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Abstract

The currently dominant speech recognition methodology, Hidden Markov

Modeling, treats speech as a stochastic random process with very simple

mathematical properties. The simplistic assumptions of the model, and espe-

cially that of the independence of the observation vectors have been criticized

by many in the literature, and alternative solutions have been proposed. One

such alternative is segmental modeling, and the OASIS recognizer we have

been working on in the recent years belongs to this category. In this paper

we go one step further and suggest that we should consider speech recog-

nition as a knowledge source combination problem. We offer a generalized

algorithmic framework for this approach and show that both hidden Markov

and segmental modeling are a special case of this decoding scheme. In the

second part of the paper we describe the current components of the OASIS

system and evaluate its performance on a very difficult recognition task, the

phonetically balanced sentences of the MTBA Hungarian Telephone Speech

Database. Our results show that OASIS outperforms a traditional HMM sys-

tem in phoneme classification and achieves practically the same recognition

scores at the sentence level.

1 Introduction

Although speech recognition requires the fusion of several information sources, it
is rarely viewed as an expert combination problem. Such approaches were aban-
doned in favor of the Hidden Markov Modeling technique (HMM) [13], which treats
speech as a stochastic process. The source of the success of HMM is that it offers
a sound mathematical framework along with efficient training and evaluation. The
price paid for this, however, is that the simplistic mathematical assumptions of
the model do not accord with the real behavior of speech. One of these assump-
tions is the conditional independence of the spectral vectors. Several alternative
models have been proposed, and one of these is the so-called segmental modeling
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of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary, e-mail: kocsor@inf.u-szeged.hu

‡Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University
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approach [21]. Segmental models treat speech phonemes as one unit – instead of
building them up from frames – and thus alleviate the flaw caused by the inde-
pendence assumption. In recent years our team has been developing a segmental
recognition system called OASIS. Our main observation so far is that, although the
segmental representation indeed results in a somewhat better phoneme classifica-
tion performance, these kind of recognizers also have similar robustness problems
that traditional HMM systems have. A promising way for obtaining robust rec-
ognizers might be to treat speech recognition as a knowledge source combination
problem. In this paper we give a generalized speech decoding algorithm created in
this spirit. Moreover, we show that both HMM systems and segmental models can
be viewed as a special case of this framework. In the second part of the paper we
present the current components of the OASIS system, and then perform recognition
experiments on the MTBA Hungarian Telephone Speech Database. Knowing that
this database contains phonetically balanced sentences recorded from telephone
calls from all parts of the country and from people of varying gender and age, this
will be quite a difficult recognition task. The performance of the OASIS system
will be compared to HTK, known as a sort of standard HMM recognizer in the
speech community.

2 Speech Recognition as a Knowledge Source

Combination Problem

Although speech recognition is obviously a pattern classification task, the most
successful solution, Hidden Markov Modeling, is not a classification algorithm in the
strict sense, but a generative model for stochastic random processes. This is because
speech recognition does not fit the usual pattern classification framework. That is,
most classification algorithms assume that the items to be classified are always
represented by the same number of features. In addition, both the dimension of
the feature space and the number of classes must be reasonably small. In contrast,
speech is a continuous stream of acoustic information. Even if we assume that
the talker must stop sometimes, the possible utterances vary in length and their
number is practically unlimited. A possible solution is to trace the problem back to
the recognition of some properly chosen building blocks. During recognition these
building blocks have to be found, identified, and the information they provide needs
to be combined. This approach turns speech recognition into a task of classifier
combination integrated in a search process.

In the following we present a general speech decoding scheme in the spirit of
classifier combination. Firstly, it makes it possible to experiment with alterna-
tive combination schemes which could not easily be done within the a traditional
HMM framework. Secondly, it provides a more intuitive picture of how the whole
recognition process actually works.

