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András B́anhalmi, Korńel Kov́acs, Andŕas Kocsor, Ĺaszĺo Tóth
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Abstract

This paper proposes a pitch estimation algorithm that is based
on optimal harmonic model fitting. The algorithm operates
directly on the time-domain signal and has a relatively sim-
ple mathematical background. To increase its efficiency and
accuracy, the algorithm is applied in combination with an
autocorrelation-based initialization phase. For testing purposes
we compare its performance on pitch-annotated corpora with
several conventional time-domain pitch estimation algorithms,
and also with a recently proposed one. The results show that
even the autocorrelation-based first phase significantly outper-
forms the traditional methods, and also slightly the recently pro-
posedyin algorithm. After applying the second phase – the
harmonic approximation step – the amount of errors can be fur-
ther reduced by about 20% relative to the error obtained in the
first phase.

1. Introduction
Pitch estimation is one of the classic speech processing prob-
lems that still attracts research. The methods proposed during
the decades can be roughly categorized into two main groups
[3]. The group of mathematically inspired algorithms assume
that the processed signal (a 30-50 ms speech segment) is quasi-
periodic, and hence try to find the fundamental frequency of a
periodic signal via signal processing techniques. These solu-
tions are either time-domain – that is they work directly with
the signal itself – or frequency-domain, which means that they
look for periodicity information in a spectral representation of
the signal. The other large group is that of the biologically in-
spired models, namely sophisticated auditory models that try to
imitate human hearing and, as part of it, human pitch sensa-
tion. The method presented here is a mathematically inspired
one. This is why we prefer using the term ‘fundamental fre-
quency’ to ‘pitch’, although one may argue that in the case
of speech signals the two terms are practically interchange-
able. More precisely, our algorithm belongs to the category of
time-domain methods, as it directly approximates the signal by
a sum of harmonic sinusoids. For better results this approxi-
mation is preceded by a preprocessing step where a traditional
autocorrelation-based estimate is calculated to initialize the har-
monic approximation step. In the next section the harmonic
approximation algorithm itself is explained first, followed in
Section 3 by how it is combined with the autocorrelation-based
method to get a better performance. In Section 4 the algorithm
is compared with several conventional algorithms and one re-
cently proposed algorithm by evaluating them on two pitch-
annotated databases. Then we draw some conclusions about
the efficacy of the proposed method in Section 5.

2. Least-Squares Harmonic Approximation
The well-known harmonics plus noise representation estimates
the signal under analysis as a sum of time-varying sinusoids
plus a filtered noise component [7]. In the special case when
the modelled signal is speech, one may have the usual assump-
tion that its short, 30-40 ms intervals can be regarded quasi-
stationary [5]. Hence, when estimating the model parameters
in such time steps, one can expect that the voiced parts of the
signal can be very closely approximated by the sinusoidal com-
ponents only, while the noise component will play an important
role in modelling the voiceless segments. In the case of healthy
speech one can have the further simplifying assumption that the
sinusoidal components are harmonic, that is their frequencies
are multiples of some fundamental frequencyω.

In the following we shall make an estimate of the funda-
mental frequency of a short speech excerpt; the signal will be
given in the form ofN signal sampless = (s1, . . . , sN )T taken
at the discrete time instancest = (t1, . . . , tN )T . We will ap-
proximate this signal by the sinusoidal model

h(t) = a0 +
L

∑

k=1

ak cos(fkt + ψk). (1)

In general case, fitting the model to the signal requires the esti-
mation of the number of componentsL and also the frequencies
fk, the amplitudesak and the phasesψk for each component.

A reasonable way of obtaining proper parameters is by ap-
plying the least squares method, which minimizes the squared
error between the original signal and its approximation:

ǫ =

N
∑

i=1

W
2
ii(si − h(ti))

2 → min, (2)

where the diagonal matrixW is simply a weight matrix like a
hamming window.

Without placing any restriction on the number of compo-
nents or on their parameters, minimizing the error function of
Eq. (2) poses a difficult global optimization problem. Just fix-
ing the number of componentsL, the optimization still leads
to a homogeneous function optimization problem that can be
only handled by sophisticated optimization algorithms like the
approaches proposed by Starer [10] or Kocsor et al. [4]. How-
ever, the task becomes significantly simpler with the further as-
sumption that the components are harmonic – that is their fre-
quencies are the multiples of fundamental frequencyω – so that
fk = kω. Then our approximation becomes harmonic:

h(t) = a0 +

L
∑

k=1

ak cos(kωt + ψk), (3)



so there is only one frequency parameter (ω) to be estimated.
Moreover, for a givenω the number of harmonicsL is also
given, as it can be simply calculated fromω and the sampling
frequency of the signal. Most importantly, for a givenω the re-
maining two type of parameters, the amplitude and phase values
can be determined by solving a simple linear equation system.
The calculation of these parameters at a givenω value is as fol-
lows.

