

CLIENT BEHAVIOUR PREDICTION IN A PROACTIVE VIDEO SERVER

Péter Kárpáti

University of Klagenfurt, Austria,
Department of Information

Technology
kpeter@itec.uni-klu.ac.at

András Kocsor
University of Szeged, Hungary,
Research Group on Artificial

Intelligence
kocsor@inf.u-szeged.hu

László Böszörményi
University of Klagenfurt, Austria,

Department of Information
Technology

laszlo@itec.uni-klu.ac.at

ABSTRACT
We present a possibility how to add proactive behaviour
to Video-on-Demand systems. To do so we propose
categorizing videos and using external information as
well as observing the behaviour of our clients. We
examined 23 predictor functions on artificial and real
datasets using different similarity measures to compare
them. Our model is quite simple; therefore some
extensions are proposed at the end.
KEY WORDS
Proactive, Video-on-Demand, ADMS, Client Behaviour
Prediction, Ranking

1. Introduction

On-demand streaming can be regarded as a solved
problem, at least inside a good local area networking
environment, as often used by enterprises. The same
techniques may, however, lead to unsatisfactory results if
used in general a Internet setting. Therefore, it seems to
be a good idea to create a video server that is able to make
local copies of its code and the required parts of its videos
at the place where these are needed. Thus, the clients have
the impression of being served by a local enterprise server
for the price of a few, more or less idle nodes which
temporarily host the downloaded code and videos.
Such a video server implements an offensive adaptation
strategy [1]. As videos are usually large in size,
replication itself may take a considerable time. Therefore,
the videos should be replicated in advance – in other
words proactively. This was our basic motivation in
creating a proactive and offensively adaptive video server.
Every proactive server needs to know something about
the future behaviour of its users. It can obtain this
information from outside the system or make predictions
with the help of observations about the past. Our server
uses a mixture of these two approaches. It can predict on
its own which clients are interested in a given video topic
and is able to use external hints about the popularity of
videos. In this paper we examine different predictor
functions (simple moving averages, autoregressive
moving averages, a neural network approach) which help
the server to choose which clients will be covered by
proactive adaptation. We investigate the predictors in two

different test scenarios: in an artificial one and in a real
one. In order to compare the results of the predictors we
have three different similarity measures at our disposal.

1.1 ADMS

The client behaviour prediction is investigated in the
context of our Adaptive Distributed Multimedia
Streaming Server (ADMS) [2]. ADMS consists of four
components: the Data Distributor (DD) distributes the
videos, received from a Production Client, onto Data
Managers (DM) which store stripe units of the videos.
The Data Collector (DC) collects these units, assembles
them and streams the requested video to a Retrieval
Client. Finally the ADMS Controller (AC) organizes how
the server works. When a component in the system is
overloaded, the server is able to set up new components
and also to migrate and replicate videos between DM
groups, thus complying with the new requests.

Fig 1. ADMS architecture

To achieve this, the ADMS relies on an appropriate
middleware called Vagabond2 [2] which makes it
possible for the ADMS to load and evacuate its
components to and from nodes belonging to the
middleware (so-called Harbours). For this paper the
following two components of Vagabond2 are of special
importance: the Resource Broker which provides
information about the free capacities of different
resources in the system and which can predict a future

state of the resources with a given probability, and the
Configuration Recommender (CR) which can suggest an
optimal configuration of the server to fulfil a group of
requests. A configuration consists of the placement of the
components, the relationships <Video Instance – DMs>,
<DMs – DCs> and <DCs – Clients> and defines which
client gets which variation of a video and in which way.
The CR can give recommendations for light-weight
actions such as placing DC components [3] or for heavy-
weight actions such as replicating or migrating video
instances. (Under the term light-weight actions we
consider those which can be accomplished quickly and do
not need too many resources in contrast to the time-
consuming and/or resource-intensive heavy-weight
actions.) The CR provides an optimal spatial
configuration at a certain point in time. In this paper we
discuss how to add temporal optimization, based on
predictions.
State-of-the-art streaming servers (e.g. Darwin Streaming
Server [4], Helix Universal Server [5, 6]) use static
organization which means that their composition can only
be changed by a manual system reconfiguration. A self-
organizing streaming server (like ADMS) is capable of
automatically distributing service code and/or content to
another server machine.

