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ABSTRACT 
We present a possibility how to add proactive behaviour 
to Video-on-Demand systems. To do so we propose 
categorizing videos and using external information as 
well as observing the behaviour of our clients. We 
examined 23 predictor functions on artificial and real 
datasets using different similarity measures to compare 
them. Our model is quite simple; therefore some 
extensions are proposed at the end. 
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1.  Introduction 
 
On-demand streaming can be regarded as a solved 
problem, at least inside a good local area networking 
environment, as often used by enterprises. The same 
techniques may, however, lead to unsatisfactory results if 
used in general a Internet setting. Therefore, it seems to 
be a good idea to create a video server that is able to make 
local copies of its code and the required parts of its videos 
at the place where these are needed. Thus, the clients have 
the impression of being served by a local enterprise server 
for the price of a few, more or less idle nodes which 
temporarily host the downloaded code and videos. 
Such a video server implements an offensive adaptation 
strategy [1]. As videos are usually large in size, 
replication itself may take a considerable time. Therefore, 
the videos should be replicated in advance – in other 
words proactively. This was our basic motivation in 
creating a proactive and offensively adaptive video server. 
Every proactive server needs to know something about 
the future behaviour of its users. It can obtain this 
information from outside the system or make predictions 
with the help of observations about the past. Our server 
uses a mixture of these two approaches. It can predict on 
its own which clients are interested in a given video topic 
and is able to use external hints about the popularity of 
videos. In this paper we examine different predictor 
functions (simple moving averages, autoregressive 
moving averages, a neural network approach) which help 
the server to choose which clients will be covered by 
proactive adaptation. We investigate the predictors in two 

different test scenarios: in an artificial one and in a real 
one. In order to compare the results of the predictors we 
have three different similarity measures at our disposal. 
 
1.1 ADMS 
 
The client behaviour prediction is investigated in the 
context of our Adaptive Distributed Multimedia 
Streaming Server (ADMS) [2]. ADMS consists of four 
components: the Data Distributor (DD) distributes the 
videos, received from a Production Client, onto Data 
Managers (DM) which store stripe units of the videos. 
The Data Collector (DC) collects these units, assembles 
them and streams the requested video to a Retrieval 
Client. Finally the ADMS Controller (AC) organizes how 
the server works. When a component in the system is 
overloaded, the server is able to set up new components 
and also to migrate and replicate videos between DM 
groups, thus complying with the new requests.  
 

 
 

Fig 1. ADMS architecture 
 

To achieve this, the ADMS relies on an appropriate 
middleware called Vagabond2 [2] which makes it 
possible for the ADMS to load and evacuate its 
components to and from nodes belonging to the 
middleware (so-called Harbours). For this paper the 
following two components of Vagabond2 are of special 
importance: the Resource Broker which provides 
information about the free capacities of different 
resources in the system and which can predict a future 



state of the resources with a given probability, and the 
Configuration Recommender (CR) which can suggest an 
optimal configuration of the server to fulfil a group of 
requests. A configuration consists of the placement of the 
components, the relationships <Video Instance – DMs>, 
<DMs – DCs> and <DCs – Clients> and defines which 
client gets which variation of a video and in which way. 
The CR can give recommendations for light-weight 
actions such as placing DC components [3] or for heavy-
weight actions such as replicating or migrating video 
instances. (Under the term light-weight actions we 
consider those which can be accomplished quickly and do 
not need too many resources in contrast to the time- 
consuming and/or resource-intensive heavy-weight 
actions.) The CR provides an optimal spatial 
configuration at a certain point in time. In this paper we 
discuss how to add temporal optimization, based on 
predictions. 
State-of-the-art streaming servers (e.g. Darwin Streaming 
Server [4], Helix Universal Server [5, 6]) use static 
organization which means that their composition can only 
be changed by a manual system reconfiguration. A self-
organizing streaming server (like ADMS) is capable of 
automatically distributing service code and/or content to 
another server machine.  
 
