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Kernel-Based Feature Extraction with a Speech
Technology Application

András Kocsor and Ĺaszĺo Tóth

Abstract— Kernel-based nonlinear feature extraction and clas-
sification algorithms are a popular new research direction in
machine learning. This paper examines their applicability to the
classification of phonemes in a phonological awareness drilling
software package. We first give a concise overview of the
nonlinear feature extraction methods such as kernel principal
component analysis (KPCA), kernel independent component
analysis (KICA), kernel linear discriminant analysis (KLDA)
and kernel springy discriminant analysis (KSDA). The overview
deals with all the methods in a unified framework, regardless
of whether they are unsupervised or supervised. The effect of
the transformations on a subsequent classification is tested in
combination with learning algorithms such as Gaussian mixture
modeling (GMM), artificial neural nets (ANN), projection pursuit
learning (PPL), decision tree-based classification (C4.5) and
support vector machines (SVM). We found in most cases that
the transformations have a beneficial effect on the classification
performance. Furthermore, the nonlinear supervised algorithms
yielded the best results.

Index Terms— kernel feature spaces, kernel-based feature ex-
traction, principal component analysis, independent component
analysis, discriminant analysis, kernel-based methods

I. I NTRODUCTION

A UTOMATIC speech recognition is dealt with by quite
traditional statistical modelling techniques such as Gaus-

sian mixture modelling or artificial neural nets. In the last
couple of years, however, the theory of machine learning has
developed a wide variety of novel learning and classification
algorithms. In particular, the so-called kernel-based methods
have recently become a flourishing new research direction.
Kernel-based classification and regression techniques, includ-
ing the well-known Support Vector Machines (SVM) found
their way into speech recognition relatively slowly. This is
probably because their application to such large-scale tasks
as speech recognition required addressing both theoretical and
practical problems. Recently, however, more and more authors
are turning their attention to the application of SVM in speech
recognition (see, e.g. [10], [17], [46], [50]).

Besides using kernel-based classifiers, an alternative option
is to use kernel-based technologies only to transform the
feature space, and leave the job of classification to more
traditional methods [39]. The goal of this paper is to study the
applicability of some of these methods to phoneme classifica-
tion, making use of kernel-based feature extraction methods
applied prior to learning in order to improve classification
rates. In essence, this article deals with kernel principalcom-
ponent analysis (KPCA) [47], kernel independent component
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analysis (KICA) [35], [3], kernel linear discriminant analysis
(KLDA) [40], [5], [34] and kernel springy discriminant analy-
sis (KSDA) [36] techniques. Their effect on classification per-
formance is then tested in combination with classifiers suchas
Gaussian mixture modeling (GMM), artificial neural networks
(ANN), projection pursuit learning (PPL) decision tree-based
classification (C4.5) and support vector machines (SVM). The
algorithms are applied to two recognition tasks. One of them
is real-time phoneme recognition which, when combined with
a real-time visualization of the results, forms the basis of
the “SpeechMaster” phonological awareness drilling software
developed by our team. The other test set was the well-known
TIMIT phone classification task.

The structure of the paper is as follows. First, we pro-
vide a concise overview of the nonlinear feature extraction
methods. The overview is written so that it deals with all the
methods in a unified framework, regardless of whether they
are unsupervised or supervised. Furthermore, the traditional
linear counterparts of the methods can be obtained as special
cases of our approach. Afterwards, we present the goals of the
“SpeechMaster” software along with the phoneme classifica-
tion problem that arises. Besides the special vowel recognition
task the “SpeechMaster” software is built on we also present
test results on the TIMIT database. In both cases, we first
briefly describe the acoustic features that were applied in the
experiments and also list the learning methods used. Then,
in the final part of the paper we present the results of the
experiments and discuss them from several aspects, focusing
on the advantages and drawbacks of each nonlinear feature
extraction method.

II. K ERNEL-BASED FEATURE EXTRACTION

Classification algorithms require that the objects to be
classified are represented as points in a multidimensional
feature space. However, before executing a learning algorithm,
additional vector space transformations may be applied on the
initial features. The reason for doing this is twofold. Firstly
they can improve classification performance and, secondly,
they can reduce the dimensionality of the data. In the liter-
ature sometimes both the choice of the initial features and
their transformation are dealt with under the name “feature
extraction”. To avoid any misunderstanding, in this section it
will cover only the latter, that is the transformation of the
initial feature set into another one, which is hoped will yield
a more efficient or, at least, faster classification.

The approach of feature extraction could be either linear
or nonlinear, but there is a technique (which is most topical
nowadays) that is, in some sense, breaking down the barrier
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Fig. 1. The ”kernel-idea”. The dot product in the kernel feature spaceF is
defined implicitly.

between the two types. The key idea behind the kernel tech-
nique was originally presented in [1] and was again applied in
connection with the general purpose Support Vector Machine
[8], [11], [49], [52], [53], which was later followed by other
kernel-based methods [3], [5], [34], [35], [36], [40], [45], [47],
[48]. In the following we summarize four nonlinear feature
extraction methods that may be derived using the kernel-based
nonlinearizations of the linear algorithms PCA, ICA, LDA
and SDA. We do not present the linear techniques separately
because the non-linear descriptions will be formalized in such
a way that, with a proper parametrization, they lead back
to the traditional linear methods. All methods will be dealt
with in a unified, concise form. We also represent the effects
of these transformations on artificial data sets via figures.In
addition, we always give references to sources where a detailed
description on the feature extraction technique in question can
be found. Our main aim is to help the reader gain a unified
view of the methods and get some ideas about their usage.
First, we provide a set of definitions. Then we discuss the
kernel idea, followed by an explanation of each method one
after the other. The section rounds off with some remarks about
how the number of required calculations can be reduced by
decimating the sample set.

A. Introduction

Without loss of generality we shall assume that as a
realization of multivariate random variables, there aren-
dimensional real attribute vectors in a compact setX over
R

n describing objects in a certain domain, and that we have
a finite n × k sample matrixX = [x1, . . . ,xk] containingk
random observations. Let us assume as well that we haver
classes and an indicator function

L : {1, . . . , k} → {1, . . . , r}, (1)

where L(i) gives the class label of the samplexi. Let kj

further denote the number of vectors associated with labelj
in the sample data1.

Now we continue with the definition of the kernel-based
feature extraction and then outline the kernel idea.

1The two types of feature extraction methods (supervised or unsupervised)
can be distinguished by whether they utilize an indicator function or not during
the computation of the transformation parameters.

The goal of feature extraction is to find a mappingh :
X → Y which leads to a new set of features that are
optimal according to a given criterion. In the case of kernel-
based feature extraction the mapping is nonlinear and has the
following form:

z → Aκ(X, z), z ∈ X (2)

where A is a constant, realm × k matrix, the function
κ : X × X → R is continuous, symmetric and positive
definite (which is called a Mercer kernel),X is the sample
matrix and κ(X, z) is a short-hand notation for the vector
[κ(x1, z), . . . , κ(xk, z)]⊤. As can be seen in Eq. (2), linear
combinations of the base functionsκ(x1, z), . . . , κ(xk, z) give
the components of the new feature vectorh(z). The criterion
(and hence the calculation that leads to matrixA in Eq. (2)) is
different for each method and the result depends on the data
setX.