Algorithm 1 shows the pseudocode of our generalized speech decoder. Expressed
simply, the algorithm works in the following way. Let us assume that our building
blocks are denoted by the elements of the symbol set F . Let the speech signal
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Algorithm 1 A Generalized Speech Decoding Algorithm

solutions := ∅
hypothesis cue := h0(t0, ””, 0)
// a hypothesis consists of a time index, a phoneme string, and a score
while there is an extendible hypothesis do

select an extendible hypothesis H(t, F, w) according to some strategy
if t = T then

if only the first solution is required then

return H

else

put H on the list of solutions
end if

end if

for t′ = t + 1, t + 2, · · · do

for all f ∈ F do

wf := g1(f,< t, t′ >) // where g1 estimates the cost of fitting f to < t, t′ >

// based on the relevant ai measurements
w′ := g2(w,wf ) // where g2 is a proper aggregation function
if pruning-criterion(wf , w′) then

construct a new hypothesis H ′(t′, Ff, w′) and put it in the hyp. cue
end if

end for

if stopping-criterion(< t, t′ >) then

break
end if

end for

end while

be given by the series of measurements A = a1, ..., aT . The goal of recognition is
to map the speech signal A into a series of symbols F = f1...fn, where fj ∈ F .
The algorithm works from left to right, and stores its partial results in a priority
cue. Having processed the signal up to a certain point t, the algorithm looks ahead
in time and, from the corresponding measurements, it collects evidence that the
next symbol belongs to the time interval being inspected. As neither the exact
length nor the identity of the next segment is known, we examine every time index
t′ = t + 1, t + 2, ... that might be the end point of the segment. Each element f

of the symbol set is matched to the interval < t, t′ >, and from each (t′, f) pair a
new hypothesis is formed and put in the hypothesis cue. As every hypothesis has
several extensions, this means creating a search tree. By adjusting the hypothesis
selection strategy, the pruning and the stopping criteria one can control how the
search space is traversed and pruned.

When the whole signal has been processed, the best scoring leaf is returned
as the output result. The score of a hypothesis is calculated in two steps. First,
there is a function (g1) to combine the evidence for each symbol that was collected
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from the local information sources. Second, this local evidence is combined (via g2)
with the prefix of the hypothesis to obtain a global score. Thus, in effect, classifier
combination occurs at two levels.

Obviously, we can have quite different decoders, depending on how the measure-
ments ai, the symbol set F and the functions g1 and g2 are chosen. Researchers
agree only in that g1 and g2 should work on probabilistic grounds. In this case
Bayes’ decision theorem guarantees optimal performance, and statistical pattern
recognition provides methods for approximating the probabilities from training
corpora.

As regards the selection of the building units, the most reasonable choice is the
phoneme since phonemes are the smallest information carrying units of speech (in
the sense that the insertion/deletion/substitution of a phoneme can turn a word
into another one). Furthermore, in many languages there is an almost one-to-one
correspondence between phonemes and letters, so working with phonemes is an
obvious choice when converting sound to written text. Nevertheless, smaller or
larger units could be used as well. For example, there are arguments that syllables
give a more suitable representation of (the English) language. Going the other way,
current recognizers mostly decompose phonemes into three articulation phases [13].

The acoustic information sources ai display the greatest variation from system
to system. Traditionally the acoustic signal A is processed in small uniform-sized
(20-50 ms) chunks called ”frames”, and the spectral representation of these serves
as direct input for the model. It has been observed, however, that better results
are obtained if this representation is augmented with features of longer time-spans
so the feature vectors in current systems are a combination of the local and the
neighboring 5-50 frames [13].

3 A Special Case: Hidden Markov Models

In spite of its unusual appearance, Algorithm 1 is not so different from the stan-
dard technologies. In particular, its components can be chosen so that it becomes
mathematically equivalent to the left-to-right Hidden Markov Models preferred in
large-vocabulary speech recognition. In this setup the set of states of the Markov
model will play the role of the symbol set in our algorithm. Although the states
might simply represent the phonemes of the language, better results are normally
obtained if the phonemes are decomposed into three states – one corresponding
to the middle steady-state part, and two others describing the transitional phase
before and after.

