Kernel-Based Feature Extraction with a Speech
Technology Application

Andras Kocsor and &szb Toth

Abstract— Kernel-based nonlinear feature extraction and clas- analysis (KICA) [35], [3], kernel linear discriminant agals
sification algorithms are a popular new research direction in (KLDA) [40], [5], [34] and kernel springy discriminant anal
machine learning. This paper examines their applicability to the sis (KSDA) [36] techniques. Their effect on classificaticrp
classification of phonemes in a phonological awareness driIIing]c is th di binati ith classifi h
software package. We first give a concise overview of the Ormance 'S.t en teste '_n combination W't classilers |
nonlinear feature extraction methods such as kernel principal Gaussian mixture modeling (GMM), artificial neural netwerk
component analysis (KPCA), kernel independent component (ANN), projection pursuit learning (PPL) decision treesed
analysis (KICA), kernel linear discriminant analysis (KLDA)  classification (C4.5) and support vector machines (SVMg Th
and kernel springy discriminant analysis (KSDA). The overview algorithms are applied to two recognition tasks. One of them
deals with all the methods in a unified framework, regardless . . " . - -
of whether they are unsupervised or supervised. The effect of IS real—tl.me phoneme .rewgn't'on which, when comblned.W|th
the transformations on a subsequent classification is tested in @ real-time visualization of the results, forms the basis of
combination with learning algorithms such as Gaussian mixture the “SpeechMaster” phonological awareness drilling safev

modeling (GMM), artificial neural nets (ANN), projection pursuit  developed by our team. The other test set was the well-known
learning (PPL), decision tree-based classification (C4.5) and TIMIT phone classification task

support vector machines (SVM). We found in most cases that The structure of th ] | follows. Eirst. w .
the transformations have a beneficial effect on the classification '€ Structure of the paper 1S as Tollows. FIrst, we pro-
performance. Furthermore, the nonlinear supervised algorithms Vide a concise overview of the nonlinear feature extraction

yielded the best results. methods. The overview is written so that it deals with all the
Index Terms—kemel feature spaces, kemnel-based feature ex- Methods in a unified framework, regardiess of whether they
traction, principal component analysis, independent component are unsupervised or supervised. Furthermore, the traditio

analysis, discriminant analysis, kernel-based methods linear counterparts of the methods can be obtained as $pecia
cases of our approach. Afterwards, we present the goalsof th
. INTRODUCTION “SpeechMaster” software along with the phoneme classifica-

UTOMATIC speech recognition is dealt with by quitetion problem that arises. Besides the special vowel retiogni
A traditional statistical modelling techniques such as Gaugsk the “SpeechMaster” software is built on we also present
sian mixture modelling or artificial neural nets. In the lad€st results on the TIMIT database. In both cases, we first
couple of years, however, the theory of machine learning hadefly describe the acoustic features that were appliethen t
developed a wide variety of novel learning and classificati¢XPeriments and also list the learning methods used. Then,
algorithms. In particular, the so-called kernel-basedhmas in the final part of the paper we present the results of the
have recently become a flourishing new research directigiPeriments and discuss them from several aspects, fgcusin
Kernel-based classification and regression techniquekidn ©ON the advantages and drawbacks of each nonlinear feature
ing the well-known Support Vector Machines (SVM) foundXtraction method.
their way into speech recognition relatively slowly. Thss i
probably because their application to such large-scalstas Il. KERNEL-BASED FEATURE EXTRACTION
as speech recognition required addressing both thedratida o ) ) )
practical problems. Recently, however, more and more asitho Classification algorithms require that the objects to be
are turning their attention to the application of SVM in sgiee classified are represented as pomts_ in a mul_t|d|men3|_onal
recognition (see, e.g. [10], [17], [46], [50]). featyre space. However, before executing a learning fﬂlgnn

Besides using kernel-based classifiers, an alternativeropt2dditional vector space transformations may be applieden t
is to use kernel-based technologies only to transform tHytial features. The reason for doing this is twofold. Hyrs
feature space, and leave the job of classification to mdfey can improve classification performance and, secondly,
traditional methods [39]. The goal of this paper is to stutsy t they can reQuce the dlmensmn_allty of thg (_jgta. In the liter-
applicability of some of these methods to phoneme classificure sometimes both the choice of the initial features and
tion, making use of kernel-based feature extraction methoff€ir transformation are dealt with under the name “feature
applied prior to learning in order to improve classificatio§Xtraction”. To avoid any misunderstanding, in this seciito
rates. In essence, this article deals with kernel principah- will cover only the latter, that is the transformation of the

ponent analysis (KPCA) [47], kernel independent componeiﬁ‘litia| featqrg set into another one, whic.h. is _hoped willlghie
a more efficient or, at least, faster classification.

' A. Kocsor and L. 'b_th are with the Res_earch Group on Artificial Intel-  The approach of feature extraction could be either linear
ligence of the Hungarian Academy of Sciences and Univerditgzeged, . . . . . .
H-6720 Szeged, Aradi artarik tere 1., Hungary, E-mail: kocsor@inf.u- OF nonlinear, but there is a technique (which is most topical

szeged.hu, tothl@inf.u-szeged.hu nowadays) that is, in some sense, breaking down the barrier



The goal of feature extraction is to find a mappihg:
X — Y which leads to a new set of features that are
optimal according to a given criterion. In the case of kernel
based feature extraction the mapping is nonlinear and teas th
following form:

z — Ak(X,z), z€e X (2)

where A is a constant, realn x k& matrix, the function
k : X x X — R is continuous, symmetric and positive
definite (which is called a Mercer kernelX is the sample
matrix and x(X,z) is a short-hand notation for the vector
Fig. 1. The "kernel-idea”. The dot product in the kernel teatspaceF is [K(Xl’.z)’ S (X, Z)}T' As Ca.n be seen in Eq. (2), l.lnear
defined implicitly. combinations of the base functioréx;, z),. .., k(xx, z) give
the components of the new feature veckgs). The criterion
(and hence the calculation that leads to mattiin Eq. (2)) is
between the two types. The key idea behind the kernel tecthifferent for each method and the result depends on the data
nique was originally presented in [1] and was again appled $et X.
connection with the general purpose Support Vector MachineBased on Mercer’s theorem [53], i is a Mercer kernel
[8], [11], [49], [52], [53], which was later followed by otihe then a dot product spacg necessarily exists with a mapping
kernel-based methods [3], [5], [34], [35], [36], [40], [4%47], ¢: X — F (see Fig. 1) such that
[48]. In the following we summarize four nonlinear feature
extraction methods that may be derived using the kernedebas VX2 €X K(x,2) =d(x) $(2). (3)
nonlinearizations of the linear algorithms PCA, ICA, LDAUsually F is called the kernel feature space ahis the feature
and SDA. We do not present the linear techniques separatgigp. At this point we have two immediate consequences.
because the non-linear descriptions will be formalizeduchs When ¢ is the identity, the functionk(x,z) = x - z (the
a way that, with a proper parametrization, they lead bagimple dot product over the spad8 is symmetric, continuous
to the traditional linear methods. All methods will be dealand positive definite, so it constitutes a proper Mercer ddern
with in a unified, concise form. We also represent the effeaoing the other way, when applying a general Mercer kernel
of these transformations on artificial data sets via figuhes. we can assume a spageover which we perform dot product
addition, we always give references to sources where aefttaicalculations. This space and dot product calculations over
description on the feature extraction technique in questan jt are defined only implicitly via the kernel function itself
be found. Our main aim is to help the reader gain a unifiethe spaceF and map¢ may not be explicitly known. We
view of the methods and get some ideas about their usageed only define the kernel function, which then ensures an
First, we provide a set of definitions. Then we discuss thgplicit evaluation. The construction of Mercer kerneld)em
kernel idea, followed by an explanation of each method orgch a mapping exists, is a non-trivial problem, but there
after the other. The section rounds off with some remarksiabeire some possible candidates available (cf. [13], [18]])[32
how the number of required calculations can be reduced pyom the functions available, the three most popular are the