Based on Mercer’s theorem [53], ifκ is a Mercer kernel
then a dot product spaceF necessarily exists with a mapping
φ : X → F (see Fig. 1) such that

∀x, z ∈ X κ(x, z) = φ(x) · φ(z). (3)

UsuallyF is called the kernel feature space andφ is the feature
map. At this point we have two immediate consequences.
When φ is the identity, the functionκ(x, z) = x · z (the
simple dot product over the spaceX ) is symmetric, continuous
and positive definite, so it constitutes a proper Mercer kernel.
Going the other way, when applying a general Mercer kernel
we can assume a spaceF over which we perform dot product
calculations. This space and dot product calculations over
it are defined only implicitly via the kernel function itself.
The spaceF and mapφ may not be explicitly known. We
need only define the kernel function, which then ensures an
implicit evaluation. The construction of Mercer kernels, when
such a mappingφ exists, is a non-trivial problem, but there
are some possible candidates available (cf. [13], [18], [32]).
From the functions available, the three most popular are the
polynomial kernelκ1, the Gaussian RBF kernelκ2 and the
rational quadratic kernelκ3:

κ1(x, z) = (x · z + 1)
d
, d ∈ N,

κ2(x, z) = exp
(

−||x − z||2/γ
)

, γ ∈ R+,
κ3(x, z) = 1 − ||x − z||2/(||x − z||2 + 1), σ ∈ R+.

(4)
Let us suppose that we have chosen a specific kernel

function along with a proper feature mapφ and a kernel feature
spaceF . Then the nonlinear mapping of Eq. (2) can be written
as:

Aκ(X, z) =







a11κ(x1, z) + · · · + a1kκ(xk, z)
...

am1κ(x1, z) + · · · + amkκ(xk, z)







=







a11φ(x1)
⊤ + · · · + a1kφ(xk)⊤

...
am1φ(x1)

⊤ + · · · + amkφ(xk)⊤






φ(z).

In the following we will denote the latter matrix byV .
Notice here thatV is constant, and its rows contain linear
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combinations of the image of the data vectors inF . This means
that the transformation is linear in the kernel feature space.
But because the feature map itself is nonlinear we obtain a
nonlinear transformation of the sample points of the initial
feature spaceX .

All the algorithms that we are going to present in the
following are linear mappings in the kernel feature space,
the row vectors of matrixV being obtained by optimizing
a different objective functionτ(v), say. What is common in
each case is that we will look forv directions with large
values ofτ . Intuitively, if larger values ofτ indicate better
directions and the row vectors ofV need to be independent
in certain ways, choosing stationary points that have them
largest function values is a reasonable strategy. Obtaining the
above stationary points of a general objective function is a
difficult global optimization problem. But ifτ is defined by a
Rayleigh quotient formulae:

τ(v) =
v⊤B1v

v⊤B2v
, (5)

the solution is easy and fast when formulated as a generalized
eigenvalue problem (B1v = λB2v). Actually, this approach
offers a unified view of the feature extraction methods dis-
cussed in this paper.

B. Kernel Principal Component Analysis

Principal component analysis [29] is a ubiquitous unsuper-
vised technique for data analysis and dimension reduction.
To explain how its nonlinear version works [47]2, let us first
choose a kernel functionκ for which

κ(x, z) = φ(x) · φ(z), x, z ∈ X ,

holds for a mappingφ : X → F . It is well-known that PCA
looks for those directions ofX in which the variance of the
data is large. We will do exactly the same, but in the kernel
feature spaceF . For this we define the objective functionτ
as

τ(v) =
v⊤Cv

v⊤v
, v ∈ F \ {0}, (6)

whereC is the covariance matrix of the image of the sample
φ(x1), . . . , φ(xk):

C = E{(φ(x) − E{φ(x)}) (φ(x) − E{φ(x)})
⊤
}. (7)

Now we define the Kernel-PCA transformation based on the
stationary points of Eq. (6), which are given as the eigenvectors
of the symmetric positive semidefinite matrixC. However,
since this matrix is of the form

C =

k
∑

i,j

cijφ(xi)φ(xj)
⊤, (8)

we can suppose the following equation holds during the
analysis of the stationary points:

v =

k
∑

i=1

αiφ(xi). (9)

2The derivation presented here differs slightly from the oneoriginally
proposed by Scḧolkopf. But the result of the derivation is equivalent to the
original.

We can arrive at this assumption in many ways, e.g. we
can decompose an arbitrary vectorv into vectors v1 +
v2, where v1 gives that component ofv which falls in
span(φ(x1), . . . , φ(xk)), while v2 gives the component per-
pendicular to it. SinceCv = C(v1 + v2) = Cv1 and for the
stationary points the eigenvalue-eigenvector equalityCv = λv

is satisfied, we find that the condition defined in Eq. (9) (i.e.
v⊤

2 v2 = 0) does not restrict generality.
Based on the above assumption the variational parameters

of τ can be the vectorα instead ofv:

τ(α) =

(

∑k
i=1 αiφ(xi)

⊤

)

C
(

∑k
j=1 αjφ(xj)

)

(

∑k
i=1 αiφ(xi)⊤

) (

∑k
j=1 αjφ(xj)

) . (10)

It is easy to see that

τ(α) =
α

⊤ 1
kK(I − 1̄)Kα

α⊤Kα
, (11)

where[K]ij = φ(xi) · φ(xj) = κ(xi,xj) is a Gram matrix,I
is the unit matrix and[1̄]ij = 1/k.

After differentiating (11) with respect toα we find that
the stationary points are the solution vectors of the general
eigenvalue problem

1

k
K(I − 1̄)Kα = λKα, (12)

which is equivalent to the problem

1

k
(I − 1̄)Kα = λα. (13)

Although the matrix(I−1̄)K is not symmetric, its eigenvalues
are real and non-negative, and those eigenvectors that have
positive eigenvalues are orthogonal. In fact the best approach
is to solve the following symmetric eigenproblem, where the
positive eigenvalues and the corresponding eigenvectors are
the same as those obtained from Eq. (13)

1

k
(I − 1̄)K(I − 1̄)α = λα. (14)

Now let them positive dominant eigenvalues of1
k (I−1̄)K(I−

1̄) be denoted byλ1 ≥ . . . ≥ λm and the corresponding
eigenvectors beα1, . . . ,αm. Then the matrixA of the trans-
formation we need (cf. Eq. (2)) can be calculated like so:

A = [α1, . . . ,αm]⊤. (15)

The effect of KPCA is demonstrated in Fig. 2. The data set
of Fig. (A) was transformed using linear PCA, that is KPCA
was performed using the kernelκ(x, z) = x⊤z. The result is
shown in Fig. (B). Evidently, the algorithm found the direction
with the largest variance and chose it as thex-axis of the
transformed data. This effect is also justified by the shape
of distribution curves shown below the images. In a second
experiment the data set of Fig. (D) was transformed, but in
this case using the rational quadratic kernel, which leads to
a nonlinear transformation. The result is shown in Fig. (E).
Examining the distribution of the points along thex-axis, one
can see that the variance of the data has significantly increased
owing to the nonlinearity of the method employed.
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Fig. 2. This illustrates the typical behavior of KPCA and KICA. Figures (A) and (D) show some artificial data sets before thetransformation. Figures (B)
and (E) show the resulting distribution after linear and nonlinear KPCA, respectively. Figs. (C) and (F) depict the results of a linear and nonlinear KICA. The
distribution of the data points along thex-axis is shown below each figure.

