) =

(

λj−1xα
1 + λj−2xα

2 + . . . + +λxα
j−1 + xα

j

j

)
1

α

, (6)

where α ∈ R is as before and λ ∈ [0, 1] is a weighting parameter. The interpreta-
tion of this operator as g2 in the context of speech recognition is the following:
xi is the g1([ti−1, ti], oi) value, while λj−i is a weighting factor for xi so that ad-
vancing in time the cost of earlier phonemes will become less and less dominant
in the aggregation form.

3 Search in the Hypothesis Space

Since the hypothesis space is usually huge, a full search is unfeasible. Therefore
we have to use some heuristics. We chose the multi-stack decoding method and
the Viterbi beam search as basic search techniques. In the following if a hypoth-
esis is discarded (– we won’t scan its descendants), we say it was pruned. A stack

is a structure for keeping hypotheses in. Moreover, we use limited-sized stacks:
if there are too many hypotheses in a stack, we prune the ones with the highest
cost.

Multi-stack decoding method. In this algorithm we assign a separate
stack to each time instance ti and store the hypotheses in the stack according to
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their end times. In the first step we place h0 into the stack associated with the
first time instance, then, advancing in time, we pop each hypothesis in turn from
the given stack, extend them in every possible way, and put the new hypotheses
into the stack associated with their new end times [6]. Algorithm 1 in Appendix
shows the pseudocode for multi-stack decoding.

Viterbi beam search. This algorithm differs only in one feature from the
multi-stack decoding approach: instead of keeping the n best hypotheses, a vari-
able T called the beam width is employed. For each time instance t we calculate
Dmin, i.e. the lowest cost of the hypotheses with the end time t, and prune all
hypotheses whose cost D falls outside Dmin + T [7].

Search Improvements. When calculating the optimal stack size for multi-
stack decoding, it is readily seen that this optimum will be the one with the
smallest value where no best-scoring hypothesis is discarded. But this approach
obviously has one major drawback: most of the time bad scoring hypotheses will
be evaluated owing to the constant stack size. If we could find a way of estimating
the required stack size associated with each time instance, the performance of
the method would be significantly improved.

i) One possibility is to combine multi-stack decoding with a Viterbi beam
search. At each time instance we keep only the n best-scoring hypotheses, and
also discard those which are not close to the peak (thus the cost will be higher
than Dmin + T ). Here the beam width can also be determined empirically.

ii) Another approach is based on the observation that, the later the time
instance, the smaller the required stack. We attempted a simple solution for
this: the stack size at time ti will be s ·mi, where 0 < m < 1 and s is the size of
the first stack.

iii) Another technique is a well-known modification of stacks. It can easily
happen that there are two or more hypotheses which have the same phoneme-
sequence and the same end times (it may be that some earlier phoneme bound
is at a different time instance). In this case it is sufficient to retain only the most
probable ones.

iv) Yet another approach for improving the method comes from the obser-
vation that we need big stacks only at those segment bounds where they exactly
correspond to phoneme bounds. So if we could estimate at a given time instance
what the probability is of this being a bound, we could then reduce the size
of the hypothesis space we need to scan. We trained an ANN for this task (on
derivative-like features) where its output was treated as a probability p. Then
a statistical investigation was carried out to find a function that approximates
the necessary stack size based on this p. First, we recognized a set of test words
using a standard multi-stack decoding algorithm with a large stack. Then we
examined the path which led to the winning hypothesis, and noted the required
stack size and the segment bound probability p for each phoneme. The result
represented as a stacksize–probability diagram was used to obtain a proper fit-
ting curve estimating the required stack size. It can be readily shown that most
of the higher stack sizes are associated with a high value of p, so the stack size
can indeed be estimated by this probability.
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Fig. 1. Recognition accuracy for the Gα,γ aggregation operator (α ∈ [0.1, 3], λ = 1.0).

4 Experiments and Results

For testing purposes we used a corpus of 500 children uttering 60 words each,
making a total of 30,000 utterances of 2000 different Hungarian words with
a variance related to everyday-use occurrence. Many of the children had just
learned to read, which led to a diverse database. Moreover, many of the words
were similar to each other with a phoneme-difference of just one or two. As a
consequence, the HTK system scored only 84.34%.

Our aim here was to test the above search improvements – applied together
with the g2 aggregation operator – with the alpha and lambda parameters, as
defined in Eq. (6). In a pilot test we found that it was worth testing only the
interval α > 0. We performed these tests using the segment-based approach. The
g1 operator was the output of a 2-layer feed-forward neural network trained on
the standard segment-based features used by the SUMMIT system[4].