Instead of modeling the class posteriors P (F |A) directly, in speech recognition
the product P (A|F )P (F ) is normally modelled instead, which leads to the same
result but allows one to separate the priors P (F ). Building words from states
and assessing their prior probability is the problem of language modeling. Here
we assume that P (F ) is readily given, and deal only with the acoustic component
P (A|F ). This factor will be estimated by HMM in the way described below1.

1Note that we slightly deviate from the standard decomposition into language and acoustic
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During processing the HMM goes through a sequence of state transitions. This
determines a segmentation based on how long the model stayed in a given state.
The probability associated with a given segment sequence is calculated as follows.
The probability corresponding to a given segment Si =< t, t′ > and state f is
calculated as

P (< t, t′ > |f) = l
(t′−t)
f ·

t′∏

i=t

P (ai|f), (1)

where lf is a constant between 0 and 1.
The probability corresponding to the whole segment sequence is obtained by

multiplying the segmental probabilities:

P (A,S|F ) =

n∏

i=1

P (Si|fi). (2)

In terms of our model, Eq. (1) corresponds to g1 while Eq. (2) corresponds to g2.
This means that g2 is simply a multiplication, while g1 consists of two factors. The

term l
(t′−t)
f is an exponentially decaying duration model. The product

∏t′

i=t P (ai|f)
is a spectral factor that renders a state-conditional likelihood for each measurement
of the segment, and then combines these by multiplication – that is, by applying
the naive Bayes assumption.

4 An Alternative Technology: Segmental Models

The contradiction between the model that assumes independence and the feature
extraction method that makes it patently false has been understood and criticized
by many authors [12][21]. Several cures were suggested, some of them only patching
the original HMM algorithm, while some totally abandoning it. The family of seg-
mental models [21] recommends modeling phonemes ‘in one’, instead of estimating
their probabilities by multiplying the frame-based scores. In our framework this
means that g1 (see Eq. (1)) is replaced by some more sophisticated approximation2.
There are several possibilities to parametrize phonetic segments as one unit. The
most popular approach is to create special models that fit parametric curves on
the feature trajectories [6][8][11][21]. However, it is also an option to convert the
variable-length segmental data into a fixed number of segmental features. What
makes this latter method tempting is that this way all the standard classification
algorithms become applicable to the phoneme classification task. Thus, while the
segmental trajectory models are usually built on Gaussian curves, representation
by segmental features allows the use of almost any machine learning algorithm.

models as, in our notation, the state transitions between the states of a multi-state acoustic model
are also included in the language factor, while only the self-transitions of a state are included in
the acoustic model.

2In contrast to g1, combination by multiplication at the g2 level seems quite reasonable because
the presence of all phonemes is required for the identity of a word. This makes an AND-like
combination logical.
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This is why we prefer this approach. In our studies we have reported experiments
with a broad range of classifier methods, some of them being very new and not
really known by the speech community [17]. Moreover, these classifiers allow the
application of such linear and non-linear feature space transformation methods that
are currently in the focus of machine learning research. We have published several
papers that apply these groundbreaking techniques to phoneme classification [18].
The basic acoustic feature set we invented to represent phonetic segments is very
similar to those used in the MIT SUMMIT system [7], but we have added several
further features [17]. We have seen similar solutions from other authors, too [3].

A drawback of segmental systems is that the models trained to classify phonetic
segments are not necessarily able to handle non-phonetic intervals which is required
to find the proper segmentation of a signal. This problem was realized relatively
lately [27]. One possible solution is to combine the segmental scores with a frame-
based one that assesses the probability belonging to the given segmentation [27].
Another approach is to create artificial “anti-phone” examples and train a classifier
to recognize these. We apply discriminative models (neural nets) for this goal,
and presented the mathematical formulation of their application in [22]. Later we
realized that our solution is similar to that employed in the SUMMIT system [7],
but it is build on generative models (Gaussian mixtures) that requires a different
formulation. Recently we have proposed another possible solution for the modeling
of anti-phone segments by means of replicator neural nets [23].