C. Kernel Independent Component Analysis

Independent Component Analysis [12], [15], [26], [27], [28]
is a general-purpose statistical method that originally arose
from the study of blind source separation (BSS). Another
application of ICA is unsupervised feature extraction, where
the aim is to linearly transform the input data into uncorrelated
components, along which the distribution of the sample set
is the least Gaussian. The reason for this is that along these
directions the data is supposedly easier to classify. This is
in concordance with the most common speech modeling
technique, that is fitting mixtures of Gaussians on each class.
Obviously, this assumes that the class distributions can be
well approximated by Gaussian mixtures. ICA extends this
by assuming that the distribution when all classes are fused,
on the contrary, is not Gaussian, so, using non-Gaussianityas
a heuristic for unsupervised feature extraction will prefer those
directions that separate the classes.

For optimal selection of the independent directions several
objective functions were defined using approximately equiv-
alent approaches. The goal of the ICA algorithm itself is
to find the optimum of these objective functions. There are
many iterative methods for performing Independent Compo-
nent Analysis. Some of these do require preprocessing, i.e.
centering and whitening, while others do not. In general,
experience shows that all these algorithms should converge
faster on centered and whitened data, even with those which
do not really require it.

Let us first examine how the centering and whitening
preprocessing steps can be performed in the kernel feature

space. To this end, let the inner product be implicitly defined
by the kernel functionκ in F with associated transformationφ.

Centering inF . We shift the dataφ(x1), . . . , φ(xk) with
its meanE{φ(x)}, to obtain data

φ′(x1) = φ(x1) − E{φ(x)}
...

φ′(xk) = φ(xk) − E{φ(x)}

(16)

with a mean of0.
Whitening in F . The goal of this step is to transform

the centered samplesφ′(x1), . . . , φ
′(xk) via an orthogonal

transformationQ into vectorsφ̂(x1) = Qφ′(x1), . . . , φ̂(xk) =
Qφ(x′

k) where the covariance matrix̂C = E{φ̂(x)φ̂(x)⊤} is
the unit matrix. Since standard principal component analysis
[29] – just like its kernel-based counterpart – transforms the
covariance matrix into a diagonal form, where the diagonal
elements are the eigenvalues of the data covariance matrix
E{φ′(x)φ′(x)⊤}, it only remains to transform each diagonal
element to 1. Based on this observation, the required whitening
transformation is obtained by slightly modifying the formulas
presented in the section on KPCA. Now if we assume that
the eigenpairs ofE{φ′(x)φ′(x)⊤} are(α1, λ1), . . . , (αk, λk)
and λ1 ≥ . . . ≥ λk, the transformation matrixQ will take
the form [λ

−1/2
1 α1, . . . , λ

−1/2
m αm]⊤. If m is less thann a

dimensionality reduction is employed.
After the nonlinear preprocessing we can apply one of the

many linear ICA algorithms. We present here the FastICA al-
gorithm of Hyvarinen, for which centralization and whitening
is a prerequisite.
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For the sake of simplicity here we will denote the prepro-
cessed data samples byz1, . . . , zk. In this new linear space we
are going to search for directions along which the distribution
of the data is the least Gaussian. To measure this criterion we
introduce the following objective function:

JG(η) ≈ (E{G(η)} − E{G(ν)})
2 (17)

whereη is a variable with zero mean and unit variance,G :
R → R is an appropriate non-quadratic function,E again
denotes the expectation value andν is a standardized Gaussian
variable. The following three choices ofG are conventionally
used:

G1(η) = η4,
G2(η) = log (cosh (η)),
G3(η) = − exp (−η2/2).

(18)

It should be mentioned here that in Eq. (17) the expectation
value of G(ν) is a constant, its value only depending on the
selected function (e.g.E{G1(ν)} = 3). The variableη has
a leptokurtic distribution (a distribution with a high peak) if
E{G1(η)} > 3, it is a mesokurtic variable ifE{G1(η)} = 3,
while it has platykurtic distribution (i.e. it is a flat-topped
curve) whenE{G1(η)} < 3. For leptokurtic independent
components the optimal contrast function is one which grows
slower than quadratically, while the optimal for platykurtic
components grows faster (cf. [28]). In Hyvärinen’s FastICA
algorithm for selecting a new directionv the following τ
objective function is used:

τG(v) =
(

E{G(v⊤z)} − E{G(ν)}
)2

, (19)

which may be obtained by replacingη in Eq. (17) withv⊤z,
the dot product of the directionv and samplez. FastICA
is an approximate Newton iteration procedure for the local
optimization of the functionτG(v).

Before discussing the optimization problem, let us first
examine the properties of the preprocessed dataz1, . . . , zk.

a) For every normalizedv vector the mean ofv⊤z1, . . . ,
v⊤zk is set to zero, and its variance is set to one.
Actually we need this since Eq. (17) requires thatη
should have a zero mean and variance of one hence, with
the substitutionη = v⊤z, the projected datav⊤z must
also have this property.

b) For any matrixW the covariance matrixCW of the trans-
formed preprocessed pointsWz1, . . . ,Wzk will remain
a unit matrix if and only ifW is orthogonal, since

ĈW = E{Wz(Wz)⊤} = WE{zz⊤}W⊤

= WIW⊤ = WW⊤.
(20)

After preprocessing, FastICA looks for a new orthogonal
baseW for the preprocessed data, where the values of the
non-Gaussianity measureτG for the base vectors are large.
Note that since the data remains whitened after an orthogonal
transformation, ICA can be considered an extension of PCA.

Now we briefly outline how the FastICA algorithm works
(c.f. [15], [27]). The input for this algorithm is the prepro-
cessed sampleZ = [z1, . . . , zk] and the nonlinear functionG,
while the output is the transformation matrixW . The first and
second order derivatives ofG are denoted byG

′

andG
′′

.

procedure FastICA(Z,G);
% initialization
let W0 be a randomm × m matrix;
W0 = (W0W

⊤
0 )−1/2W0;

i = 0;
% approximate Newton iteration
While W has not converged;

for j = 1 to m
let sj be thejth raw vector ofWi;
wj = E{zG

′

(sj · z)} − E{G
′′

(sj · z)}sj ;
end;
i = i + 1;
Wi = [w1, . . . ,wm]⊤;
Wi = (WiW

⊤
i )−1/2Wi;

do
End procedure

In the pseudo-code(WiW
⊤
i )−1/2Wi means a symmetric

decorrelation, where(WiW
⊤
i )−1/2 can be readily obtained

from its eigenvalue decomposition. IfWiW
⊤
i = V DV ⊤, then

(WiW
⊤
i )−1/2 is equal toV D−1/2V ⊤. Finally, the expected

values required by the algorithm are calculated as the empirical
means of the preprocessed input samples inZ.