K(x,2) = 9(x) - 9(2)

decimating the sample set. polynomial kernels;, the Gaussian RBF kernek, and the
rational quadratic kerneks:

A. Introduction k(x,7) = (x-z41)7 d € N,

Without loss of generality we shall assume that as &y(x,2) = eXP(—HX—ZHQ/V , v € Ry,
realization of multivariate random variables, there are 3(x,z) = 1—||jx—z|?/(||x—z|?+1), ¢ € R,.
dimensional real attribute vectors in a compact &etover (4)
R™ describing objects in a certain domain, and that we havelLet us suppose that we have chosen a specific kernel
a finite n x k sample matrixX = [x3,...,xx] containingk function along with a proper feature mamnd a kernel feature
random observations. Let us assume as well that we havepaceF. Then the nonlinear mapping of Eq. (2) can be written
classes and an indicator function as:

L1, ky—{1,....r}, (1) an1k(x1,2) + - + a1k (X, 2)

where L(i) gives the class label of the sampig. Let k; An(X,2) = :
further denote the number of vectors associated with label am1K(X1,2) + - + amps(Xp, 2)
in the sample data ar1d(x1) " 4+ app(xp) "

Now we continue with the definition of the kernel-based — . b(z).

feature extraction and then outline the kernel idea.

af’ml(;s(xl)T + -+ GWLk¢(Xk)T
1The two types of feature extraction methods (supervised supgrvised) . . .
can be distinguished by whether they utilize an indicatacfion or not during In the fOllOWIhg we will denote the latter matrix by/-

the computation of the transformation parameters. Notice here thatl” is constant, and its rows contain linear



combinations of the image of the data vectorginThis means We can arrive at this assumption in many ways, e.g. we
that the transformation is linear in the kernel feature spacan decompose an arbitrary vecter into vectors vi +
But because the feature map itself is nonlinear we obtainva, where vy gives that component of which falls in
nonlinear transformation of the sample points of the ihitiapan($(x1),...,d(xx)), while vo gives the component per-
feature spacet. pendicular to it. Sinc&C'v = C(v; + vo) = C'vy and for the

All the algorithms that we are going to present in thetationary points the eigenvalue-eigenvector equélity= \v
following are linear mappings in the kernel feature spacis satisfied, we find that the condition defined in Eq. (9) (i.e.
the row vectors of matrix/ being obtained by optimizing vJ v = 0) does not restrict generality.
a different objective functiorr(v), say. What is common in  Based on the above assumption the variational parameters
each case is that we will look fov directions with large of 7 can be the vectoe instead ofv:
values ofr. Intuitively, if larger values ofr indicate better k - k
directions and the row vectors 6f need to be independent (Zz‘:l i p(xi) )C (Zj:l a-j¢(xj)>
in certain ways, choosing stationary points that havethe T(a) = (Zk a-¢(x-)T> (Zk a;b(x;) ’ (10)
largest function values is a reasonable strategy. Obtithia =1 J=1TI A
above stationary points of a general objective function isfis easy to see that
difficult global optimization problem. But if is defined by a _
Rayleigh quotient formulae: a tKI-1)Ka

T )
v Biv a' Ka
7(v)

T VT By ®) where[K];; = ¢(x;) - ¢(x;) = k(xi,x;) Is a Gram matrix,[
the solution is easy and fast when formulated as a genedali

J3 the unit matrix andl1];; = 1/k.
eigenvalue problemA;v = AByv). Actually, this approach

After differentiating (11) with respect tex we find that
offers a unified view of the feature extraction methods diébe stationary points are the solution vectors of the génera
cussed in this paper.

r(a) = (11)

eigenvalue problem

1 _
B. Kernel Principal Component Analysis EK(I — 1)Ko= 2K, (12)
Principal component analysis [29] is a ubiquitous unsupekhich is equivalent to the problem
vised technique for data analysis and dimension reduction. 1
To explain how its nonlinear version works [47]et us first —(I-1)Ka = \a. (13)
choose a kernel function for which k -
Although the matrixX/—1) K is not symmetric, its eigenvalues

K(x,z) = ¢(x) - ¢(2), x,2 € &, are real and non—)ﬁegat?ve, and those eigenvectors that have
holds for a mapping) : X — F. It is well-known that PCA positive eigenvalues are orthogonal. In fact the best ambro
looks for those directions o’ in which the variance of the is to solve the following symmetric eigenproblem, where the
data is large. We will do exactly the same, but in the kernpbsitive eigenvalues and the corresponding eigenvecias a
feature spacer. For this we define the objective functian the same as those obtained from Eg. (13)

as
T 1 - _
T(v) = M TCV, v € F\ {0}, (6) E(I -DK{I -1)a= Ao (14)
V'V
where(C is the covariance matrix of the image of the sampldow let them positive dominant eigenvalues Q(I—i)K(I—
Px1), s 9(xn): 1) be denoted byA; > ... > ), and the corresponding

_ T eigenvectors bexy, ..., a,,. Then the matrixA of the trans-
C=E{(¢(x) — B{e(x)}) (6(x) — E{o(x)}) }. (V) formation we need (cf. Eq. (2)) can be calculated like so:
Now we define the Kernel-PCA transformation based on the T

stationary points of Eq. (6), which are given as the eigetorec A=lan,..,an] . (15)

O,f the s.ymmet.ric. positive semidefinite matr& However, The effect of KPCA is demonstrated in Fig. 2. The data set
since this matrix is of the form of Fig. (A) was transformed using linear PCA, that is KPCA
k T was performed using the kerne(x, z) = x"z. The result is
€= ciolx)o(x)T, (8) " shown in Fig. (B). Evidently, the algorithm found the difiect
& with the largest variance and chose it as thaxis of the
we can suppose the following equation holds during theansformed data. This effect is also justified by the shape

analysis of the stationary points: of distribution curves shown below the images. In a second
k experiment the data set of Fig. (D) was transformed, but in

v = Zaigi)(xi). (9) this case using the rational quadratic kernel, which leads t

i=1 a nonlinear transformation. The result is shown in Fig. (E).