We also applied a modified form of g1 and g2: a) g1 can be calculated in
normalized form when it is multiplied by a factor depending on the length of the
segment, b) instead of g2 we may also use j times g2 (see Eq. (6)), where j is
the length of the actual word-prefix (in phonemes). This leads to four possible
types (D with the α = 1 value means conventional addition):

A) g1 not normalized, g2 not multiplied by j
B) g1 not normalized, g2 multiplied by j
C) g1 normalized, g2 not multiplied by j
D) g1 normalized, g2 multiplied by j

In the first test we examined the above aggregation methods with αs ranging
from 0.1 to 3.0 with a 0.1 increments, with different λs from 0.1 to 1.0 (which
means a total of 4× 30× 10 test cases). In Figure 1 the four types can be seen
with λ = 1.0. Figure 1 shows that if we don’t normalize g1, the recognition will
be relatively insensitive to changes in α, but type D achieved the best results.
Surprisingly α = 1.0 usually did not produce the best results; rather the interval
[0.4, 0.7] seems the best for type D, and [0.5, 2.0] for types A and B. The result
was a recognition improvement of almost 7%.
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Viterbi multi-stack iii iii + i iii + i + iii + i +
λ beam search decoding iv iv + ii

A 1.0 41,576.98 23,699.43 14,576.20 13,577.95 11,934.11 11,911.38
B 1.0 37,764.81 12,843.03 10,544.18 8,081.93 7,153.78 7,063.16
D 1.0 67,222.28 25,571.59 14,952.41 14,926.21 11,972.71 11,179.51

A 0.9 68,789.68 22,446.94 14,552.13 14,464.07 11,840.28 11,810.74
B 0.9 41,605.54 12,840.50 10,532.37 8,138.60 7,452.19 7,411.95
D 0.9 62,080.18 19,248.69 14,962.18 13,439.83 11,392.84 10,811.37

A 0.8 84,199.83 22,446.30 17,453.82 17,172.01 15,972.26 15,625.16
B 0.8 48,809.48 16,043.51 11,696.54 9,555.46 8,943.54 8.891.57
D 0.8 62,687.10 22,448.76 17,948.40 15,460.08 14,297.17 14,072.94

A 0.7 141,165.57 38,060.62 31,522.57 31,419.86 30,683.94 30,179.25
B 0.7 56,029.24 16,042.50 11,677.73 9,612.77 9,142.64 9,098.23
D 0.7 62,182.55 22,446.83 17,943.66 16,673.19 15,179.55 15,019.66

Table 1. Average number of phoneme-extensions for different search techniques

In the second test we examined the behavior of search improvements using
different α and λ values. Because an exhaustive examination would have been too
involved, we restricted the λs to 0.7, 0.8, 0.9 and 1.0, and used only the α values
which performed best in the first test. Then, for a fixed α, λ and aggregation type,
the parameters of the search improvements were determined using the sequential
forward selection technique. First we tested all the improvements one by one
with optimal parameters, then we chose the one which produced the biggest
speed-up. Next, we tested the remaining improvements combined with the chosen
improvements, until we had gone through all the possible combinations.

Table 1 only shows the best results for each step. We expected a recogni-
tion accuracy of at least 80%. The speed is measured by average hypothesis-
extensions per word: the smaller the number, the faster the algorithm is. It can
be seen that a significant speed-up was achieved. (Aggregation type C could not
attain the 80% value, so it was omitted from the table.)

5 Conclusion

In speech recognition, as is usual in software applications, the two key aspects
are speed and accuracy. Here we suggested a new set of aggregation opera-
tors that could be used for speeding up some heuristic search methods without
significantly lowering the recognition accuracy. Based on the results above, we
conclude that it is worth using mean aggregation operators in speech recogni-
tion systems. In the next phase we will apply the proposed methodology to a
continuous speech recognition system. This is the subject of future work.

6 Appendix

The multi-stack decoding pseudocode described by Algorithm 1. ”←” means
that a variable is assigned a value; ”⇐” means pushing a hypothesis into a
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stack. Stack[ti] means a stack belonging to the ti time instance. A H(w, T )
hypothesis denotes a phoneme sequence and time-instance sequence pair. Ex-

tending a hypothesis H(w, T ) = H(w, [t0, . . . , tk]) with a phoneme v and a time
ti results in a hypothesis H ′(wv, T ∪ ti) = H ′(wv, [t0, . . . , tk, ti]), where the cost
of the new hypothesis is calculated via the g2 operator, applying the g1 function.
We denote the maximal length of a phoneme by maxlength.

Algorithm 1 Multi-stack decoding algorithm

Stack[t0] ⇐ h0(∅, [t0])
for i = 0 . . . n do

while not empty(Stack[ti]) do

H(w, T )← top(Stack[ti])
if ti = tmax then

return H

end if

for tl = ti+1 · · · ti+maxlength do

for all {v | wv ∈ Pref1+length of w} do

H ′(w′, T ∪ tl)← extend H with v

Stack[tl] ⇐ H ′

end for

end for

end while

end for
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