We should remark that in the discussion above we non-
linearized only centering and whitening, not the consecutive
iterative FastICA algorithm. This would also be possible, as in
τG the dot productv⊤z could be nonlinearized with the kernel
method. But this would go outside our unified discussion based
on the Rayleigh quotient. Practically speaking, the Kernel
FastICA method = Kernel-Centering + Kernel-Whitening +
iterative process of the original FastICA. The transformation
matrix A (cf. Eq. (2)) of KICA is WQ, whereQ represents
centering and whitening, whileW corresponds to the orthog-
onal matrix produced by FastICA. Despite the fact that the
second, optimization phase for findingW is not based on the
Rayleigh quotient approach, we feel that KICA as a unique
extension of KPCA can be the part of this review. More details
on the family of the KICA methods can be found in [34], [3].

To demonstrate the behavior of KICA we return to the
artificial data set in Fig. 2. We once again transformed the data
sets (A) and (D) but now with KICA. Fig. (C) shows the result
when using a linear kernel, while Fig. (F) shows the effect ofa
rational quadratic kernel. When compared with KPCA, it can
be readily seen that while KPCA looks for directions with a
large variance, KICA prefers those directions with the least
possible Gaussian distribution.

D. Kernel Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a traditional su-
pervised feature extraction method [16] which has proved to
be one of the most successful preprocessing techniques for
classification. It has long been used in speech recognition
as well [22], [4], [51]. The goal of LDA is to find a new
(not necessarily orthogonal) basis for the data which provides
the optimal separation between classes. To present the steps
of KLDA we virtually follow the discussion of its linear
counterpart, but in this case everything is meant to happen
implicitly, in the kernel feature spaceF .
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Fig. 3. This illustrates the effect of the supervised algorithms KLDA and KSDA. Figures (A) and (D) depict artificial data sets. Figures (B) and (E) show
the resulting data sets after applying KLDA on (A) and (D), respectively. Figures (C) and (F) represent the KSDA-transformed versions of (A) and (D). The
distributions of the classes along thex-axis is also shown below the figures. In every case the transformation applied was nonlinear.

Let us again suppose that a kernel functionκ has been
chosen along with a feature mapφ and a kernel feature space
F . In order to define the transformation matrixA of KLDA we
first define the objective functionτ : F → R which depends
not only on the sample dataX, but also on the indicator
function L owing to the supervised nature of this method.
Let us define

τ(v) =
v⊤Bv

v⊤Wv
, v ∈ F \ {0}, (21)

whereB is theBetween-class Scatter Matrix, while W is the
Within-class Scatter Matrix. Here theBetween-class Scatter
Matrix B shows the scatter of the class mean vectorsµj around
the overall mean vectorµ:

B =
∑r

j=1
kj

k (µj − µ)(µj − µ)⊤

µ = 1
k

∑k
i=1 φ(xi)

µj = 1
kj

∑

L(i)=j φ(xi)

(22)

The Within-class Scatter MatrixW represents the weighted
average scatter of the covariance matricesCj of the sample
vectors with the class labelj:

W =
∑r

j=1
kj

k Cj

Cj = 1
kj

∑

L(i)=j(φ(xi) − µj)(φ(xi) − µj)
⊤

(23)

τ(v) is large when its nominator is large and its denominator
is small or, equivalently, when in the kernel feature spaceF
the within-class averages of the sample projected ontov are

far from each other and the variance of the classes is small.
The larger the value ofτ(v) the farther the classes will be
spaced and the smaller their spreads will be.

We may also suppose without loss of generality here that
v =

∑k
i=1 αiφ(xi) holds during the search for the stationary

points of Eq. (21). With this assumption, after some algebraic
rearrangement we obtain the formula

τ(v) =
v⊤Bv

v⊤Wv
=

α
⊤K(R − 1̄)Kα

α⊤K(I − R)Kα
= τ(α), (24)

whereK is the kernel matrix,[1̂]ij = 1/k and

[R]ij =

{

1
kt

if t = L(i) = L(j)

0 otherwise.
(25)

This means that Eq. (21) can be expressed as dot products
of φ(x1), . . . , φ(xk) and that the stationary points of this
equation can be computed using the real eigenvectors of
(KΘ2K)−1KΘ1K. Since in generalKΘ2K is a positive
semidefinite matrix, it can be forced to be invertible if we
add a small positive constantǫ to its diagonal, that is we work
with KΘ2K+ǫI instead ofKΘ2K. This matrix is guaranteed
to be positive definite and hence should always be invertible.
This small act of cheating can have only a negligible effect on
the stationary points of eq. (21). If we further assume that the
real eigenvectors with the largestm(< r) real eigenvalues of
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(KΘ2K)−1KΘ1K are α1, . . . ,αm, then the transformation
matrix A (cf. Eq. (2)) will be [α1, . . . ,αm]⊤.

The behavior of KLDA is illustrated in Fig. 3, in the two
examples of (A) and (D). In both cases the application of the
exponential kernel resulted in a nonlinear transformationthat
minimized the variance of the classes, while giving the best
spatial class separation at the same time. The results are shown
in Figs. (B) and (E), respectively. Noting the distributionof
the classes along thex-axis, one can see that their separability
has increased.

E. Kernel Springy Discriminant Analysis

As was shown in the previous section, the KLDA criterion
leads to a non-symmetric matrix, the eigenvectors of which are
not necessarily orthogonal. Furthermore, we had to apply the
shifting of the eigenspectrum to avoid numerical complications
during inversion. These issues give rise to the need for an
objective functionτ , which results in a supervised transfor-
mation and yields similar results to KLDA, but is orthogonal
and avoids the numerical problems mentioned.

Now let the dot product be implicitly defined (see Fig. 1)
by the kernel functionκ in the kernel feature spaceF with
associated transformationφ:

k(x,y) = φ(x) · φ(y). (26)

The name Kernel Springy Discriminant Analysis stems from
the utilization of a spring & antispring model, which involves
searching for directions with optimal potential energy using
attractive and repulsive forces. In our case sample pairs in
each class are connected by springs, while those of different
classes are connected by antisprings. New features can be
easily extracted by taking the projection of a new point in
those directions having a small spread in each class, while
different classes are spaced out as much as possible. Letδ(v),
the potential of the spring model along the directionv in F ,
be defined by

k
∑

i,j=1

((φ(xi) − φ(xj))
⊤v)2[Θ]ij , (27)

where

[Θ]ij =

{

−1, if L(i) = L(j)
1, otherwise

i, j = 1, . . . , k. (28)

Naturally, the elements of matrixΘ can be initialized with
values different from±1 as well. Each element of the matrix
can be considered as a kind of spring quotient and each can
be set to a different value for any pair of data points.