1.2 Videos and popularity hints 
 
In our model the videos are divided into two groups: 
series and one-off programmes (or non-series). Series are 
broadcast regularly within a short period of time and the 
parts have something in common. The clients can 
subscribe to series and define a periodic slot in which to 
watch the latest episode(s). It also means that proactive 
distribution is not a problem since the clients tell the 
server their future behaviour. One-off programmes are 
independent videos. They usually have one dominant 
topic and they are what we are focusing on. In our model, 
the server wants to identify the clients who are most 
interested in the topic of a given video and to place it near 
them if it’s worth it. 
Popularity hints are injected from outside into the system. 
They predict what percentage of the clients who are 
interested in the topic of a certain video will be interested 
in the video itself. This could be estimated from the cost 
of advertising or from previous experiences (e.g. of 
another country). The control mechanism of the server 
predicts the ranking of the users interested in the given 
topic and then chooses the best clients with the given 
percentage. It will try to distribute the video close to these 
clients if it’s worth it. (For an example see [7].) 
 
2.  Related works 
 
A related area to ours is Web prefetching. In some of 
these systems a threshold probability is selected and 
objects whose estimated probability of use exceeds that 
threshold before modification or eviction from the cache 
are fetched, in order to achieve balance between the 

benefits and costs. Prefetch-Nice [8], a non-interfering 
Web prefetching system, suggests a way to get rid of the 
threshold which is difficult to set. The prediction 
algorithm can specify arbitrarily long lists of the most 
beneficial objects to prefetch, sorted by benefit. Requests 
for these objects are issued in sorted order and it is 
ensured that these requests do not interfere with demand 
requests or other system activities. The clients send their 
access histories to a hint server which computes a hint list 
consisting of the most probable documents that the client 
will request in the future. This approach is similar to ours 
but there are some differences as well. The type of 
information and the means used by the prediction in both 
systems are similar but the purpose and the way of usage 
are different. Their hint list contains Web objects and 
depends on the experienced popularity of the objects and 
the access pattern of the specific user, while ours contains 
clients sorted by their relative ranks inside a client group 
for a specific video topic. The effects of the actions in the 
systems are different as well because Web objects are 
usually smaller and less resource intensive than videos but 
more frequently used. Therefore we want to perform 
fewer but longer valid actions, supporting them with hints 
from outside the system (which is less usual in Web 
prefetching systems because of the short validity and the 
large number of objects). 
E-Commerce sites (like Amazon.com or Reel.com) use 
recommender systems to increase their sales [9]. For 
example, the Amazon.com “Customers who bought”-type 
recommendation generates a list of books which contains 
books frequently purchased by customers who purchased 
the selected book. This type of recommendation is based 
on item-to-item correlation and could be used to support 
our predictions. We could recommend videos which a 
client might be interested in and which can be accessed in 
good quality by them in the given situation. 
 
3.  Client behaviour prediction 
 
When a video is loaded into the system, meta-information 
about it is provided using MPEG-7 descriptors regarding 
the physical, qualitative (MediaFormat D) and content-
dependent (Classification DS) features of the video. Our 
prediction is based on the topic (Classification DS, 
Subject field). Currently, we assume that each video 
belongs to precisely one topic. 
In the case of one-off programmes, we want to find out 
which of our clients are most interested in the topic of a 
given programme. Therefore information about the users’ 
past interests is collected and used to rank the clients 
regarding their probable interest in a given video. In 
addition, popularity hints can be attached to the videos, 
which indicate what percentage of the people who are 
interested in the topic of the video will most probably 
watch the video. The server chooses a certain percentage 
of the most interested clients (e.g. according to the 
percentage given in the popularity hint), asks the CR for 
recommendations for these clients and schedules the 
appropriate actions (replicating videos, setting up 



software components) to establish the supposed 
configuration. 
It is important to emphasize that we do not want to 
predict the future request of single clients, but the ranking 
of the clients according to their interest in a given video 
topic. Therefore the result of a prediction is a ranked list 
of clients. The predictions relate to the very next period in 
the future. 
  