1.2 Videos and popularity hints

In our model the videos are divided into two groups:
series and one-off programmes (or non-series). Series are
broadcast regularly within a short period of time and the
parts have something in common. The clients can
subscribe to series and define a periodic slot in which to
watch the latest episode(s). It also means that proactive
distribution is not a problem since the clients tell the
server their future behaviour. One-off programmes are
independent videos. They usually have one dominant
topic and they are what we are focusing on. In our model,
the server wants to identify the clients who are most
interested in the topic of a given video and to place it near
them if it’s worth it.
Popularity hints are injected from outside into the system.
They predict what percentage of the clients who are
interested in the topic of a certain video will be interested
in the video itself. This could be estimated from the cost
of advertising or from previous experiences (e.g. of
another country). The control mechanism of the server
predicts the ranking of the users interested in the given
topic and then chooses the best clients with the given
percentage. It will try to distribute the video close to these
clients if it’s worth it. (For an example see [7].)

2. Related works

A related area to ours is Web prefetching. In some of
these systems a threshold probability is selected and
objects whose estimated probability of use exceeds that
threshold before modification or eviction from the cache
are fetched, in order to achieve balance between the

benefits and costs. Prefetch-Nice [8], a non-interfering
Web prefetching system, suggests a way to get rid of the
threshold which is difficult to set. The prediction
algorithm can specify arbitrarily long lists of the most
beneficial objects to prefetch, sorted by benefit. Requests
for these objects are issued in sorted order and it is
ensured that these requests do not interfere with demand
requests or other system activities. The clients send their
access histories to a hint server which computes a hint list
consisting of the most probable documents that the client
will request in the future. This approach is similar to ours
but there are some differences as well. The type of
information and the means used by the prediction in both
systems are similar but the purpose and the way of usage
are different. Their hint list contains Web objects and
depends on the experienced popularity of the objects and
the access pattern of the specific user, while ours contains
clients sorted by their relative ranks inside a client group
for a specific video topic. The effects of the actions in the
systems are different as well because Web objects are
usually smaller and less resource intensive than videos but
more frequently used. Therefore we want to perform
fewer but longer valid actions, supporting them with hints
from outside the system (which is less usual in Web
prefetching systems because of the short validity and the
large number of objects).
E-Commerce sites (like Amazon.com or Reel.com) use
recommender systems to increase their sales [9]. For
example, the Amazon.com “Customers who bought”-type
recommendation generates a list of books which contains
books frequently purchased by customers who purchased
the selected book. This type of recommendation is based
on item-to-item correlation and could be used to support
our predictions. We could recommend videos which a
client might be interested in and which can be accessed in
good quality by them in the given situation.

3. Client behaviour prediction

When a video is loaded into the system, meta-information
about it is provided using MPEG-7 descriptors regarding
the physical, qualitative (MediaFormat D) and content-
dependent (Classification DS) features of the video. Our
prediction is based on the topic (Classification DS,
Subject field). Currently, we assume that each video
belongs to precisely one topic.
In the case of one-off programmes, we want to find out
which of our clients are most interested in the topic of a
given programme. Therefore information about the users’
past interests is collected and used to rank the clients
regarding their probable interest in a given video. In
addition, popularity hints can be attached to the videos,
which indicate what percentage of the people who are
interested in the topic of the video will most probably
watch the video. The server chooses a certain percentage
of the most interested clients (e.g. according to the
percentage given in the popularity hint), asks the CR for
recommendations for these clients and schedules the
appropriate actions (replicating videos, setting up

software components) to establish the supposed
configuration.
It is important to emphasize that we do not want to
predict the future request of single clients, but the ranking
of the clients according to their interest in a given video
topic. Therefore the result of a prediction is a ranked list
of clients. The predictions relate to the very next period in
the future.