As before, we again suppose that the directionsv can be
constructed as the linear combinations of the images of the
data points inF . That is,

v = Xφα (29)

whereXφ = [φ(x1), . . . , φ(xk)]. To find the directions with
large potentials, let the objective functionτ be defined by

τ(α) =
δ(Xφα)

α⊤α
. (30)

It is easy to prove thatτ(α) is equal to the following Rayleigh
quotient formula

τ(α) =
α

⊤Xφ
⊤BXφα

α⊤α
, (31)

where

B =
1

2

k
∑

i,j=1

(φ(xi) − φ(xj)) (φ(xi) − φ(xj))
⊤

[Θ]ij . (32)

Moreover, it is also straightforward to prove that Eq. (31) takes
the following form:

α
⊤

(

KΘ̃K − KΘK
)

α

α⊤α
, (33)

whereK is again the kernel matrix and̃Θ is a diagonal matrix
with the sum of each row ofΘ in the diagonal. After taking
the derivative of Eq. (33) it is readily seen that the stationary
points of τ(α) can be obtained via an eigenanalysis of the
following symmetric eigenproblem:

(KΘ̃K − KΘK)α = λα. (34)

If we assume that the dominantm eigenvectors are
α1, · · · ,αm then the transformation matrixA in Eq. (2) is
defined by[α1, · · · ,αm]⊤.

The effect of KSDA can again be visualized by transforming
the data sets (A) and (D) of Fig. 3. While KLDA aims
at minimizing the within-class variance and maximizing the
between-class distance, KSDA does something similar, but
based on within-class attractive and between-class repulsive
forces. The results presented in Figs. (C) and (F) have a clearly
separable class structure like those obtained using KLDA.

F. Reducing the Computational Cost

As we have already seen, all four methods lead to a
(generalized) eigenproblem that involves finding the stationary
points of the objective functionτ(v), defined in the form
of a Rayleigh quotient. During optimalization, the vectorv

consists of the linear combinations of the images of the data
points X in the kernel feature space. Without doubt, if the
amount of data points (k) is large, then thek × k sized
matrices that are needed for constructingτ(v) – hence for
solving the eigenproblem – can be so big that they pose serious
computational and memory management problems.

Fortunately, in most practical problems goodv directions
can be found even if we use onlyr << k data points instead
of k when constructing the linear combinations. Let us denote
the indices of theser samples by1 ≤ i1 < · · · < ir ≤ k.
It is easy to check that by just using these data items the
formulas we obtain for the functionτ(α) can be expressed by
the following:

KPCA, KICA: α
⊤ 1

k
K⊤

1
(I−1̄)K1α

α
⊤K2α

, (35)

KLDA: α
⊤K⊤

1
(R−1̄)K1α

α
⊤K⊤

1
(I−R)K1α

, (36)

KSDA:
α

⊤(K⊤

1
(Θ̃−Θ)K1)α

α
⊤

α
, (37)
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where α is a vector of dimensionr, K1 is the matrix
constructed from the columnsi1, · · · , ir of the kernel matrix
K, andK2 is the minor matrix determined by the rows and
columns ofK with indicesi1, · · · , ir. Based on these formulas,
the eigenproblems to be solved are now reduced to a matrix
of sizer×r. In practice, this matrix usually has no more than
a couple of dozen or a couple of hundred rows and columns.

Of course, a key issue here is the strategy for choosing the
r indices. Numerous selection strategies are possible from the
random selection to the exhaustive search approach. In this
paper we restrict our investigations to two different selection
techniques. The first one is the simplest case when we chose
samples randomly, why in the second we employed the kernel
variant of the sequential forward floating selection (SFFS [43])
method with the LDA optimization criterion [37].

One more issue occurs that we need to discuss here. It
is well-known that for the linear feature extraction methods
PCA, ICA, LDA and SDA, the size of the problem is that
of the original feature space. However, it depends on the
number of the samples in the kernel counterparts. Despite these
differences, if the kernel function is defined by the simple dot
productκ(x, z) = x⊤z and the feature mapφ is realized by
the identity (φ(x) = x) then the kernel formulation of the
methods (dual representation) are undoubtedly equivalentto
the corresponding linear cases (primal representation). Obvi-
ously, as in practice the feature space is of lower dimension, it
is worth using the linear methods when the simple dot product
kernel is chosen. Now we show that the nonlinear formulae
obtained this kernel function are readily traced back to the
linear ones. Let us notice that in this case the kernel matrix
K is equal toX⊤X, thus

PCA, ICA: α
⊤ 1

k
X⊤X(I−1̄)X⊤Xα

α
⊤X⊤Xα

=
v
⊤ 1

k
X(I−1̄)X⊤

v

v⊤v
, (38)

LDA: α
⊤X⊤X(R−1̄)X⊤Xα

α
⊤X⊤X(I−R)X⊤Xα

= v
⊤X(R−1̄)X⊤

v

vX(I−R)X⊤v
, (39)

SDA: α
⊤X⊤X(Θ̃−Θ)X⊤Xα

α
⊤

α
= vX(Θ̃−Θ)X⊤

v

v⊤v
, (40)

where the vectorv = Xα, and matricesX(I− 1̄)X⊤, X(R−
1̄)X⊤, X(I − R)X⊤ and X(Θ̃ − Θ)X⊤ are of the lower
dimension.

III. E XPERIMENT NO.1.: CLASSIFICATION OF

STEADY-STATE VOWELS

A. Application: A Phonological Awareness Teaching System

The “SpeechMaster” software developed by our team seeks
to apply speech recognition technology to speech therapy and
the teaching of reading. The role of speech recognition is
to provide a visual phonetic feedback. In the first case it
is intended to supplement the missing auditive feedback of
the hearing impaired, while in the case of the latter it is
to reinforce the correct association between the phoneme-
grapheme pairs. With the aid of a computer children can
practice without the need for the continuous presence of the
teacher. This is very important because the therapy of the
hearing impaired requires a long and tedious fixation phase.
Furthermore, experience shows that most children prefer com-
puter exercises to conventional drills.

Both applications require a real-time response from the
system in the form of an easily comprehensible visual feed-
back. With the simplest display setting feedback is given by
means of flickering letters, their identity and brightness being
adjusted to the speech recognizer’s output. Figure 4 shows
the user interface of “SpeechMaster”, in the teaching reading
and the speech therapy applications, respectively. As one can
see, in the first case the flickering letter is positioned overa
traditional picture for associating the word and word sound,
while in the latter case it is combined with a web camera image
which helps the impaired student learn the proper articulator
positions.

B. Evaluation Domain

For training and testing purposes we recorded samples from
160 children aged between 6 and 8. The ratio of girls and
boys was 50% - 50%.The speech signals were recorded and
stored at a sampling rate of 22050 Hz in 16-bit quality.
Each speaker uttered all the Hungarian vowels, one after the
other, separated by a short pause. Since we decided not to
discriminate their long and short versions, we only worked
with 9 vowels altogether. The recordings were divided into a
train and a test set in a ratio of 50% - 50%.