5 . . . - Examining the distribution of the points along theaxis, one
The derivation presented here differs slightly from the amgginally that th . fthe data h ianifi tly isece
proposed by Sdikopf. But the result of the derivation is equivalent to thecar_1 see thatthe V_ar'an_ce 0 € data has signimcantly 1secea

original. owing to the nonlinearity of the method employed.
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Fig. 2. This illustrates the typical behavior of KPCA and KICFigures (A) and (D) show some artificial data sets beforetthesformation. Figures (B)
and (E) show the resulting distribution after linear andlm@ar KPCA, respectively. Figs. (C) and (F) depict the hessaf a linear and nonlinear KICA. The
distribution of the data points along theaxis is shown below each figure.

C. Kernel Independent Component Analysis space. To this end, let the inner product be implicitly define

Independent Component Analysis [12], [15], [26], [27],[28byct:he tke_rnel _fu;cti\c/)vrm inh?];'tvtvri]th 3Sf°dated transformati?);
is a general-purpose statistical method that originallgser . en en;g nJ-. ¢ € ztl' det atap(xy), ..., P(xx) Wi
from the study of blind source separation (BSS). Anothétrs meanZ{¢(x)}, to obtain data

application of ICA is unsupervised feature extraction, mehe ¢(x1) = o(x1)— E{o(x)}

the aim is to linearly transform the input data into uncated : (16)
components, along which the distribution of the sample set , :

is the least Gaussian. The reason for this is that along these ¢(xe) = olxn) - B{o(x)}

directions the data is supposedly easier to classify. Thiswith a mean of0.

in concordance with the most common speech modelingWhitening in F. The goal of this step is to transform

technique, that is fitting mixtures of Gaussians on eactsclathe centered samples’(x,),...,¢'(x,) via an orthogonal

Obviously, this assumes that the class distributions can fpansformationy into vectorsp(x;) = Q¢'(x1), - . ., P(xk) =

well approximated by Gaussian mixtures. ICA extends thi3s(x),) where the covariance matrik = E{¢(x)p(x) T} is

by assuming that the distribution when all classes are fuseltle unit matrix. Since standard principal component arglys

on the contrary, is not Gaussian, so, using non-Gaussiagity[29] — just like its kernel-based counterpart — transforims t

a heuristic for unsupervised feature extraction will préfese covariance matrix into a diagonal form, where the diagonal

directions that separate the classes. elements are the eigenvalues of the data covariance matrix
For optimal selection of the independent directions séver&{¢’(x)¢’'(x) "}, it only remains to transform each diagonal

objective functions were defined using approximately equielement to 1. Based on this observation, the required whigen

alent approaches. The goal of the ICA algorithm itself iansformation is obtained by slightly modifying the foriasi

to find the optimum of these objective functions. There agmesented in the section on KPCA. Now if we assume that

many iterative methods for performing Independent Compthe eigenpairs off{¢’ (x)¢'(x) "} are(ay, A1), ..., (au, M)

nent Analysis. Some of these do require preprocessing, e@d \; > ... > )., the transformation matrix) will take

centering and whitening, while others do not. In generahe form [A;"%au,..., Am2cm]T. If m is less tham a

experience shows that all these algorithms should convergimensionality reduction is employed.

faster on centered and whitened data, even with those whictafter the nonlinear preprocessing we can apply one of the

do not really require it. many linear ICA algorithms. We present here the FastICA al-
Let us first examine how the centering and whiteningorithm of Hyvarinen, for which centralization and whitegi

preprocessing steps can be performed in the kernel featig@ prerequisite.



For the sake of simplicity here we will denote the prepro- procedure FastlCA{, G);

cessed data samples by, . . ., z;. In this new linear space we % initialization
are going to search for directions along which the distrdyut let Wy be a randonmm x m matrix;
of the data is the least Gaussian. To measure this critereon w Wo = (WoWy )~ 12Wo;
introduce the following objective function: i=0;
5 % approximate Newton iteration
Ja(n) = (E{G(n)} — E{G(»)}) an While W has not converged;

forj=1tom

wheren is a variable with zero mean and unit variancg; )
let s; be thejth raw vector ofV;;

R — R is an appropriate non-quadratic functioh, again

denotes the expectation value anis a standardized Gaussian wj = E{z2G (s; - 2)} — E{G (s; - z)}s;;
variable. The following three choices 6f are conventionally end;
used: i =i+ L

Gi(n) = %, Wi=[wi,. .., wn]';

Ga(n) = log(cosh(n)), (18) W; = (W,W,") =12

Gs(n) = —exp(—n?/2). do

End procedure
It should be mentioned here that in Eq. (17) the expectation P

value of G(v) is a constant, its value only depending on thg, the pseudo-codeg(W;W,")~1/2W; means a symmetric
selected function (e.gE{G1(v)} = 3). The variablen has gecorrelation, wherdW;W,")~1/2 can be readily obtained
a leptokurtic distribution (a distribution with a high pgak  from its eigenvalue decomposition.F;W,” = VDV T, then
E{G1(n)} > 3, it is a mesokurtic variable {G'1(n)} = 3, (W, W,7)~1/2 is equal toVD~/2VT. Finally, the expected
while it has platykurtic distribution (i.e. it is a flat-topp yajues required by the algorithm are calculated as the érapir
curve) whenE{G(n)} < 3. For leptokurtic independent means of the preprocessed input sampleg.in
components the optimal contrast function is one which grows\we should remark that in the discussion above we non-
slower than quadratically, while the optimal for platykart |inearized only centering and whitening, not the conseeuti
components grows faster (cf. [28]). In Hymen's FastiCA jierative FastICA algorithm. This would also be possib&jra
algorithm for selecting a new direction the following 7 . the dot product ' z could be nonlinearized with the kernel
objective function is used: method. But this would go outside our unified discussion Base
T 2 on the Rayleigh quotient. Practically speaking, the Kernel
Ta(v) = (E{G(v 2)} _E{G(V)}) ’ (19) FastICA m)éthgd g KerneI-Centeringy+ ierneI?Whitening +
which may be obtained by replacingin Eq. (17) withv "z, iterative process of the original FastiCA. The transfoiorat
the dot product of the directiow and samplez. FastiCA matrix A (cf. Eqg. (2)) of KICA is WQ, where( represents
is an approximate Newton iteration procedure for the locakntering and whitening, whil&/ corresponds to the orthog-

optimization of the function¢(v). onal matrix produced by FastICA. Despite the fact that the
Before discussing the optimization problem, let us firstecond, optimization phase for finding is not based on the