3.1 Simple moving average predictors

We present seven predictor functions here, some of them
with more parameter settings. The values of the predictors
are computed periodically, the length of the periods is
equal and set externally (e.g. one week). Within every
period, the value of the requests made by a client for a
specific topic is stored in an entry of a history vector (h).
Each element of h represents one period. A client’s
request contains the title of the video, the required date of
the streaming and the client identifier. Each video
instance has a value depending on the applied business
model. In the artificial experiment (section 4.1) each
video has the value 1, while in the real scenario (section
4.2), the value was the size of the requested object in
bytes. The predictors compute their new values at the
beginning of a new period from the values of the last N
periods. For some predictors the size of h is one, for
others it can be set externally.
We used two simple predictor functions: the Last Value
and the Last Difference. The Last Value predictor always
returns the most recent value, while the Last Difference
predictor adds the last difference to the last value.
We used five other moving average predictor functions.
The Sum predictor adds up the last N values and does the
ranking accordingly. This predictor does not take into
account how far back the periods are. The Binomial
predictor considers the last value with α weighting and the
average of the previous N-1 values with 1-α weighting.
We chose 0.75, 0.5 and 0.25 for α. This predictor can
emphasize the most recent period and treats the older ones
as equal. The Quadratic predictor uses quadratic weight
depending on the distance back in the time; the older a
value is, the lower the weighting. This predictor
prioritizes the number of requests in more recent periods.
The last two predictors are the approximations for the
Binomial one and for the Quadratic one. They use the last
predicted and the last measured value for their
predictions. (More details in [7].)

3.2 Autoregressive moving average and neural
network based predictors: LPC, ARMA and ANN

In this section we continue to discuss the predictors under
investigation used for estimating the clients’ requests. The
moving average methods mentioned above and their
weighted counterparts are subsets of Autoregressive
Moving Average (ARMA) time series models [10,11].
The basic idea behind ARMA is that the predicted value
for the variable to be forecast is a weighted average of

several previous values and the errors of the forecast at
several previous time points. Naturally, the predicted
value will not be perfectly accurate, but applying the error
values in future weighted averages may produce more
precise forecasts. The ARMA(p,q) model can be
represented by the formula:

)()1()(

)()1()(

1

1

qtectecte

ptyatyaty

q

p

−++−+
=−++−+

L

L

where y(t) is the value of the time series at time t, e(t) is
the prediction error (i.e. the difference between the
predicted value and the actual one), while a1…ar and
c1…cq are free model parameters. Once we have fixed the
model parameters, the actual predicted value)(~ ty of the
time series can be computed by:

)()1(

)()1()()()(~

1

1

ptyatya

qtectectetyty

p

q

−−−
−−++−=−=

L

L

Since in our case it is necessary to estimate the model
parameters on line when the input data has been received,
we apply - throughout this study - the recursive parameter
estimation scheme with a normalized gradient approach
(see [12]) as an adaptation method for fitting the model
parameters. Linear Prediction Coefficients or LPC was
originally a signal processing tool with applications in
speech coding and filter design. LPC is a special case of
ARMA modelling when q=0. It employs the
autocorrelation method of autoregressive (AR) modelling
to find the coefficients a1…ar , which leads to the well-
known Yule-Walker equations [13]. As these equations
form a symmetric Toeplitz-type linear equation system
one can readily find the solution using the Levinson-
Durbin algorithm [12]. We took this approach before
carrying out our experiments. For testing purposes we
employ the ARMA model with the parameter set
(1,1),(1,2),...(3,3).

Besides the standard ARMA modelling approach, we
also try an artificial neural network (ANN) approach as it
is a viable technique for time series prediction as well
[13]. We conduct experiments with this ANN method for
the purposes of comparison. We train a linear network on
a step-by-step basis in order to predict a time series. The
network has p inputs, p delayed values of the time series,
and has only one output which returns the predicted value.
We use the Widrow-Hoff learning algorithm based on an
approximate steepest descent procedure [14], with a value
of 0.1 or 0.2 as the learning rate for incremental training.

3.3 Similarity measures

Similarity measures are used to compare the examined
predictors with the perfect predictor. The perfect predictor
knows the values from the next period in the future. Their
similarities are measured by comparing the resulting
ranked lists. We have chosen three measures and

introduce to each measure a precision function which tells
us what percentage of the predictions is correct on
average. In the formulas n stands for the number of clients
in a certain list.
Kendall’s tau [15] operates with the concept of conflict
between elements. There is conflict between two elements
when they are in a different order in the two ranked lists.
Let C be the number of conflicts and N the number of
non-conflicts in two lists. Then this similarity measure is
defined as follows:
1. Kendall’s tau:)(/)(CNCNx +−=

 Precision: 2/)1(+x
Spearman’s footrule [16] uses the difference in rank of an
element in the two lists. πk(i) means the place of the i-th
element in permutation πk where the permutations are the
lists.
2. Spearman’s footrule:

() () ||
2

1
2

1
1 iix

n

i

ππ −= ∑
=

 Precision:
2

22
*, 




−




=− nn
nw

w

xw

Ulam’s distance [17] uses the maximum number of items
ranked in the same order by both of the lists to compute
the difference.
3. Ulam’s distance:

x = n – (the max number of items ranked
in the same order by the two lists)

 Precision: nxn /)(−

4. Test scenarios

4.1 Artificial dataset

We created 11 hypothetical clients with different request
characteristics (see Fig 2.). We had 200 periods, but
sometimes we show fewer periods (20 or 60) for sake of
better readability. If the characteristic does not change,
not all the periods are shown.
Client1’s need grows and shrinks linearly – a rather
abstract pattern of behaviour. Client2 is someone who
needs to watch videos because of her job (e.g. a film
reviewer or an advertisement developer). While running a
project, she requests more videos of the given topic and
between projects she only watches them on and off. We
could say that two phases alternate in the lives of Client4
and 5; sometimes they have more time, sometimes less
(e.g. somebody working only every second month). The
tendency of their characteristics is similar to the transition
from winter to summer when people are always outdoor
more (and therefore spend less time in front of a screen):
they watch fewer videos in their free time. The
characteristic of Client6 shows us “weekend users”, who
only watch videos on their days off. The number of
requests changes rapidly with Client7 depending on work

patterns (e.g. a doctor or a fireman who is on duty for
several days and then has a few days off.) In the case of
Client10 we could think of students preparing for exams.
There are universities where the students study one
subject per period and at the end they have the exam. Let
us assume that there are on-line videos about the lessons.
As the exams come closer and closer, and more and more
videos are available, the students’ activity watching the
videos of the lessons increases. Client11 is a random user.
Maybe it is harder to find an example for the clients who
were not mentioned, but they can serve as a useful
abstraction in order to get to know our predictors better.

Fig 2. Artificial clients’ characteristics (X: periods, Y:
number of requests)

We used regular, periodical characteristics here which
rarely exist in this form in reality. In the case of a real
user we expect some noise and less regular periodicity.
We decided to use these less realistic patterns for the
artificial dataset because they allow a more
comprehensive reasoning.

4.2 World Cup 98 web log

We chose the access log of the World Cup 98 Website
[18] to examine the predictor functions on a real dataset.
This log file was recorded between 1st May and 23rd July
1998. There were more than 109 requests and almost 5000
GB of data were delivered. The Website had more than
two and a half million clients. We chose the first 100
clients who requested the most content during the defined
period, calculated the quantity of data requested daily in
bytes, chose different period lengths given in days and
made predictions for the next period using a limited
number of previous periods as the basis. (All types of
Web-data were involved in the choice of the 100 best
clients because there was not enough video content.)
We predicted the ranked list of the clients regarding their
activity in the next period. The characteristics of the
clients’ behaviour were chaotic, with big jumps regarding

the amount of data requested through the periods, and
therefore less predictable.

5. Results

Here we present how the predictors are compared. We
measure their precision on more datasets. Two test
scenarios are chosen for comparison: one with artificial
data and one with real data. The general comparison
method works as follows:
Input: Spreadsheet of aggregated values of client
requests for those who are interested in the given topic
Step 1: Rank the requests using the different predictors
from period to period → ranked lists of clients
Step 2: Compare the ranked lists of a given period and
predictor with the list of the perfect predictor in the same
period using the 3 similarity measures → similarity values
Step 3: Compute the average similarity for each
predictor per similarity measure through the periods →
average similarities
Step 4: Compute the precision of the average similarities
for each predictor per similarity measure → precision of
the average similarities
Step 5: Compute the average precision for each predictor
→ average precisions
Step 6: Rank the predictors → predictor’s ranks (the
lowest is best)
In the case of M periods we used each predictor for the
last M-1 periods. (More details in [7].)