C. Acoustic Features

There are numerous methods for obtaining representative
feature vectors from speech data [24], but their common
property is that they are all extracted from 20-30 ms chunks
or ”frames” of the signal in 5-10 ms time steps. The sim-
plest possible feature set consists of the so-called bark-scaled
filterbank log-energies (FBLE). This means that the signal is
decomposed with a special filterbank and the energies in these
filters are used to parameterize speech on a frame-by-frame
basis. In our tests the filters were approximated via Fourier
analysis with a triangular weighting, as described in [24].
Altogether 24 filters were necessary to cover the frequency
range from 0 to 11025 Hz. Although the resulting log-energy
values are usually sent through a cosine transform to obtainthe
well-known mel-frequency cepstral coefficients, we abandoned
it for two reasons: (I) the transforms we were going to apply
have a similar decorrelating effect, and (II) we observed
earlier that the learners we work with - apart from GMM
- are not sensitive to feature correlation so, consequently, the
cosine transform would bring no significant improvement [33].
Furthermore, as the data consisted of steady-state vowels,we
found in a pilot test that adding the usual delta and delta-delta
features could only marginally improve the results. So only
the 24 filter bank log-energies formed this feature set, always
extracted from the center frame of the vowels. Although it
would be possible to stack several neighboring frames to form
a larger feature set, because of the special steady-state nature
of the vowel data used we saw no point in doing so.

The filterbank log-energies seem to be a proper feature
set for a general speech recognition task as their spectro-
temporal modulation is supposed to carry all the speech
information [41]. But in the special task of classifying vowels
pronounced in isolation it is only the gross spectral shape that
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(A) (B)

Fig. 4. Screenshots of the ‘SpeechMaster” phonological awareness teaching system. (A-B) The teaching reading part and the speech therapy part, respectively.

carries the phonetic information. More precisely, it is known
from phonetics that the spectral peaks (called formants) code
the identity of vowels [41]. To estimate the formants, we
implemented a simple algorithm that calculates the gravity
centers and the variance of the mass in certain frequency bands
[2]. The frequency bands are chosen so that they cover the
possible place of the first, second and third formants. This
resulted in 6 new features altogether.

A more sophisticated option for the analysis of the spectral
shape would be to apply some kind of auditory model [21].
Unfortunately, most of these models are too slow for a real-
time application. For this reason we experimented with the
In-Synchrony-Bands-Spectrum of Ghitza [19], because it is
computationally simple and attempts to model the dominance
relations of the spectral components. The model analyses the
signal using a filterbank that is approximated by weighting
the output of an FFT - quite similar to the FBLE analysis.
In this case, however, the output is not the total energy of
the filter, but the frequency of the component that has the
maximal energy, and so dominates the given frequency band.
Obviously, the output resulting from this analysis contains no
information about the energies in the filters, but only about
their relative dominance. Hence we supposed that this feature
set complements the FBLE features in a certain sense.

D. Learners

Describing the mathematical background of the learning
algorithms applied is beyond the scope of this paper. Besides,
we believe that they are familiar to those who are acquainted
with pattern recognition. So in the following we specify only
the parameters and the training algorithms used with each
learner, respectively.

1) Gaussian mixture modeling:The most widely used
method for modeling the class-conditional (continuous) dis-
tribution of the features is to approximate it by means of a
weighted sum of Gaussians [14]. Traditionally the parameters
are optimized according to the Maximum Likelihood (ML)
criterion, using the expectation-maximization (EM) algorithm.
It is well known, however, especially in the speech community

that maximum likelihood training is not optimal from a
discrimination point of view, as it disregards the competing
classes. Several alternatives have been proposed, such as
Maximum Mutual Information (MMI) [42], [54] or Minimum
Classification Error (MCE) criteria [30], [31]. Although these
alternative training methods can significantly boost the classifi-
cation performance, the increased computational requirements
– especially when embedded in a hidden Markov model
(HMM) – seems to be a deterrent to their widespread usage.
Here we will utilize the EM algorithm with the following
setup. As EM is an iterative technique, it requires a proper
initialization of the parameters. To find a good starting pa-
rameter set we appliedk-means clustering [16]. Sincek-means
clustering again only guaranteed finding a local optimum, we
ran it 15 times with random parameters and used the one with
the highest log-likelihood to initialize the EM algorithm.After
experimenting, the best value for the number of mixturesk
was found to be 3. In all cases the covariance matrices were
forced to be diagonal.

2) Artificial neural networks: Since it was realized that,
under proper conditions, ANNs can model the class posteriors
[7], neural nets are becoming evermore popular in the speech
recognition community. In the ANN experiments we used
the most common feed-forward multilayer perceptron network
with the backpropagation learning rule. The number of neurons
in the hidden layer was set at 18 in each experiment (this value
was chosen empirically, based on preliminary experiments).
Training was stopped based on the cross-validation of 15% of
the training data.

3) Projection Pursuit Learning:Projection pursuit learning
is a relatively little-known modelling technique. It can be
viewed as a neural net where the rigid sigmoid function is
replaced by an interpolating polynomial. With this modifi-
cation the representation power of the model is increased,
so less units are necessary. Moreover, there is no need for
additional hidden layers: one layer plus a second layer with
linear combinations will suffice. During learning the model
looks for directions in which the projection of the data points
can be well approximated by its polynomials, thus the mean
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square error will have the smallest value (hence the name
‘projection pursuit’). Our implementation follows the paper
of [25]. In each experiment, a model with 8 projections and a
5th-order polynomial was applied.

4) Support Vector Machines:Support vector machines is a
classifier algorithm that is based on the same kernel idea that
we presented earlier. It first maps the data points into a high-
dimensional feature space by applying some kernel function.
Then, assuming that the data points have become easily
separable in the kernel-space, it performs linear classifications
to separate the classes. A linear hyperplane is chosen with a
maximal margin. For further details on SVM the reader may
peruse [53]. In all the experiments with SVM the radial basis
kernel function was applied.

E. Experimental Setup

In the experiments 5 feature sets were constructed from
the initial acoustic features, as described in Section III.B.
Set1contained the 24 FBLE features. InSet2we combined
Set1 with the gravity center features, soSet2 contained 30
measurements.Set3was composed of the 24 SBS features,
while in Set4we combined the FBLE and SBS sets. Lastly, in
Set5we added all the FBLE, SBS and gravity center features,
thus obtaining a set of 54 values.

As regards the transformations, in every case we kept only
the first 8 components. We performed this severe dimension
reduction in order to show that, when combined with the
transformations, the classifiers can yield the same scores in
spite of the reduced feature set. To study the effects of
nonlinearity, the linear version of each transformation was also
used on each feature set. To obtain a sparse data representation
for the kernel methods, we reduced the number of data points
to 200 by applying the SFFS selection technique discussed
earlier. Preliminary experiments showed that using more data
would have no significant effect on the results.