examine the properties of the preprocessed data. . , z,. Rayleigh quotient approach, we feel that KICA as a unique
a) For every normalized vector the mean of ' z,,..., extensionof KPCA can be the part of this review. More details

vTz, is set to zero, and its variance is set to on@n the family of the KICA methods can be found in [34], [3].
Actually we need this since Eq. (17) requires that 10 demonstrate the behavior of KICA we return to the

should have a zero mean and variance of one hence, vifiificial data set in Fig. 2. We once again transformed tha da
the substitution) = vz, the projected data 'z must sets (A) and (D) but now with KICA. Fig. (C) shows the result

also have this property. wh.en using a Iin.ear kernel, while Fig. (F) shoyvs the effeq of
b) For any matrixV the covariance matri€y, of the trans- rational .quadrat|c kernell. When compared W|_th KPCA, it can
formed preprocessed point&z,, ..., Wz, will remain b€ readlly seen that while KPCA Iook_s for dlrect.|ons with a
a unit matrix if and only if¥ is orthogonal, since large variance, KICA prefers those directions with the eas
. possible Gaussian distribution.
Cw = E{Wz(Wz)"}=WE{zz"}WT (20)
= WIW'T=WWwT. D. Kernel Linear Discriminant Analysis

After preprocessing, FastICA looks for a new orthogonal Linear Discriminant Analysis (LDA) is a traditional su-
baseW for the preprocessed data, where the values of tpervised feature extraction method [16] which has proved to
non-Gaussianity measurg; for the base vectors are largebe one of the most successful preprocessing techniques for
Note that since the data remains whitened after an orthdégonokassification. It has long been used in speech recognition
transformation, ICA can be considered an extension of PCAs well [22], [4], [51]. The goal of LDA is to find a new

Now we briefly outline how the FastICA algorithm works(not necessarily orthogonal) basis for the data which plesi
(c.f. [15], [27]). The input for this algorithm is the prepro the optimal separation between classes. To present the step
cessed samplg = [zy, ..., z;] and the nonlinear functio’, of KLDA we virtually follow the discussion of its linear
while the output is the transformation matiiX. The first and counterpart, but in this case everything is meant to happen
second order derivatives @ are denoted byy" and G’ implicitly, in the kernel feature spacg.
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Fig. 3. This illustrates the effect of the supervised aldpons KLDA and KSDA. Figures (A) and (D) depict artificial datets. Figures (B) and (E) show
the resulting data sets after applying KLDA on (A) and (Dkpectively. Figures (C) and (F) represent the KSDA-tramséal versions of (A) and (D). The
distributions of the classes along theaxis is also shown below the figures. In every case the wamsftion applied was nonlinear.

Let us again suppose that a kernel functierhas been far from each other and the variance of the classes is small.
chosen along with a feature mapand a kernel feature spaceThe larger the value of(v) the farther the classes will be
F. In order to define the transformation matrxof KLDA we  spaced and the smaller their spreads will be.
first define the objective function : 7 — R which depends  We may also suppose without loss of generality here that
not only on the sample datX’, but also on the indicator v = Zle a;¢(x;) holds during the search for the stationary
function £ owing to the supervised nature of this methodyoints of Eq. (21). With this assumption, after some algiebra

Let us define rearrangement we obtain the formula
v Bv
T(V) = T v E ‘,’t\ {O}a (21) _
vIWv viBv o "K(R-1)Ka ,
where B is the Between-class Scatter Matriwhile W is the T(v) = vV a'K(I - R)Ka =7(a), (24)

Within-class Scatter MatrixHere theBetween-class Scatter
Matrix B shows the scatter of the class mean vectgraround where K is the kernel matrix|1];; = 1/k and
the overall mean vectqu:

Lo t=L0) = L)
r J— Ky
B = Z (NJ p)(pj — )" [Rlij = { 0 otherwise. (25)
ro= K Zz 1 ¢(X1) (22) .
mi o= g ZC('L B(x;) This means that Eqg. (21) can be expressed as dot products

o of ¢(x1),...,¢(xr) and that the stationary points of this
The Within-class Scatter MatrixV represents the We'ghtedequatmn can be computed using the real eigenvectors of
average scatter of the covariance matriCesof the sample (xg,x)-1K©,K. Since in generalk©,K is a positive

vectors with the class labgt semidefinite matrix, it can be forced to be invertible if we
W = Zr J c; add a small positive constaato its diagonal, that is we work
23 . - . B -
¢ = £ Za e j( (x:) — ) (b(¢3) — pa;) T (23)  with KO, K +e¢I instead ofK O, K . This matrix is guaranteed

to be positive definite and hence should always be invertible
7(v) is large when its nominator is large and its denominatdihis small act of cheating can have only a negligible effect o
is small or, equivalently, when in the kernel feature sp#ce the stationary points of eq. (21). If we further assume that t
the within-class averages of the sample projected entoe real eigenvectors with the largest(< r) real eigenvalues of



(KO;K)"'KO,K areay,...,a,,, then the transformation It is easy to prove that(c) is equal to the following Rayleigh

matrix A (cf. Eq. (2)) will be[a, ..., o] . quotient formula
The behavior of KLDA is illustrated in Fig. 3, in the two oT XTBX
examples of (A) and (D). In both cases the application of the 7(a) = Mv (31)
exponential kernel resulted in a nonlinear transformatrat a o
minimized the variance of the classes, while giving the beshere
spatial class separation at the same time. The results angsh k
in Figs. (B) and (E), respectively. Noting the distributioh B = 1 Z (p(x:) — B(x;)) (P(xs) — ¢(Xj))T [©];;. (32)
the classes along theaxis, one can see that their separability 2 =1

has increased.
Moreover, it is also straightforward to prove that Eq. (3Res

the following form:
E. Kernel Springy Discriminant Analysis ~
As was shown in the previous section, the KLDA criterion al (K@K - K@K) o
leads to a non-symmetric matrix, the eigenvectors of whieh a aTa
not necessarily orthogonal. Furthermore, we had to ap@y th

shifting of the eigenspectrum to avoid numerical complovas whereK is again the kernel matrix arf@l is a diagonal matrix

during inversion. These issues give rise to the need for %rj\th the sum of each row 0B in the diagonal. After taking

objective functionr, which results in a supervised transfor! e derivative of Eq. (33) it is readily seen that the staign

mation and yields similar results to KLDA, but is orthogonafonmt‘o’. of 7(a) ca:n be. obtalngld V'_a an eigenanalysis of the
and avoids the numerical problems mentioned. ofiowing Symmetric eigenprobiem.