5 Components of the OASIS Recognition System

The general decoding algorithm of Section 2 forms the core of the OASIS recogni-
tion system developed at our institute. That is, the decoding scheme of Algorithm
1 is performed by the ‘Matching Engine’ component of the system. In the following
subsections we will describe in detail what the specific knowledge source compo-
nents of the system are, how they work, and how they get integrated. As we shall
see, the recognition methodology fits the general framework described above, and
more actually belongs to the class of segmental models.

5.1 The Phoneme Classifier

The task of the phoneme classifier component is to map a probability to a given
(< t, t′ >, f) segment-phoneme pair, that is to implement function g1 of the general
decoding scheme. For this we represent each (variable-length) segment by a fixed
number of segmental features (for a description of the features see Section 6.2).
These segmental features can theoretically be classified by any standard classifica-
tion method that is able to produce a probabilistic output. Currently the system
uses Artificial Neural Nets, but in earlier papers we described our investigations
with many other classifiers as well [17]. Moreover, this component has the option
of applying feature transformation algorithms prior to classification. We also wrote
several reports on this [18]. In general we find that this modeling scheme results in
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a 10-30% reduction in the phoneme classification error compared to HMM. This is
in accordance with the findings of other authors (see [3] and [11], for example).

5.2 The Anti-Phone Component

During recognition the algorithm will encounter such < t, t′ > segments that do not
correspond to real phonemes. This may cause two big problems. First, the phoneme
classifier might not automatically be able to report these segments. This is the
case with our neural network classifier that returns phoneme posteriors and has no
output for ‘outlier’ segments. The second problem is that a manually segmented
training corpus contains only examples of real phonemic segments, so these ‘anti-
phone’ segments cannot automatically be trained. One possible solution is to extend
the phoneme classifier with an anti-phone class and artificially generate training
examples for it [7]. Another option is to assess the probability of a segmentation
from frame-based scores [27]. Our system applies the first approach, and the anti-
phone probability of a segment is calculated by a complex method, as reported in
[22].

5.3 The Language Model

The previous two knowledge sources were acoustic in type. But, of course, in
most recognition tasks we have a very serious linguistic restriction on the possible
phoneme sequences. The role of the language model is to provide the decoder with
the possible phoneme sequences, along with their corresponding probabilities.

When designing the language model component of the OASIS system we initially
followed the language description techniques of other recognizers. To be precise, we
took the Microsoft Speech API as a starting point. It provides an XML description
scheme for the definition of context-free grammars, the words themselves being
the terminals of the language. However, in Hungarian listing all the agglutinated
forms of a word stem is intractable. As luck would have it, Hungarian morphology
can be well modeled by finite state systems. We observed that the agglutinated
forms of a stem can be stored in a much smaller space with transducers than with
a traditional compression algorithm. This led us to extend the SAPI description
so that transducers could be embedded in the place of terminals. This results
in a context-free grammar with its terminals being the words recognized by the
transducer. Further compression can be achieved by applying special automaton
compression algorithms which create the smallest possible transducer that models
the same language [15]. Additional savings in storage are possible by storing the
resulting transducer with a special data structure [16].

The SAPI handles probabilities by allowing the user to associate weights with
the right hand side alternatives of a rule. The transducers embedded in our ex-
tended scheme also allow the weighting of the transitions. So, by combining the
two levels, the system is able to associate a probability with any phoneme sequence.

The interface of the language model is adjusted to suit the requirements of
the decoding algorithm. During the extension of a hypothesis the algorithm asks
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for the possible extensions of a phoneme sequence, so the task of the language
model is to return all the possible subsequent phonemes of a prefix. Based on
this, the interface of the language model consists of two functions, together making
it possible to iteratively traverse all the phoneme sequences of the model. These
functions are:

Enter: Returns the first possible extension of a prefix, along with its proba-
bility (or returns a null pointer if there is no extension).

Next: Return the next possible extension of the same prefix, along with its
probability (or returns a null pointer if there are no more extensions).

As regards the technical details, the implementation of the storage and traversal
of the transducers was relatively easy to do. Managing the context-free grammar,
however, required the implementation of a stack automaton. We also had to store
the actual values of the stack, which led to further technical complications.