In the classification experiments every transformation was
combined with every classifier on every feature set. This
resulted in the large table of Table I. In the header of the table
PCA, ICA, LDA and SDA stand for the linear transformations
(i.e. the kernelx⊤z was used), while KPCA, KICA, KLDA
and KSDA stand for the nonlinear transformations (with an
exponential kernel), respectively. The numbers shown are the
recognition errors on the test data. The number in parenthesis
denotes the number of features preserved after transformation.
The best scores of each set are given in bold.

F. Results and Discussion

Upon inspecting the results the first thing one notices is
that the SBS feature set (Set3) did about twice as badly as
the other sets, no matter what transformation or classifier
was tried. When combined with the FBLE features (Set1)
both the gravity center and the SBS features brought some
improvement, but this improvement is quite small and varies
from method to method.

When focusing on the performance of the classifiers, ANN,
PPL and SVM yielded very similar results. They, however,
consistently outperformed GMM, which is the method most

commonly used in speech technology today. Firstly, this can
be attributed to the fact that the functions that a GMM (with
diagonal covariances) is able to represent are more restricted in
shape than those of ANN or PPL. Secondly, it is a consequence
of modeling the classes separately, rather than in the case of
the other three classifiers that optimize a discriminative error
function.

As regards the transformations, an important observation is
that after the transformations the classification scores did not
get worse compared to the classifications when no transforma-
tion was applied. This is so in spite of the dimension reduction,
which shows that the features are highly redundant. Removing
this redundancy by means of a transformation can make the
classification more robust and, of course, faster.

Comparing the linear and the kernel-based algorithms, there
is a slight preference towards the supervised transformations
rather than the unsupervised ones. Similarly, the nonlinear
transforms yielded somewhat better scores than the linear
ones. The best transformation-classifier combination, however,
varies from set to set. This warns us that no such broad claim
can really be made about one transformation being superior
to the others. This is always dependent on the feature set and
the classifier. This is, of course, in accordance with the “no
free lunch” theorem which claims that, for different learning
tasks, different inductive bias can be beneficial [14].

Finally, we should make some general remarks. First of
all, we must emphasize that both the transformations and
the classifiers have quite a few adjustable parameters, and to
examine all parameter combinations is practically impossible.
Changing some of these parameters can sometimes have a
significant effect on the classification scores. Keeping this (and
the no free lunch theorem) in mind, our goal in this paper was
to show that the nonlinear supervised transformations havethe
tendency to perform better (with any given classifier) than the
linear and/or unsupervised methods. The results here seem to
justify our hypothesis.

IV. EXPERIMENT NO.2.: TIMIT PHONE CLASSIFICATION

A. Evaluation Domain

In the vowel experiments the database, the number of
features and the number of classes were all smaller than in
a common speech recognition task. To assess the applicability
of the algorithms to larger-scale problems, we also ran phone
classification tests on the TIMIT database. The train and test
sentences were chosen as usual, that is 3696 ‘sx’ and ‘si’
sentences formed the train set ( 142909 phone instances), and
the complete test set (1344 ‘si’ and ‘sx’ sentences) were used
for testing (51681 phone instances). The phone labels were
fused into 39 classes, according to [38].

B. Acoustic Features

For the frame-based description of the signals we again
used the bark-scaled filterbank log-energies. 22 filters were
applied to cover the 0-8000 Hz frequency range of the TIMIT
recordings.

Because the phonetic segments of the corpus are composed
of a varying number of frames, an additional step was required
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TABLE I

RECOGNITION ERRORS ON EACH FEATURE SET AS A FUNCTION OF THE TRANSFORMATION AND CLASSIFICATION APPLIED.

feature

set

classifier none

(all)

PCA

(8)

ICA

(8)

LDA

(8)

SDA

(8)

KPCA

(8)

KICA

(8)

KLDA

(8)

KSDA

(8)

GMM 16.38 % 13.81 % 16.45 % 14.37 % 15.06 % 15.20 % 13.68 % 12.43 % 12.70 %
ANN 10.34 % 9.86 % 9.93 % 10.97 % 9.58 % 9.86 % 9.58 % 8.05 % 7.98 %

Set1(24) PPL 11.04 % 10.06 % 10.69 % 9.51 % 9.93 % 8.95 % 9.51 % 7.98 % 8.75 %
SVM 9.93 % 10.00 % 8.95 % 8.05 % 8.05 % 8.88 % 8.26 %6.73% 7.22 %
GMM 13.33 % 11.38 % 13.33 % 12.84 % 13.33 % 13.47 % 12.36 % 10.27 % 11.31 %
ANN 7.43 % 8.05 % 7.36 % 7.77 % 6.18 % 6.52 % 8.19 % 5.69 % 6.66 %

Set2(30) PPL 9.37 % 8.59 % 6.54 % 6.11 % 6.45 % 6.59 % 6.45 %4.93% 6.66 %
SVM 8.33 % 6.66 % 6.66 % 6.45 % 5.13 % 7.36 % 6.11 % 5.27 % 5.34 %
GMM 25.90 % 23.19 % 25.90 % 22.91 % 24.37 % 25.13 % 24.65 % 23.05 % 21.45 %
ANN 20.00 % 18.88 % 19.58 % 21.45 % 20.00 % 21.04 % 18.54 % 18.26 % 17.84 %

Set3(24) PPL 20.48 % 20.69 % 19.58 % 20.00 % 20.76 % 18.88 % 19.16 % 17.84 % 18.54 %
SVM 19.65 % 20.69 % 18.88 % 17.36 % 19.58 % 19.79 % 18.33 % 16.52 %16.45%
GMM 13.95 % 12.01 % 15.90 % 13.81 % 14.16 % 15.34 % 12.08 % 10.00 % 9.93 %
ANN 10.27 % 9.86 % 8.05 % 9.02 % 8.95 % 7.36 % 9.86 %5.55% 7.56 %

Set4(48) PPL 10.48 % 8.95 % 9.37 % 8.95 % 9.44 % 7.36 % 9.09 % 6.18 % 7.98 %
SVM 9.09 % 9.79 % 8.26 % 6.04 % 7.56 % 8.75 % 5.97 % 5.76 % 6.25 %
GMM 15.48 % 12.29 % 13.33 % 11.04 % 13.75 % 11.73 % 11.87 % 10.83 % 11.59 %
ANN 8.68 % 7.01 % 6.45 % 10.00 % 7.56 % 9.09 % 6.59 % 7.15% 4.93 %

Set5(54) PPL 8.26 % 9.23 % 7.36 % 6.52 % 7.29 % 8.05 % 7.77 % 6.18 % 7.77 %
SVM 9.37 % 8.54 % 5.76 % 4.65 % 5.62 % 6.11 % 5.76 % 6.18 %4.23%

to make them tractable for the transformations and learners, as
these need all segments to be represented by the same number
of features. For this we applied the very simple strategy of
dividing each segment into three thirds, and averaging the
filterbank energies over these subsegments (from a signal
processing view this means a non-uniform smoothing and
resampling). This method was popularized mainly in the SUM-
MIT system [20], but was also successfully applied by others
as well [10]. To allow the learner to model the observation
context at least to a certain level, additional average filterbank
energies were calculated at the beginning and end of the
segments. For this aim 50-50 ms intervals were considered
at both sides.