; (33)

Now let the dot product be implicitly defined (see Fig. 1) (KOK — KOK)a = \a. (34)
by the kernel functiors in the kernel feature spacg with
associated transformatiaft If we assume that the dominantn eigenvectors are
aq, -, a,, then the transformation matrid in Eq. (2) is
k(x,y) = ¢(x) - ¢(y). (26)  gefined bylar, -+, am] T

The name Kernel Springy Discriminant Analysis stems from The effect of KSDA can again be visualized by transforming
the utilization of a spring & antispring model, which invely the data sets (A) and (D) of Fig. 3. While KLDA aims
searching for directions with optimal potential energyngsi & minimizing the within-class variance and maximizing the
attractive and repulsive forces. In our case sample pairsQftween-class distance, KSDA does something similar, but
each class are connected by springs, while those of differ&3sed on within-class attractive and between-class repuls
classes are connected by antisprings. New features canf@ges. The results presented in Figs. (C) and (F) have dylea
easily extracted by taking the projection of a new point igeparable class structure like those obtained using KLDA.
those directions having a small spread in each class, while

different classes are spaced out as much as possiblé(tgt £ Reducing the Computational Cost

the potential of the spring model along the directiorin F,
be defined by As we have already seen, all four methods lead to a

(generalized) eigenproblem that involves finding the stetry

u points of the objective functiorr(v), defined in the form

Z ((o(x:) = &(x;)) "v)? [0, 27) of a Rayleigh quotient. During optimalization, the vector
b=l consists of the linear combinations of the images of the data
where points X in the kernel feature space. Without doubt, if the
1, if L) = £() o amount of data pointskj is large, then thek x k sized
Ol = { 1’ otherwise i,j=1,...,k. (28) matrices that are needed for constructing) — hence for

solving the eigenproblem — can be so big that they pose seriou

Naturally, the elements of matri® can be initialized with computational and memory management problems.

values different fromt=1 as well. Each element of the matrix Fortunately, in most practical problems goeddirections

can be considered as a kind of spring quotient and each @ be found even if we use only<< k data points instead

be set to a different value for any pair of data points. of k when constructing the linear combinations. Let us denote
As before, we again suppose that the directiensan be the indices of these samples byl < i1 < --- < i, < k.

constructed as the linear combinations of the images of theis easy to check that by just using these data items the

data points inF. That is, formulas we obtain for the function(a) can be expressed by
v = Xsa (29) the following:
) . . . . a'iKT(I-DK i«
where X4 = [¢(x1), ..., ¢(xx)]. To find the directions with KPCA, KICA:  — e ——, (35)
1 1 I 1 1 T T _7
large potentials, let the objeg'zl;/(e fu)nctlonbe defined by KLDA: ZTETE?—;S;Z’ (36)
_ o T(K] (6-0)K
T(e) =~ 5~ (30) kspa: 2 (K1 (6-0))a (37)



where « is a vector of dimensionr, K; is the matrix Both applications require a real-time response from the

constructed from the columnys, - - -, i, of the kernel matrix system in the form of an easily comprehensible visual feed-

K, and K, is the minor matrix determined by the rows andback. With the simplest display setting feedback is given by

columns ofK with indicesiy, - - -, i,.. Based on these formulas,means of flickering letters, their identity and brightnesing

the eigenproblems to be solved are now reduced to a matijusted to the speech recognizer's output. Figure 4 shows

of sizer x r. In practice, this matrix usually has no more thathe user interface of “SpeechMaster”, in the teaching readi

a couple of dozen or a couple of hundred rows and colummsd the speech therapy applications, respectively. As ane ¢
Of course, a key issue here is the strategy for choosing tee, in the first case the flickering letter is positioned aver

r indices. Numerous selection strategies are possible fnem traditional picture for associating the word and word sqund

random selection to the exhaustive search approach. In tisile in the latter case it is combined with a web camera image

paper we restrict our investigations to two different setec which helps the impaired student learn the proper artioulat

techniques. The first one is the simplest case when we chpssitions.

samples randomly, why in the second we employed the kernel

variant of the sequential forward floating selection (SFFEH) B. Evaluation Domain

method with tI_'1e LDA optimization criterion [37]_' For training and testing purposes we recorded samples from
One more issue occurs that we need to discuss here é

is well-known that for the linear feature extraction metsodi children aged between 6 and 8. The ratio of girls and
- 9% - 5009 i
PCA. ICA, LDA and SDA, the size of the problem is tharsoys was 50% - 50%.The speech signals were recorded and

tored at a sampling rate of 22050 Hz in 16-bit quality.

of the original feature. space. However, it depends on trllze::\ch speaker uttered all the Hungarian vowels, one after the
number of the samples in the kernel counterparts. Desm@thother separated by a short pause. Since we decided not to

differences, if the kernel function is defined by the simpie ddiscriminate their long and short versions, we only worked

_ T i -
Fhmd.léc“‘;.(tx’z) x a?g thr—.;hfealiure T?p IS Ir et§I|zedf k;%’ with 9 vowels altogether. The recordings were divided into a
€ identity ¢(x) = x) then the kernel formulation o € train and a test set in a ratio of 50% - 50%.

methods (dual representation) are undoubtedly equivatent

the corresponding linear cases (primal representatiohyi-O ,

ously, as in practice the feature space is of lower dimengionC- Acoustic Features

is worth using the linear methods when the simple dot productThere are numerous methods for obtaining representative
kernel is chosen. Now we show that the nonlinear formuldeature vectors from speech data [24], but their common
obtained this kernel function are readily traced back to thsoperty is that they are all extracted from 20-30 ms chunks
linear ones. Let us notice that in this case the kernel matdx "frames” of the signal in 5-10 ms time steps. The sim-

K is equal toX " X, thus plest possible feature set consists of the so-called ealed
_ _ filterbank log-energies (FBLE). This means that the sigeal i
L EXTX(I-DX " Xa  vIiX(I-DXTv . e .
PCA, ICA: TS = T , (38) decomposed with a special filterbank and the energies i thes
LDA: e X X(R-DX"Xa _ v X(R-DXTv (39) filters are used to parameterize speech on a frame-by-frame
O‘TTXTTX({—R)XTTXQ VX({—R)X:" ’ basis. In our tests the filters were approximated via Fourier
spA: o X Xf;a@)x Noo _ VX(GV?(?,)X Y (40) analysis with a triangular weighting, as described in [24].