3.1 Simple moving average predictors 
 
We present seven predictor functions here, some of them 
with more parameter settings. The values of the predictors 
are computed periodically, the length of the periods is 
equal and set externally (e.g. one week). Within every 
period, the value of the requests made by a client for a 
specific topic is stored in an entry of a history vector (h). 
Each element of h represents one period. A client’s 
request contains the title of the video, the required date of 
the streaming and the client identifier. Each video 
instance has a value depending on the applied business 
model. In the artificial experiment (section 4.1) each 
video has the value 1, while in the real scenario (section 
4.2), the value was the size of the requested object in 
bytes. The predictors compute their new values at the 
beginning of a new period from the values of the last N 
periods. For some predictors the size of h is one, for 
others it can be set externally.  
We used two simple predictor functions: the Last Value 
and the Last Difference. The Last Value predictor always 
returns the most recent value, while the Last Difference 
predictor adds the last difference to the last value. 
We used five other moving average predictor functions.  
The Sum predictor adds up the last N values and does the 
ranking accordingly. This predictor does not take into 
account how far back the periods are. The Binomial 
predictor considers the last value with α weighting and the 
average of the previous N-1 values with 1-α weighting. 
We chose 0.75, 0.5 and 0.25 for α. This predictor can 
emphasize the most recent period and treats the older ones 
as equal. The Quadratic predictor uses quadratic weight 
depending on the distance back in the time; the older a 
value is, the lower the weighting. This predictor 
prioritizes the number of requests in more recent periods. 
The last two predictors are the approximations for the 
Binomial one and for the Quadratic one. They use the last 
predicted and the last measured value for their 
predictions. (More details in [7].) 
 
3.2 Autoregressive moving average and neural 
network based predictors: LPC, ARMA and ANN 
 
In this section we continue to discuss the predictors under 
investigation used for estimating the clients’ requests. The 
moving average methods mentioned above and their 
weighted counterparts are subsets of Autoregressive 
Moving Average (ARMA) time series models [10,11]. 
The basic idea behind ARMA is that the predicted value 
for the variable to be forecast is a weighted average of 

several previous values and the errors of the forecast at 
several previous time points. Naturally, the predicted 
value will not be perfectly accurate, but applying the error 
values in future weighted averages may produce more 
precise forecasts. The ARMA(p,q) model can be 
represented by the formula: 
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where y(t) is the value of the time series at time t, e(t) is 
the prediction error (i.e. the difference between the 
predicted value and the actual one), while a1…ar and 
c1…cq are free model parameters. Once we have fixed the 
model parameters, the actual predicted value )(~ ty  of the 
time series can be computed by: 
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Since in our case it is necessary to estimate the model 
parameters on line when the input data has been received, 
we apply - throughout this study - the recursive parameter 
estimation scheme with a normalized gradient approach 
(see [12]) as an adaptation method for fitting the model 
parameters. Linear Prediction Coefficients or LPC was 
originally a signal processing tool with applications in 
speech coding and filter design. LPC is a special case of 
ARMA modelling when q=0. It employs the 
autocorrelation method of autoregressive (AR) modelling 
to find the coefficients a1…ar , which leads to the well-
known Yule-Walker equations [13]. As these equations 
form a symmetric Toeplitz-type linear equation system 
one can readily find the solution using the Levinson-
Durbin algorithm [12]. We took this approach before 
carrying out our experiments. For testing purposes we 
employ the ARMA model with the parameter set 
(1,1),(1,2),...(3,3). 