Besides the resulting5 × 22 = 110 energy-based features
per segment, the length of the phone was also utilized. Further-
more, similar to the usual frame-based description strategies,
we found that derivative-like features can be very useful – but
in our case extracted only at the segment boundaries. These
were calculated by RASTA-filtering the energy trajectoriesand
then simply taking the frame-based differences at the bound-
aries. The role of RASTA filtering is to smooth the trajectories
by removing those modulation frequency components that are
perceptually not important [23]. In preliminary experiments
we have found that it is unnecessary to calculate these delta-
features in every bark-wide frequency channel. Rather, we
have concluded that it is enough to extract them from fewer
but wider frequency bands (this idea was in fact motivated by
physiological results on the tuning curves of cochlear nucleus
onset cells). Accordingly, only four 6-bark wide channels were
used to calculate the delta features, altogether resultingin 8
of them (4 - 4 at each boundaries).

Finally, we have observed that smoothing over the segment
thirds can sometimes remove important information, especially
when working with long phone instances. To alleviate this, we
extended our feature set with the variances of the energies
calculated over the segments. These were again calculated

only from the 4 wide bands described above. Altogether, 123
segmental features were extracted from every phone instance.
To justify the correctness of our representation we ran some
preliminary classification tests, and the results were veryclose
to those of others using a similar feature extraction technique
[20], [10].

C. Learners

The TIMIT data set is much bigger than our vowel database.
Consequently, we had no capacity to test every combination
of the classifiers and learners, as we did in the case of the
vowel data. Thus we decided to restrict ourselves to two
classifiers only. ANN was chosen because of its consistently
good performance and relatively small training time. The other
classifier was selected based on the following rationale. The
main aim of transforming the features space is to rearrange
the data points so that they become more easily modelable by
the subsequent learner. In accordance with this, the transforms
must bring the most improvement when applied prior to a
learner with a relatively small representation power. So, as
the second classifier we chose C4.5. This is a well-known
classifier in machine learning and, when trained on numerical
data, it has a very restricted representation technique.

1) Artificial neural networks: In all the experiments the
ANN had 38 inputs and 300 neurons in the hidden layer.
Training was stopped based on cross-validation over 15% of
the training data.

2) C4.5: C4.5 is a very well-known and widely used
classifier in the machine learning community [44]. For those
who prefer a statistical view, very similar learning schemes
can be found under the name Classification and Regression
Trees [9]. This method builds a tree-based representation from
the data, and was originally invented with nominal featuresin
mind. The algorithm was however extended for the case of
numerical features. In this case the algorithm decomposes the
feature space into rectangular blocks by means of axis-wise
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hyperplanes. The hypercubes are iteratively decomposed into
smaller and smaller ones, according to an entropy-based tree-
building rule. This hashing of the feature space can be stopped
by many possible criterions. Finally class labels are attached
to each hyperbox, but posterior probability estimations are
also easily attainable based on frequency counts. Obviously,
the limited representation power of the model is caused
both by the axis-wise restriction on the hyperplanes and the
step-like look of the resulting probability estimations. In the
experiments we used the original implementation of Quinlan.
During tree building the minimum number of data points per
leave was set to 24. The default parameters were used in every
other respect.

D. Experimental Setup

Both the ANN and C4.5 classifiers were combined with
each transformation. In the case of the kernel algorithms we
always used the Gaussian RBF kernel (see Eq. 4). The number
of features extracted by the transformations was always set
to 38, that is the number of classes minus one. This value
was chosen because LDA cannot return any more components
(without tricks like splitting each class into subclasses), and
to keep the results comparable we used the same number
of features for the other transformations as well. As regards
sparse data representation, because of the large size of the
database we could not apply the SFFS technique (as its
memory requirement is a quadratic function of the database
size). So we decided to select the data points randomly, starting
from 100 points, and iteratively adding further sets of 100
points. This was done in order to see how the number of
points affected performance.

We were also interested in whether the choice of the contrast
function of ICA influences its class separation abilities. To
this end to learn more about this we performed tests with all
three contrast functions listed in Eq. (18). Both linear ICAand
Kernel-ICA (with an RBF kernel) were tried with all three
contrast functions. The results showed that there were only
small differences, but on the TIMIT data the contrast function
G3 seemed to behave the best. In the rest of the test we always
worked with this contrast function.

E. Results and Discussion

The results of iteratively increasing the number of data
points are plotted in Fig. 5. On every set Kernel-LDA was
applied, with a subsequent ANN and C4.5 learning. The
diagram shows how the classification error changes when the
number of data is increased with a step size of 100. Clearly, the
improvement is more dramatic for the C4.5 than for the ANN.
In both cases there was no significant improvement beyond a
sample size of 600. In the following experiments we always
used this set of 600 points in the kernel-based tests.

The classification errors are summarized in Table II. Inde-
pendent of the learner applied, we can say that the supervised
algorithms performed better than the unsupervised ones, and
that the kernel-based methods outperformed their linear coun-
terparts. The differences are more significant in the case of
the C4.5 learner than in the case of ANN. This is obviously
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Fig. 5. Classification error as a function of the number of points kept in the
sparse representation.

TABLE II

RECOGNITION ERRORS ONTIMIT

ANN C4.5 ANN C4.5
none 28.43 % 49.86 % none 28.43 % 49.86 %
PCA 28.22 % 47.23 % KPCA 26.49 % 38.42 %
ICA 29.01 % 50.11 % KICA 27.23 % 40.21 %
LDA 27.12 % 41.31 % KLDA 25.11 % 33.12 %
SDA 27.93 % 43.12 % KSDA 25.93 % 34.68 %

(A) (B)

because of the flexibility of ANN representation, compared to
the axis-wise rigid separation hyperplanes of C4.5.

V. CONCLUSIONS ANDFUTURE WORK

The main purpose of this paper was to compare several
classification and transformation methods applied to phoneme
classification. The goal of applying a transformation can be
dimension reduction, improvement of the classification scores,
or increasing the robustness of the learning by removing the
noisy and redundant features.

We found that nonlinear transformations in general lead
to better classification than the nonlinear ones, and thus are
a promising new direction for research. We also found that
the supervised transformations are usually better than the
unsupervised ones. We think that it would be worth looking
for other supervised techniques that could be constructed in a
similar way to the SDA or LDA technique. These transforma-
tions greatly improved our phonological awareness teaching
system by offering a robust and reliable real-time phoneme
classification. They also result in increased performance on
the TIMIT data.

Finally, we should mention that finding the optimal param-
eters both for the transformations and the classifiers is quite
a difficult problem. In particular, the parameters of the trans-
formation and the subsequent learner are optimized separately
at present. A combined optimization should probably produce
better results, and there are already promising results in this
direction in the literature [6]. Hence we plan to investigate
parameter tuning and combined optimization.
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