_ - Altogether 24 filters were necessary to cover the frequency
\ivherTe the vectow :TXa' and [natnces?(T(I—l)X , X(R— " range from 0 to 11025 Hz. Although the resulting log-energy
X', X(I - R)X and X(0 —©)X  are of the lower ygjyes are usually sent through a cosine transform to otitain

dimension. well-known mel-frequency cepstral coefficients, we abaredo
it for two reasons: (1) the transforms we were going to apply
11l. EXPERIMENT NO.1.: CLASSIFICATION OF have a similar decorrelating effect, and (||) we observed
STEADY-STATE VOWELS earlier that the learners we work with - apart from GMM

L ) i - are not sensitive to feature correlation so, consequethity

A. Application: A Phonological Awareness Teaching Systerigine transform would bring no significant improvement[33

The “SpeechMaster” software developed by our team sedksrthermore, as the data consisted of steady-state vowels,
to apply speech recognition technology to speech theragy dound in a pilot test that adding the usual delta and delttade
the teaching of reading. The role of speech recognition fisatures could only marginally improve the results. So only
to provide a visual phonetic feedback. In the first case tlie 24 filter bank log-energies formed this feature set, ywa
is intended to supplement the missing auditive feedback eftracted from the center frame of the vowels. Although it
the hearing impaired, while in the case of the latter it iwould be possible to stack several neighboring frames to for
to reinforce the correct association between the phonenaelarger feature set, because of the special steady-states na
grapheme pairs. With the aid of a computer children caf the vowel data used we saw no point in doing so.
practice without the need for the continuous presence of theThe filterbank log-energies seem to be a proper feature
teacher. This is very important because the therapy of thet for a general speech recognition task as their spectro-
hearing impaired requires a long and tedious fixation phasemporal modulation is supposed to carry all the speech
Furthermore, experience shows that most children prefier coinformation [41]. But in the special task of classifying vels
puter exercises to conventional drills. pronounced in isolation it is only the gross spectral shapée t
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Fig. 4. Screenshots of the ‘SpeechMaster” phonologicalemess teaching system. (A-B) The teaching reading parttensipeech therapy part, respectively.

carries the phonetic information. More precisely, it is Wmo that maximum likelihood training is not optimal from a
from phonetics that the spectral peaks (called formantd§ cadiscrimination point of view, as it disregards the compgtin
the identity of vowels [41]. To estimate the formants, welasses. Several alternatives have been proposed, such as
implemented a simple algorithm that calculates the gravitaximum Mutual Information (MMI) [42], [54] or Minimum
centers and the variance of the mass in certain frequenadsba@lassification Error (MCE) criteria [30], [31]. Although d¢ke
[2]. The frequency bands are chosen so that they cover ileernative training methods can significantly boost tlassifi-
possible place of the first, second and third formants. Thigtion performance, the increased computational reqeinésn
resulted in 6 new features altogether. — especially when embedded in a hidden Markov model
A more sophisticated option for the analysis of the spectr@diMM) — seems to be a deterrent to their widespread usage.
shape would be to apply some kind of auditory model [21Here we will utilize the EM algorithm with the following
Unfortunately, most of these models are too slow for a reaetup. As EM is an iterative technique, it requires a proper
time application. For this reason we experimented with thmitialization of the parameters. To find a good starting pa-
In-Synchrony-Bands-Spectrum of Ghitza [19], because it iameter set we appligetmeans clustering [16]. Sindemeans
computationally simple and attempts to model the dominanckistering again only guaranteed finding a local optimum, we
relations of the spectral components. The model analyses thn it 15 times with random parameters and used the one with
signal using a filterbank that is approximated by weightinthe highest log-likelihood to initialize the EM algorithrAfter
the output of an FFT - quite similar to the FBLE analysisexperimenting, the best value for the number of mixtukes
In this case, however, the output is not the total energy wls found to be 3. In all cases the covariance matrices were
the filter, but the frequency of the component that has tlierced to be diagonal.

maximal energy, and so dominates the given frequency band2) Artificial neural networks: Since it was realized that,

Obviously, the output resulting from this analysis corsaio under proper conditions, ANNs can model the class posterior

information about the energies in the filters, but only abow]' neural nets are becoming evermore popular in the speech
their relative dominance. Hence we supposed that thisrkeatl’J

| he FBLE f ) X ecognition community. In the ANN experiments we used
set complements the eatures in a certain sense. o most common feed-forward multilayer perceptron nekwor

with the backpropagation learning rule. The number of nesiro
D. Learners in the hidden layer was set at 18 in each experiment (thisevalu

Describing the mathematical background of the learni as F:hosen empirically, based on preliminqry (_axperiments)
algorithms applied is beyond the scope of this paper. Besid raining was stopped based on the cross-validation of 15% of

we believe that they are familiar to those who are acquaint training data.
with pattern recognition. So in the following we specify ynl  3) Projection Pursuit LearningProjection pursuit learning
the parameters and the training algorithms used with eagha relatively little-known modelling technique. It can be
learner, respectively. viewed as a neural net where the rigid sigmoid function is
1) Gaussian mixture modelingThe most widely used replaced by an interpolating polynomial. With this modifi-
method for modeling the class-conditional (continuous dication the representation power of the model is increased,
tribution of the features is to approximate it by means of o less units are necessary. Moreover, there is no need for
weighted sum of Gaussians [14]. Traditionally the paramseteadditional hidden layers: one layer plus a second layer with
are optimized according to the Maximum Likelihood (ML)linear combinations will suffice. During learning the model
criterion, using the expectation-maximization (EM) altfun. looks for directions in which the projection of the data fsin
It is well known, however, especially in the speech commyunitan be well approximated by its polynomials, thus the mean
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square error will have the smallest value (hence the nam@mmonly used in speech technology today. Firstly, this can
‘projection pursuit’). Our implementation follows the pap be attributed to the fact that the functions that a GMM (with
of [25]. In each experiment, a model with 8 projections and @giagonal covariances) is able to represent are more riestiiic
5th-order polynomial was applied. shape than those of ANN or PPL. Secondly, it is a consequence
4) Support Vector MachinesSupport vector machines is aof modeling the classes separately, rather than in the dase o
classifier algorithm that is based on the same kernel idda thize other three classifiers that optimize a discriminativere
we presented earlier. It first maps the data points into a-higlinction.
dimensional feature space by applying some kernel function As regards the transformations, an important observasion i
Then, assuming that the data points have become easiigt after the transformations the classification scordsndt
separable in the kernel-space, it performs linear claasifiss get worse compared to the classifications when no transforma
to separate the classes. A linear hyperplane is chosen wittiom was applied. This is so in spite of the dimension reaunti
maximal margin. For further details on SVM the reader mayhich shows that the features are highly redundant. Rergovin
peruse [53]. In all the experiments with SVM the radial bastbis redundancy by means of a transformation can make the

kernel function was applied. classification more robust and, of course, faster.
Comparing the linear and the kernel-based algorithmsether
E. Experimental Setup is a slight preference towards the supervised transfoomsati

rather than the unsupervised ones. Similarly, the nonlinea
Yansforms yielded somewhat better scores than the linear
ones. The best transformation-classifier combination gvew
varies from set to set. This warns us that no such broad claim
can really be made about one transformation being superior
ﬁ'ﬂ? the others. This is always dependent on the feature set and
Set5we added all the FBLE, SBS and gravity center featuref?:elerlscsrl:c’l'etrr.]emgrls\;vﬁifcﬁo;;Sir?{slr;hz(tzc?or??jri]f?:r::ttwe?r;i no

thus obtaining a set of 54 val_ues. . tflsks, different inductive bias can be beneficial [14].
As regards the transformations, in every case we kept only_. .
Finally, we should make some general remarks. First of

the first 8 components. We performed this severe dimensiop . .
L . . all, we must emphasize that both the transformations and
reduction in order to show that, when combined with th