5.4 The Combining of the Knowledge Sources

The decoding scheme of algorithm 1 is quite general and thus can be easily extended
for the combining of more knowledge sources. An important practical issue is that
the more sources we combine the more complex the problem of finding the optimal
combination becomes. Fortunately, the problem of knowledge source combination
has recently become an active research area. In addition, optimization techniques
that support discriminative modelling are getting evermore popular in speech recog-
nition [24]. One such possibility is the Discriminative Model Combination scheme
of Beyerlein [1], which optimizes a combination scheme of the form:

P (F |A,L1, ..., Lr) ≈ max
S

∏

i

P (fi|A,S)α0P (fi|L1)
α1 · · ·P (fi|Lr)

αr , (3)

where we have r knowledge sources L1, ..., Lr voting on the symbols fi in the form
of posterior probabilities. Combining is then performed by raising the values to a
power and multiplying them.

The OASIS system uses Eq. (3) for the combination of the three components.
The optimal exponents of Eq. (3) are found by a global optimization algorithm
called SNOBFIT [14]. To make the recognition process more efficient we apply
multi-stack decoding with several search tree pruning heuristics [9].

6 Experimental Results on the MTBA Database

The goal of this section is to demonstrate the effectiveness of the OASIS system on a
real recognition task. For this we chose the phonetically rich sentences of the MTBA
Hungarian Telephone Speech Database, because it presents a very general and
challenging problem for the acoustic component of any recognizer. Furthermore,
this is currently the largest available speech corpus for Hungarian, and very few
results have been reported on it so far. Unfortunately, this recognition task is
too general in the sense that there was no way of applying any complex language
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model. Hence, the tests reported leave the language model component of the system
practically unexploited, and assess the performance of the acoustic components
only.

6.1 The Corpus

The MTBA Hungarian Telephone Speech Database is the result of an IKTA project
carried out in 2001-2003 by the Department of Informatics, University of Szeged,
and the Department of Telecommunications and Media Informatics, Technical Uni-
versity of Budapest [28]. Besides other recordings, the database contains 6000 man-
ually labeled and segmented sentences. This part of the corpus was designed so
that the phonetic transcript of the sentences contains all possible phoneme pairs
that occur in Hungarian. Moreover, the phone callers were organized so that the
recordings covered the whole of the country, and the callers were distributed in age
and gender. These factors altogether present a very difficult and general recognition
task.

For the experiments we first selected those sentences from the database that con-
tained no significant noise and/or half-cut phonemes (denoted by [spk] and [cut]
symbols in the phonetic transcript). From the remaining sentences 1367/687 ran-
domly chosen ones were used for training and testing, respectively. These contained
68333/34532 phoneme instances.

6.2 Acoustic Features and Phoneme Classification Scores

For the classification of segments the system applies a 3-layer feed-forward neural
net with 200 hidden neurons and a softmax output layer. The net is trained with
the minimum cross-entropy training criterion, and training is stopped according to
a cross-validation criterion [2]. To find a proper segmental feature set we started
from a rather simple representation and gradually extended it with further features.
The findings were as follows.

Baseline features. As a traditional frame-based representation, energies in
18 Bark-bands were calculated (via FFT, with triangular weighting and cube root
compression) at a frame rate of 333 frames/sec3. As the neural net used for segmen-
tal classification requires a fixed number of inputs, a conversion is necessary into a
fixed-dimensional segmental feature set. At this stage we followed the very simple
idea of the SUMMIT system [7]: the band energies were averaged over phoneme
thirds, which means a kind of non-uniform smoothing. We may say that the inputs
to the neural net are really just average energies in cells that tile the time-frequency
space in a special manner.

The Importance of Phoneme Duration. In Hungarian most phonemes
have a ‘short’ and a ‘long’ counterpart, thus duration seems to be a vital piece
of information. To model the duration we extended the baseline feature set with

3This is about three times more than the usual 100 frames/sec. We used this increased value
because in many experiments we found that it resulted in a slightly better classification perfor-
mance.
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a further feature containing the length of the segment. This way the neural net
had the opportunity to form any kind of durational description, according to the
data. The introduction of the duration feature resulted in a significant error rate
reduction, as shown in the table below.