Besides the standard ARMA modelling approach, we 
also try an artificial neural network (ANN) approach as it 
is a viable technique for time series prediction as well 
[13]. We conduct experiments with this ANN method for 
the purposes of comparison. We train a linear network on 
a step-by-step basis in order to predict a time series. The 
network has p inputs, p delayed values of the time series, 
and has only one output which returns the predicted value. 
We use the Widrow-Hoff learning algorithm based on an 
approximate steepest descent procedure [14], with a value 
of 0.1 or 0.2 as the learning rate for incremental training. 
 
3.3 Similarity measures 
 
Similarity measures are used to compare the examined 
predictors with the perfect predictor. The perfect predictor 
knows the values from the next period in the future. Their 
similarities are measured by comparing the resulting 
ranked lists. We have chosen three measures and 



introduce to each measure a precision function which tells 
us what percentage of the predictions is correct on 
average. In the formulas n stands for the number of clients 
in a certain list. 
Kendall’s tau [15] operates with the concept of conflict 
between elements. There is conflict between two elements 
when they are in a different order in the two ranked lists. 
Let C be the number of conflicts and N the number of 
non-conflicts in two lists. Then this similarity measure is 
defined as follows: 
1. Kendall’s tau:   )(/)( CNCNx +−=  

    Precision:  2/)1( +x  
Spearman’s footrule [16] uses the difference in rank of an 
element in the two lists. πk(i) means the place of the i-th 
element in permutation πk  where the permutations are the 
lists.  
2. Spearman’s footrule:  
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Ulam’s distance [17] uses the maximum number of items 
ranked in the same order by both of the lists to compute 
the difference. 
3. Ulam’s distance:  

x = n – (the max number of items ranked  
in the same order by the two lists) 

    Precision:   nxn /)( −  
 
4.  Test scenarios 
 
4.1 Artificial dataset 
 
We created 11 hypothetical clients with different request 
characteristics (see Fig 2.). We had 200 periods, but 
sometimes we show fewer periods (20 or 60) for sake of 
better readability. If the characteristic does not change, 
not all the periods are shown. 
Client1’s need grows and shrinks linearly – a rather 
abstract pattern of behaviour. Client2 is someone who 
needs to watch videos because of her job (e.g. a film 
reviewer or an advertisement developer). While running a 
project, she requests more videos of the given topic and 
between projects she only watches them on and off. We 
could say that two phases alternate in the lives of Client4 
and 5; sometimes they have more time, sometimes less 
(e.g. somebody working only every second month). The 
tendency of their characteristics is similar to the transition 
from winter to summer when people are always outdoor 
more (and therefore spend less time in front of a screen): 
they watch fewer videos in their free time. The 
characteristic of Client6 shows us “weekend users”, who 
only watch videos on their days off. The number of 
requests changes rapidly with Client7 depending on work 

patterns (e.g. a doctor or a fireman who is on duty for 
several days and then has a few days off.) In the case of 
Client10 we could think of students preparing for exams. 
There are universities where the students study one 
subject per period and at the end they have the exam. Let 
us assume that there are on-line videos about the lessons. 
As the exams come closer and closer, and more and more 
videos are available, the students’ activity watching the 
videos of the lessons increases. Client11 is a random user. 
Maybe it is harder to find an example for the clients who 
were not mentioned, but they can serve as a useful 
abstraction in order to get to know our predictors better. 
 

 
 

Fig 2. Artificial clients’ characteristics (X: periods, Y: 
number of requests) 

 
We used regular, periodical characteristics here which 
rarely exist in this form in reality. In the case of a real 
user we expect some noise and less regular periodicity. 
We decided to use these less realistic patterns for the 
artificial dataset because they allow a more 
comprehensive reasoning. 
 