. o : e classifiers have quite a few adjustable parameters,and t
transformations, the classifiers can yield the same scores | . N : ) . X
amine all parameter combinations is practically imgaesi

) e
spite of the reduced feature set. To study the effects Bflanging some of these parameters can sometimes have a

nonlinearity, the linear version of each transformatiosatso . ".° e : .
i : sjgnificant effect on the classification scores. Keeping thhd
used on each feature set. To obtain a sparse data represent R L
.the no free lunch theorem) in mind, our goal in this paper was
for the kernel methods, we reduced the number of data points ) . ;

. : . . to show that the nonlinear supervised transformations treve
to 200 by applying the SFFS selection technigue dlscusste

. S ; ; endency to perform better (with any given classifier) thHam t
earlier. Preliminary experiments showed that using mota d"Tllnear and/or unsupervised methods. The results here seem t
would have no significant effect on the results. '

In the classification experiments every transformation wzlylusStlfy our hypothesis.
combined with every classifier on every feature set. Thi )
resulted in the large table of Table I. In the header of thketab?\/' EXPERIMENTNO.2.: TIMIT PHONE CLASSIFICATION
PCA, ICA, LDA and SDA stand for the linear transformationé\. Evaluation Domain
(i.e. the kernelx "z was used), while KPCA, KICA, KLDA In the vowel experiments the database, the number of
and KSDA stand for the nonlinear transformations (with afeatures and the number of classes were all smaller than in
exponential kernel), respectively. The numbers shown fage ta common speech recognition task. To assess the appligabili
recognition errors on the test data. The number in pareisthesf the algorithms to larger-scale problems, we also ran ghon
denotes the number of features preserved after transfiomatclassification tests on the TIMIT database. The train ant tes

In the experiments 5 feature sets were constructed fr
the initial acoustic features, as described in SectiorBlIl.
Setlcontained the 24 FBLE features. Bet2we combined
Setlwith the gravity center features, s®et? contained 30
measurementsSet3was composed of the 24 SBS feature
while in Set4we combined the FBLE and SBS sets. Lastly,

The best scores of each set are given in bold. sentences were chosen as usual, that is 3696 ‘sx’ and ‘si’
sentences formed the train set ( 142909 phone instanceak), an
E Results and Discussion the complete test set (1344 ‘si’ and ‘sx’ sentences) were use

ar testing (51681 phone instances). The phone labels were

Upon inspecting the results the first thing one notices Eused into 39 classes, according to [38]

that the SBS feature seB¢t3 did about twice as badly as

the other sets, no matter what transformation or classifier )

was tried. When combined with the FBLE feature3e() B- Acoustic Features

both the gravity center and the SBS features brought somd-or the frame-based description of the signals we again

improvement, but this improvement is quite small and variesed the bark-scaled filterbank log-energies. 22 filtersewer

from method to method. applied to cover the 0-8000 Hz frequency range of the TIMIT
When focusing on the performance of the classifiers, ANMecordings.

PPL and SVM vyielded very similar results. They, however, Because the phonetic segments of the corpus are composed

consistently outperformed GMM, which is the method mosif a varying number of frames, an additional step was reduire
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TABLE |
RECOGNITION ERRORS ON EACH FEATURE SET AS A FUNCTION OF THE TRISFORMATION AND CLASSIFICATION APPLIED

feature classifier none PCA ICA LDA SDA KPCA KICA KLDA KSDA
set (all) (®) ®) ©) ®) ®) (®) ®) ®)

GMM 16.38% 13.81% 16.45% 14.37% 15.06% 15.20% 13.68% 12.43%0%2.
ANN 10.34% 9.86% 9.93% 10.97% 958% 9.86% 9.58% 8.05% 7.98%

Set1(24) PPL 11.04% 10.06% 10.69% 9.51% 9.93% 895% 951% 7.98% 8.75%
SVM 9.93% 10.00% 8.95% 8.05% 8.05% 8.88% 8.26%6.73% 7.22%
GMM 13.33% 11.38% 13.33% 12.84% 13.33% 13.47% 12.36% 10.279%31%.
ANN 7.43% 8.05% 7.36% 1.77% 6.18% 6.52% 8.19% 5.69% 6.66%

Set2(30) PPL 9.37% 859% 6.54% 6.11% 6.45% 6.59% 6.45%.93% 6.66%
SVM 8.33% 6.66% 6.66% 6.45% 513% 7.36% 6.11% 527% 5.34%
GMM 2590% 23.19% 2590% 22.91% 24.37% 25.13% 24.65% 23.05%152.
ANN 20.00% 18.88% 19.58% 21.45% 20.00% 21.04% 18.54% 18.26%84%.

Set3(24) PPL 20.48% 20.69% 19.58% 20.00% 20.76% 18.88% 19.16% 17.84%548.
SVM 19.65% 20.69% 18.88% 17.36% 19.58% 19.79% 18.33% 16.526045%
GMM 13.95% 12.01% 1590% 13.81% 14.16% 15.34% 12.08% 10.00% 39%.9
ANN 10.27% 9.86% 8.05% 9.02 % 895% 7.36% 9.86%.55% 7.56%

Set4(48) PPL 10.48% 895% 9.37% 8.95% 9.44% 7.36% 9.09% 6.18% 7.98%
SVM 9.09 % 9.79% 8.26% 6.04 % 756% 8.75% 597% 576% 6.25%
GMM 1548% 12.29% 13.33% 11.04% 13.75% 11.73% 11.87% 10.83%9%.
ANN 8.68 % 7.01% 6.45% 10.00% 756% 9.09% 6.59% 718 4.93%

Set5(54) PPL 8.26 % 9.23% 7.36% 6.52% 729% 805% 7.77% 6.18% 7.77%
SVM 9.37% 854% 5.76% 4.65% 562% 6.11% 576% 6.18%.23%

to make them tractable for the transformations and learasrs only from the 4 wide bands described above. Altogether, 123
these need all segments to be represented by the same nursbgmental features were extracted from every phone irstanc
of features. For this we applied the very simple strategy @b justify the correctness of our representation we ran some
dividing each segment into three thirds, and averaging tpecliminary classification tests, and the results were ctoge
filterbank energies over these subsegments (from a sigt@mthose of others using a similar feature extraction temimi
processing view this means a non-uniform smoothing afi20], [10].

resampling). This method was popularized mainly in the SUM-

MIT system [20], but was also successfully applied by othe@_ Learners

as well [10]. To allow the learner to model the observation _ .
context at least to a certain level, additional averagertiggek _ 1he TIMIT data setis much bigger than our vowel database.