Classification error rate
Baseline features Baseline plus duration

47.72% 42.15%

Channel Normalization and Gain Control. The variance in the transfer
characteristics of telephone lines is known to have a detrimental effect on speech
recognition. A somewhat similar issue is the varying amplitude of the signal. Many
normalization techniques have been suggested to counter these effects. Some of
them are off-line, which means that they work after the whole signal has been
recorded (and, consequently, are not suitable for real-time recognition). The on-
line algorithms base their processing on the last couple of (centi)seconds. The
methods studied do this by means of a 1-pole lowpass filter with time-constant τ .

As the results in the table below show, off-line methods performed slightly better
than on-line ones. Out of the on-line methods the non-linear AGC was the best,
with a time-constant of 1 second.

Off-line methods CER%
Mean and dev. normalization (full spectrum) 40.27%
Mean and dev. normalization (per channel) 37.75%

On-line methods

RASTA filtering 43.86%
Mean and dev. norm. (per channel, τ = 250ms) 41.12%
Mean and dev. norm. (per channel, τ = 1sec) 40.36%
Nonlinear AGC (per channel, τ = 250ms) 39.64%
Nonlinear AGC (per channel, τ = 1sec) 38.49%

Adding Observation Context. In fluent (and fast) speech phones may be-
come so short that they cannot be recognized without their observation context.
Auditory research suggests that approximately a 220-250 ms interval contains in-
formation about the identity of a phone, but some researchers use observation
windows as large as one second [10]. We tried three different settings of the obser-
vation length, defined as the phoneme length plus the context length. This means
the a variable-sized observation context was considered, depending on the segment
size. The context was represented by its average energy values in each Bark-band,
thus resulting in two additional feature ‘columns’ on both sides of the phonemes.
As the table shows below, the shortest observation length (150ms) performed best,
but this might be due to the large variance of the context over the training set.

Classification error rate
Normalization τ = 150msec τ = 250msec τ = 1sec
Off-line mean and dev. norm. 33.18% 34.49% 36.12%
Nonlinear AGC (1sec) 33.51% 34.85% 36.25%
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Adding Onset and Offset Detectors. Human hearing has cells tuned to
detect signal onsets and offsets. These onset and offset detectors may play an
important role in the segmentation of a sound stream, especially in finding the
boundaries of (certain) phonetic segments. So we implemented an algorithm to
simulate these detectors, based on the directions described in [4]. Our detectors
calculate the derivatives of the Bark-band energy trajectories and sum them over
3 (6-Bark wide) channels. These curves were evaluated at the phone start and end
points and their values were added to the feature set as further features.

We sought to combine these features only with the best feature set found so far.
The result shown below indicates that these new features brought only a marginal
improvement in the classification scores. We should mention, however, that they
proved very important in the phone/antiphone component of the recognition sys-
tem.

CER with onset/offset feat. (off-line norm., 150ms obs.cont.) 32.17%

6.3 Modeling Anti-Phones

For separating real phonemic segments from the anti-phones, a two-class neural
network was used. The segmental feature set was similar to that of the phoneme
classifier, but instead of the means of the band energy averages, in this case the
variances were used. This was a new idea and brought a slight improvement over
our previous setup that utilized the same feature set in both the phoneme classifier
and the anti-phone model. In all other respects the generation of the anti-phone
training examples and their utilization in the decoding process followed the scheme
that we presented in [22]. Hence we will refrain from repeating the mathematical
formulation here.

Although the anti-phone model could be evaluated in isolation if we generated
test examples similar to the generation of the training data, its effect can only really
be assessed by its influence on the decoding process. Our results for this will be
given in the next subsection.

6.4 Language Model

As the vocabulary of the sentences in the corpus is not restricted in any sense, there
was no option of applying any sophisticated (word or morpheme-based) language
model. The only thing we could do was to work with a statistical model, e.g.
phoneme N-grams. From these we chose the simplest possible one, that is every
phoneme was allowed at every position and with the same probability.