5.1 Results from the artificial dataset

We created eleven client sets plus a combined client set to
examine the predictor functions. First we generated five
subtypes for each of our eleven kinds of client who
always requested a constant number of videos, computed
as follows: Maximum client: max(v); Above average
client: avg(v)+(max(v)–avg(v))/2; Average client: avg(v);
Below average client: avg(v)–(avg(v)–min(v))/2;
Minimum client: min(v). Our aim with these five constant
clients was to study the precision and usability of the
predictors regarding the different characteristics of
requests. The twelfth client set consisted of the eleven
original clients. The value of past periods taken into
account by some predictors was set to 7.
We present the 3 most promising predictors in Table 1.
The first eleven sets with the generated clients are quite
easy to predict and the predictors mostly work very
precisely. The most precise predictor is the LPC with 95%
average precision (computed from the average precision
of all sets in column Sum.). It is 6% better than the second
best which is, surprisingly, the simplest, the Last value
(LV) predictor. The average fluctuation in the Summary
for the placements 2 to 9 is less than 3%, thus we could
think that those predictors are almost equal. But they
show quite great differences in precision depending on the
client set. (For example, Client sets 7, 8 and 9 are
especially hard for the Last value predictor because they
frequently contain big jumps, however, it is perfect for

Client set 3.) Client 11 has random behaviour for which
the two simplest predictors, the Binomial approximation
with α=0.75 (BA) and the Last value, are the best. We
expect a similar behaviour in real clients and therefore we
consider these two predictors to be promising candidates
for the future (alongside LPC). For the set of all original
clients (All) the LPC is best again, and it seems to be the
most precise predictor in general. If we also consider the
resource need of the predictors (e.g. CPU, how many
previous data they need to store per client), then we
should consider the Last value and Binomial
approximation predictors as well. (More details in [7].)

Table 1. Precision of the most promising predictors

5.2 Results from the World Cup 98 dataset

The request values (how many bytes of data requested a
client in a period) were quite large numbers in the case of
the 100 best clients. Therefore we used stepwise
normalization for the LPC, ARMA and the ANN
predictors. (More details in [7].)
We carried out 6 test scenarios with the period lengths of
1, 4 and 7 days, the number of past periods taken into
account being 4 and 7. We present the results of the 4
most promising predictors in Table 1. The first coordinate
in the column name is the period length in days while the
second is the number of past periods.

Table 2. Precision of the most promising predictors

LPC proved to be the best predictor again, followed by
the Quadratic (Q) and the Last value (LV) predictors 3%
below. LPC’s precision improved when the length of the
period and/or the number of the known past periods were

 Set 1 Set 2 Set 3 Set 4 Set 5
LV 0.96 0.96 1.00 0.98 0.98
BA 0.94 0.95 0.94 0.93 0.97
LPC 0.98 0.96 0.99 0.95 0.98
 Set 6 Set 7 Set 8 Set 9 Set 10
LV 0.94 0.77 0.80 0.78 0.94
BA 0.93 0.74 0.79 0.78 0.83
LPC 0.92 0.99 0.99 0.99 0.99
 Set 11 All Sum.
LV 0.89 0.66 0.89
BA 0.90 0.62 0.86
LPC 0.89 0.78 0.95

 (1.4) (1.7) (4.4) (4.7)
LV 0.58 0.58 0.58 0.58
BA 0.57 0.57 0.57 0.57
Q 0.57 0.57 0.58 0.57
LPC 0.56 0.57 0.58 0.58
 (7.4) (7.7) Sum.
LV 0.56 0.56 0.57
BA 0.55 0.55 0.56
Q 0.58 0.57 0.57
LPC 0.62 0.68 0.6

increased while the precision of Last value decreased
slightly when the period length was increased (the number
of past periods does not affect this predictor). The
Quadratic predictor’s precision fluctuated by around 58%
so it was quite stable. The Binomial approximation with
α=0.75 (BA) was the 4th best and thus a suitable
candidate for us. (More details in [7].)