4.2 World Cup 98 web log 
 
We chose the access log of the World Cup 98 Website 
[18] to examine the predictor functions on a real dataset. 
This log file was recorded between 1st May and 23rd July 
1998. There were more than 109 requests and almost 5000 
GB of data were delivered. The Website had more than 
two and a half million clients. We chose the first 100 
clients who requested the most content during the defined 
period, calculated the quantity of data requested daily in 
bytes, chose different period lengths given in days and 
made predictions for the next period using a limited 
number of previous periods as the basis. (All types of 
Web-data were involved in the choice of the 100 best 
clients because there was not enough video content.) 
We predicted the ranked list of the clients regarding their 
activity in the next period. The characteristics of the 
clients’ behaviour were chaotic, with big jumps regarding 



the amount of data requested through the periods, and 
therefore less predictable. 
 
5.  Results 
 
Here we present how the predictors are compared. We 
measure their precision on more datasets. Two test 
scenarios are chosen for comparison: one with artificial 
data and one with real data. The general comparison 
method works as follows: 
Input: Spreadsheet of aggregated values of client 
requests for those who are interested in the given topic 
Step 1: Rank the requests using the different predictors 
from period to period → ranked lists of clients 
Step 2: Compare the ranked lists of a given period and 
predictor with the list of the perfect predictor in the same 
period using the 3 similarity measures → similarity values 
Step 3: Compute the average similarity for each 
predictor per similarity measure through the periods → 
average similarities 
Step 4: Compute the precision of the average similarities 
for each predictor per similarity measure → precision of 
the average similarities 
Step 5: Compute the average precision for each predictor 
→ average precisions 
Step 6: Rank the predictors → predictor’s ranks (the 
lowest is best)  
In the case of M periods we used each predictor for the 
last M-1 periods. (More details in [7].) 
 
5.1 Results from the artificial dataset 
 
We created eleven client sets plus a combined client set to 
examine the predictor functions. First we generated five 
subtypes for each of our eleven kinds of client who 
always requested a constant number of videos, computed 
as follows: Maximum client: max(v); Above average 
client: avg(v)+(max(v)–avg(v))/2; Average client: avg(v); 
Below average client: avg(v)–(avg(v)–min(v))/2; 
Minimum client: min(v). Our aim with these five constant 
clients was to study the precision and usability of the 
predictors regarding the different characteristics of 
requests. The twelfth client set consisted of the eleven 
original clients. The value of past periods taken into 
account by some predictors was set to 7. 
We present the 3 most promising predictors in Table 1. 
The first eleven sets with the generated clients are quite 
easy to predict and the predictors mostly work very 
precisely. The most precise predictor is the LPC with 95% 
average precision (computed from the average precision 
of all sets in column Sum.). It is 6% better than the second 
best which is, surprisingly, the simplest, the Last value 
(LV) predictor. The average fluctuation in the Summary 
for the placements 2 to 9 is less than 3%, thus we could 
think that those predictors are almost equal. But they 
show quite great differences in precision depending on the 
client set. (For example, Client sets 7, 8 and 9 are 
especially hard for the Last value predictor because they 
frequently contain big jumps, however, it is perfect for 

Client set 3.) Client 11 has random behaviour for which 
the two simplest predictors, the Binomial approximation 
with α=0.75 (BA) and the Last value, are the best. We 
expect a similar behaviour in real clients and therefore we 
consider these two predictors to be promising candidates 
for the future (alongside LPC). For the set of all original 
clients (All) the LPC is best again, and it seems to be the 
most precise predictor in general. If we also consider the 
resource need of the predictors (e.g. CPU, how many 
previous data they need to store per client), then we 
should consider the Last value and Binomial 
approximation predictors as well. (More details in [7].) 
 

 
Table 1. Precision of the most promising predictors 

 
5.2 Results from the World Cup 98 dataset 
 
The request values (how many bytes of data requested a 
client in a period) were quite large numbers in the case of 
the 100 best clients. Therefore we used stepwise 
normalization for the LPC, ARMA and the ANN 
predictors. (More details in [7].) 
We carried out 6 test scenarios with the period lengths of 
1, 4 and 7 days, the number of past periods taken into 
account being 4 and 7. We present the results of the 4 
most promising predictors in Table 1. The first coordinate 
in the column name is the period length in days while the 
second is the number of past periods. 
 