6.5 Phoneme Recognition Results

The evaluation of the recognition results is performed by comparing the manual
phonetic transcription of a sentence to the transcription generated by the rec-
ognizer. Clearly, the recognizer output may contain substitution, insertion and
deletion errors as well. To count these the two strings are matched by calculating
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their edit distance with weights (4,3,3) for substitutions, insertions and deletions,
respectively. These weights were proposed by the HTK toolkit [29]. The scores
reported below were calculated using the formula

Correct =
N − S − D

N
, (4)

where N is the number of all phoneme instances and S and D are the number
of substitutions and deletions, respectively. Obviously the recognizer can increase
this value by producing many insertion errors as the number of insertions is not
accounted for in the formula. To prevent this, the number of insertions was forced
to stay around 10-12% by suitably punishing phone transitions in the aggregation
formula. This value was suggested by [20].

The table below lists the recognition scores obtained with and without applying
the anti-phone model. The figures clearly show the importance of the anti-phone
component. Whether these scores are good or not is difficult to judge per se, so in
the following section we will furnish some possible bases of comparison.

Sentence-Level Recognition Scores
Without anti-phones With anti-phones

53.44% 61.34%

7 Related Work

To our knowledge, apart from us only three teams have used the MTBA corpus
so far. Unfortunately, the TSP Lab of the Technical University of Budapest and
Hexium Ltd. have performed only isolated word or connected word recognition
tests over a restricted vocabulary [5][25]. Although the LSA Lab of the Technical
University of Budapest has experimented with a task similar to our setup, in their
tests both the train/test division of the data and the phonetic label set were slightly
different. Hence, the phoneme recognition score of 55-60% they reported [26] allows
only a gross comparison.

To obtain a more precise base for comparison we trained the HTK Toolkit [29],
which is a freely available HMM-based recognizer, and is very frequently used to
obtain a baseline result when evaluating new technologies. The HTK recognizer was
trained with 3-state monophone phoneme models, all having 15 diagonal Gaussian
components (this was reported to be about optimal in [5]). Naturally the same
train/test setup and phonetic labeling was used as with the OASIS system, and
the language model was also set up in a similar way. For signal processing we
applied the standard 39-component MFCC vector proposed by the HTK manual.
With these settings HTK recognized 61.60% of the phonemes correctly, with an
insertion error rate very close to the one obtained with the OASIS system. This
means that our system is capable of practically the same recognition performance
as other common recognizers.

Unfortunately, HTK cannot measure phoneme classification directly, so we could
not obtain comparative scores to assess the performance of the phoneme classifier
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module in isolation. However, in an earlier paper we had the option of comparing
the phoneme classifier of our system to an HMM-based recognizer for a number
recognition task [17]. Moreover, in another paper we tested our phoneme classifier
on the TIMIT corpus, for which several classification results are available in the
literature [19]. In both cases we found that our segmental representation (along
with an ANN or SVM classifier and suitably chosen transformation methods) yields
slightly better results than the conventional HMM technology.

8 Discussion and Conclusions

The basic motivation for segmental speech modeling is to replace the simple and
incorrect independence assumption of HMM’s with a more sophisticated combina-
tion scheme. The phoneme classification results indeed show that HMM can be
outperformed by even a very simple segmental representation. When it comes to
recognition, however, one finds that segmental models need an additional compo-
nent to handle outlier segments. In our system this problem is handled by the
anti-phone models. Our recognition results show that this component can bring up
the performance of the system to the level of a traditional HMM recognizer. How-
ever, it appears that the gain of better phoneme classification is still lost during
decoding, so further developments are required to outperform the current technol-
ogy. To improve the recognition scores we experiment with alternative anti-phone
modeling techniques [23]. Besides this, the addition of further knowledge sources
along with the automatic tuning of the parameters in Eq. (3) seems a promising
direction. Decomposing the phoneme classifier into many localized experts may
improve both performance and robustness, and is a very real trend in speech recog-
nition. Our generalized decoding algorithm provides a good framework for these
topics of study, so we plan to investigate them in the near future.
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