6. Conclusions and future work

It is a major problem that no real and fitting data sets are
available and therefore we cannot draw general
conclusions about the current behaviour practice of our
potential clients. These test scenarios can only give us
directions for future research. The elaborate LPC
predictor proved to be the best among the chosen
predictors with quite good average precision values (95%
in the artificial case with all client sets, 78% with the set
of all original clients and 60% in the real, quite chaotic
scenario). We can see that the very simple Last value and
the Binomial approximation predictors performed
surprisingly well; therefore they are our “secret
favourites”. The Quadratic and ANN predictors proved to
be effective sometimes and therefore we should use them
in future experiments as well. Some of the ARMA
predictors gave good results in the different cases but
never the same ones. We are thinking about using this
approach with dynamic parameters settings.
We want to refine the model for the topics, for example a
hierarchical model with subtopics, like the classification
system in a library. Another alternative extension is if we
let the videos belong to more than one topic, for example
X% to topic A and Y% to topic B. In addition we want to
consider not only the topic of user interest but also the
preferred quality in the prediction. Alongside topic we
could also include the preferred quality in the prediction
(e.g. low quality for mobile clients).
We have to examine how well our popularity hint model
works. It would be interesting to use more information
from external sources, like the expected popularity hint
distribution of a video or knowledge about the “seasons”
of video viewing throughout the year.
Another issue is the similarity measures. We used three of
them and these computed quite large differences
regarding precision. In our case it is an important
difference if we predict the right order of our best clients
(which will be taken into account by the spatial
optimization) or of the entire group of clients. Therefore
we want to find better fitting similarity measures.
It would be interesting to identify general patterns in the
clients’ behaviour to classify them (if such patterns exist).
Each class could then have a best fitting predictor as the
result in the artificial scenario showed. When clients
change their behaviour pattern, the system should
recognise that, choose the new class and change the
predictor dynamically. We should identify a set of
predictors which fit the main types of clients.

References:

[1] Roland Tusch, László Böszörményi, Balázs
Goldschmidt, Hermann Hellwagner, Peter Schojer,
Offensive and Defensive Adaptation in Distributed
Multimedia Systems Computer Science and Information
Systems (ComSIS), Vol. 1, No. 1, Feb. 2004, pp. 49-77.
[2] Roland Tusch, Design and Implementation of an
Adaptive Distributed Multimedia Streaming Server, PhD
Thesis, University Klagenfurt, 2004
[3] Balazs Goldschmidt, Tibor Szkaliczki, Laszlo
Böszörmenyi, Placement of Nodes in an Adaptive
Distributed Multimedia Server, in Parallel Processing,
EuroPar 2004. LNCS 3149, Springer(2004) 776-783
[4] Apple Computer, Inc., QuickTime Streaming Server,
Darwin Streaming Server: Administrator’s Guide, 2002.
http://developer.apple.com/darwin/projects/streaming/.
[5] Helix Community, The Helix Platform, 2002,
https://www.helixcommunity.org/2002/intro/platform.
[6] Real Networks, Inc., Helix Universal Server
Administration Guide, 2003. ,
http://docs.real.com/docs/HelixServer9.pdf.
[7] Peter Karpati, Andras Kocsor, Laszlo Böszörmenyi,
Client Behaviour Prediction in a Proactive Video Server
Technical Reports of the Institute of Information
Technology, University Klagenfurt, TR/ITEC/04/2.18
http://www.ifi.uni-klu.ac.at/ITEC/Staff/Peter.Karpati/
EuroIMSA05/TechRep.pdf
[8] Ravi Kokku, Praveen Yalagandula, Arun
Venkataramani, Mike Dahlin, A Non-interfering
Deployable Web Prefetching System, in 4th USENIX
Symposium on Internet Technologies and Systems. Mar.
2003
[9] Schafer, J.B., Konstan, J.A., and Riedl, J.,
Recommender Systems in E-Commerce, 1999 in ACM
Conference on Electronic Commerce (EC-99), pages 158-
166.
[10] Box, G.E.P. and G.M. Jenkins (1976), Time Series
Analysis: Forecasting and Control, (2nd ed., San
Francisco: Holden Day).
[11] Gourieroux C. and A. Monfort (1997), Time Series
and Dynamic Models. (Cambridge: Cambridge University
Press).
[12] Ljung, L., System Identification: Theory for the
User, Prentice-Hall, 1987, pp. 278-280.
[13] Bishop, C. M. (1995), Neural Networks for Pattern
Recognition. (Oxford: Oxford University Press).
[14] S. Haykin, "Neural Networks", (Macmillan, 1994)
[15] M. G. Kendall, Rank Correlation Method. (Hafner
Publishing Company, New York, 1962. Third Edition).
 [16] C. Spearman, Footrule for measuring correlation,
British Journal of Psychology, 2:89-108, June 1906.
[17] S. M. Ulam., Future applications of mathematics in
the natural sciences, American Mathematical Heritages:
Algebra and Applied Mathematics. Texas Tech.
University, Mathematics Series., 13:101-114, 1981.
[18] http://ita.ee.lbl.gov/html/contrib/WorldCup.html