energies were calculated at the beginning and end of th@nsequently, we had no capacity to test every combination

segments. For this aim 50-50 ms intervals were consider‘éﬁjthe classifiers and learners, as we did in the case of the
at both sides. vowel data. Thus we decided to restrict ourselves to two

] ) classifiers only. ANN was chosen because of its consistently

Besides the resulting x 22 = 110 energy-based featuresy,qq performance and relatively small training time. THeeot
per segment, the length of the phone was also utilized. Burthg|assifier was selected based on the following rationale Th
more, similar to the usual frame-based description st$¢g min aim of transforming the features space is to rearrange
we found that derivative-like features can be very usgfuuut— Bihe data points so that they become more easily modelable by
in our case extracted only at the segment boundaries. Thﬂ?@subsequent learner. In accordance with this, the temsf
were c.alculated. by RASTA-filtering the'energy trajectoaes | st bring the most improvement when applied prior to a
then simply taking the frame-based differences at the bound,mer with a relatively small representation power. So, a
aries. The role of RASTA filtering is to smooth the trajectSri e second classifier we chose C4.5. This is a well-known
by removing those modulation frequency components that igssifier in machine learning and, when trained on numierica
perceptually not important [23]. In preliminary experin®n yaia it has a very restricted representation technique.
we have found that it is unnecessary to calculate these—deltal) Artificial neural networks: In all the experiments the
features in every bark-'wide frequency channel. Rather, YRIN had 38 inputs and 300 neurons in the hidden layer.
have concluded that it is enough to extract them from fewgfining was stopped based on cross-validation over 15% of
but wider frequency bands (this idea was in fact motivated By, training data.
physiological results_ on the tuning curves o_f cochlear ews| 2) C45: C45 is a very well-known and widely used
onset cells). Accordingly, only four 6-bark wide channele/ ¢\, sifier in the machine learning community [44]. For those
used to calculate the delta features, altogether resullir®) o prefer a statistical view, very similar learning scheme
of them (4 - 4 at each boundaries). can be found under the name Classification and Regression

Finally, we have observed that smoothing over the segmdmtes [9]. This method builds a tree-based representation f
thirds can sometimes remove important information, esigci the data, and was originally invented with nominal features
when working with long phone instances. To alleviate thie, wmind. The algorithm was however extended for the case of
extended our feature set with the variances of the energiesmerical features. In this case the algorithm decompdses t
calculated over the segments. These were again calculdiesature space into rectangular blocks by means of axis-wise



12

hyperplanes. The hypercubes are iteratively decompoged in 45 ‘ ‘ — AW
smaller and smaller ones, according to an entropy-based tre -- C45
building rule. This hashing of the feature space can be stpp
by many possible criterions. Finally class labels are httdc A
to each hyperbox, but posterior probability estimations ar
also easily attainable based on frequency counts. Obyiousl
the limited representation power of the model is caused
both by the axis-wise restriction on the hyperplanes and the
step-like look of the resulting probability estimations. the
experiments we used the original implementation of Quinlan
During tree building the minimum number of data points per \
leave was set to 24. The default parameters were used in every 251

other respect.

35¢ ~
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classification error
.
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D. Experimental Setup dimension
Both the ANN and C4.5 classifiers were combined withig- 5. Classification error as a function of the number of fwkept in the
each transformation. In the case of the kernel algorithms W&"'Se "ePresentation.
always used the Gaussian RBF kernel (see Eg. 4). The number

of features extracted by the transformations was always set TABLE I
to 38, that is the number of classes minus one. This value RECOGNITION ERRORS ONTIMIT
was chosen because LDA cannot return any more components ANN €45 ANN €45

. . . L . none 28.43% 49.869 none 28.43% 49.869
(without tricks like splitting each class into subclasses)d PCA 28.22% 47.93% | KPCA 26.49%  38.42 %

to keep the results comparable we used the same numberica 29.01% 50.11% KICA 27.23% 40.21%
of features for the other transformations as well. As regard | LDA 27.12%  41.31% KLDA  25.11%  33.12%
sparse data representation, because of the large size of th SDA  27.93% 43.12% KSDA 25.93% 34.68%
database we could not apply the SFFS technique (as its (A) (B)

memory requirement is a quadratic function of the database

size). So we decided to select the data points randomlyi,r@arﬁ*

ecause of the flexibility of ANN representation, comparmed t
from 100 points, and iteratively adding further sets of 10, y P P

points. This was done in order to see how the number oe axis-wise rigid separation hyperplanes of C4.5.
points affected performance.

We were also interested in whether the choice of the contrast V. CONCLUSIONS AND FUTURE WORK
function of ICA influences its class separation abilities. T

thi diol bout thi ; d tests with IThe main purpose of this paper was to compare several
IS end 1o fearn more about this We periormed ests wi %'Iassification and transformation methods applied to phmene
three contrast functions listed in Eq. (18). Both linear |&Ad

. X . classification. The goal of applying a transformation can be
Kernel-ICA {with an RBF kernel) were tried with all three@imension reduction, improvement of the classificatiorreso

contlrlaj_tﬁfunctlonsb'l'the rtisu[ﬁMsif]ro(\jmid ttr?at th?re ;/\:cere t9 Vincreasing the robustness of the learning by removing the
small differences, but on the ata the contrast fumcti noisy and redundant features.

G seemed to behave the best. In the rest of the test we alwaya/e found that nonlinear transformations in general lead

worked with this contrast function. to better classification than the nonlinear ones, and thes ar
a promising new direction for research. We also found that
E. Results and Discussion the supervised transformations are usually better than the
The results of iteratively increasing the number of datansupervised ones. We think that it would be worth looking
points are plotted in Fig. 5. On every set Kernel-LDA wa#or other supervised techniques that could be constructed i
applied, with a subsequent ANN and C4.5 learning. Themilar way to the SDA or LDA technique. These transforma-
diagram shows how the classification error changes when timns greatly improved our phonological awareness teachin
number of data is increased with a step size of 100. Cle&sy, tsystem by offering a robust and reliable real-time phoneme
improvement is more dramatic for the C4.5 than for the ANN:lassification. They also result in increased performante o
In both cases there was no significant improvement beyondh& TIMIT data.
sample size of 600. In the following experiments we always Finally, we should mention that finding the optimal param-
used this set of 600 points in the kernel-based tests. eters both for the transformations and the classifiers it qui
The classification errors are summarized in Table Il. Inde-difficult problem. In particular, the parameters of thenga
pendent of the learner applied, we can say that the supdrvisermation and the subsequent learner are optimized separat
algorithms performed better than the unsupervised ones, at present. A combined optimization should probably preduc
that the kernel-based methods outperformed their linean-co better results, and there are already promising resultli t
terparts. The differences are more significant in the case difection in the literature [6]. Hence we plan to invest®at
the C4.5 learner than in the case of ANN. This is obviouslyarameter tuning and combined optimization.
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