 
Table 2. Precision of the most promising predictors 

 
LPC proved to be the best predictor again, followed by 
the Quadratic (Q) and the Last value (LV) predictors 3% 
below. LPC’s precision improved when the length of the 
period and/or the number of the known past periods were 

 Set 1 Set 2 Set 3 Set 4 Set 5 
LV 0.96 0.96 1.00 0.98 0.98 
BA 0.94 0.95 0.94 0.93 0.97 
LPC 0.98 0.96 0.99 0.95 0.98 
 Set 6 Set 7 Set 8 Set 9 Set 10 
LV 0.94 0.77 0.80 0.78 0.94 
BA 0.93 0.74 0.79 0.78 0.83 
LPC 0.92 0.99 0.99 0.99 0.99 
 Set 11 All  Sum.   
LV 0.89 0.66 0.89   
BA 0.90 0.62 0.86   
LPC 0.89 0.78 0.95   

 (1.4) (1.7) (4.4) (4.7) 
LV 0.58 0.58 0.58 0.58 
BA 0.57 0.57 0.57 0.57 
Q 0.57 0.57 0.58 0.57 
LPC 0.56 0.57 0.58 0.58 
 (7.4) (7.7) Sum.  
LV 0.56 0.56 0.57  
BA 0.55 0.55 0.56  
Q 0.58 0.57 0.57  
LPC 0.62 0.68 0.6  



increased while the precision of Last value decreased 
slightly when the period length was increased (the number 
of past periods does not affect this predictor). The 
Quadratic predictor’s precision fluctuated by around 58% 
so it was quite stable. The Binomial approximation with 
α=0.75 (BA) was the 4th best and thus a suitable 
candidate for us. (More details in [7].) 
 
6. Conclusions and future work 
 
It is a major problem that no real and fitting data sets are 
available and therefore we cannot draw general 
conclusions about the current behaviour practice of our 
potential clients. These test scenarios can only give us 
directions for future research. The elaborate LPC 
predictor proved to be the best among the chosen 
predictors with quite good average precision values (95% 
in the artificial case with all client sets, 78% with the set 
of all original clients and 60% in the real, quite chaotic 
scenario). We can see that the very simple Last value and 
the Binomial approximation predictors performed 
surprisingly well; therefore they are our “secret 
favourites”. The Quadratic and ANN predictors proved to 
be effective sometimes and therefore we should use them 
in future experiments as well. Some of the ARMA 
predictors gave good results in the different cases but 
never the same ones. We are thinking about using this 
approach with dynamic parameters settings. 
We want to refine the model for the topics, for example a 
hierarchical model with subtopics, like the classification 
system in a library. Another alternative extension is if we 
let the videos belong to more than one topic, for example 
X% to topic A and Y% to topic B. In addition we want to 
consider not only the topic of user interest but also the 
preferred quality in the prediction. Alongside topic we 
could also include the preferred quality in the prediction 
(e.g. low quality for mobile clients). 
We have to examine how well our popularity hint model 
works. It would be interesting to use more information 
from external sources, like the expected popularity hint 
distribution of a video or knowledge about the “seasons” 
of video viewing throughout the year. 
Another issue is the similarity measures. We used three of 
them and these computed quite large differences 
regarding precision. In our case it is an important 
difference if we predict the right order of our best clients 
(which will be taken into account by the spatial 
optimization) or of the entire group of clients. Therefore 
we want to find better fitting similarity measures. 
It would be interesting to identify general patterns in the 
clients’ behaviour to classify them (if such patterns exist). 
Each class could then have a best fitting predictor as the 
result in the artificial scenario showed. When clients 
change their behaviour pattern, the system should 
recognise that, choose the new class and change the 
predictor dynamically. We should identify a set of 
predictors which fit the main types of clients.  
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