Making use of the trigonometric identitycos(α + β) =
cos α cos β − sin α sin β, it can be shown that Eq. (3) may be
expressed in vector form. That is,h(t) may be rewritten as

h(t) = b
T
1 (t)u − b

T
2 (t)v,

where

b
T
1 (t) = (1, cos(1ωt), . . . , cos(Lωt))

u
T = (a0, a1 cos ψ1, . . . , aL cos ψL)

b
T
2 (t) = (sin(1ωt), . . . , sin(Lωt))

v
T = (a1 sin ψ1, . . . , aL sin ψL)

With this notation the error function of Eq. (2) takes the form

ǫ = ‖W (s − Bf)‖2
2, (4)

wherefT = (uT
v

T ) andB = (B1 B2), its components being:

B
T
i = (bi(t1), . . . ,bi(tN )) i = 1, 2.

According to Eq. (4), when the fundamental frequencyω is
fixed, then the error function takes a quadratic form, and its
global optimum can be found by solving the linear equation sys-
tem defined by the normal equation:

(BT
W

T
WB) f = B

T
W

T
W s,

or, equivalently, by calculatingf = (WB)+W s, where()+

denotes the Moore & Penrose pseudo inverse.
Having obtainedf , the amplitude and phase parameters of

each harmonic component can be calculated via the formulas

ψk = arctan
uk+1

vk

, ak =
vk

sin ψk

.

3. Harmonic Approximation for Pitch
Estimation

As was shown in the previous section, for a given fundamen-
tal frequencyω the rest of the parameters can be easily calcu-
lated. The optimal approximation forω itself can be found by
a search, that is by evaluating the error function at several dif-
ferentω values. This does not restrict the practical applicability
of the method, as in practice we can limit the possible value of
the fundamental frequency to a reasonably small interval, and
we usually need it only to within a certain resolution. The sim-
plest solution is to partition the frequency interval assumed to
contain the pitch into tiny intervals depending on the required
resolution, and evaluate the error function at each of these. An
evaluation of the error at oneω value is reasonably fast, hence
this process will not cause an unmanageable computational bur-
den. Still, there are a couple of useful observations that can be
exploited to speed up the computation. For this we should re-
arrange the formula for the error function like so

ǫ = ‖W (s − Bf) ‖2
2 = ‖

(

W − (WB)(WB)+W
)

s‖2
2,
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Figure 1: Upper: a voiced speech excerpt from a male voice
sampled at 22050Hz. Lower: the approximation error as a
function of the assumed fundamental frequency.

where we exploited the fact thatf = (WB)+W s. As
one can see, the error at a given frequency can be calcu-
lated as a product of the signal vectors and the matrixZ =
(

W − (WB)(WB)+W
)

. The first consequence of this is that,
during the search for the optimal fundamental frequency esti-
mate, the amplitude and phase parameters of the components
do not have to be computed directly. The second is that when
we have to compute the estimate for many speech frames, the
Z matrix can be pre-computed and stored, thus speeding up the
processing of the signal.

Having calculated the error at variousω values to a certain
resolution, we obtain a curve like that shown on the lower part
of Fig. 1. Theoretically, the point where this curve takes its min-
imum can be returned as our fundamental frequency estimate.
However, in practice we observe that at low enough frequen-
cies – that is below 50-60 Hz – the error goes down to prac-
tically zero, thus fooling a process that would simply pick the
minimum value. This shows that the least-squares error mini-
mization procedure has to be extended by properly chosen pre-
and/or post-processing steps. Many possible methods could be
proposed for this, and we chose the following simple solution:
we took the output of a fast and simple pitch estimation algo-
rithm as a first estimate, and evaluated our least squares algo-
rithm only in a given small interval around this estimate. Be-
sides speed improvements, this resulted in a refined, more pre-



cise value compared to the original one.
According to this, the method we developed consists of two

phases. The estimator of the first phase must be fast enough and
should commit octave errors relatively rarely. With this in mind,
we applied a modified version of the well-known autocorrela-
tion function (acf) method [9]. As the first step, we calculate
the normalized autocorrelation coefficients of signalx at timet,
the size of the time window beingw:

r
norm
t (τ) =

t+w−1
∑

j=t

xjxj+τ

(

t+w−1
∑

j=t

xjxj

) (

t+w−1
∑

j=t

xj+τxj+τ

) . (5)

Then we find that local minimum of the correlation function
where the correspondingτ is minimal and also the correspond-
ing correlation coefficient value is above some predefined con-
stant. If the function has no such point, then we use the estimate
of the previous frame as the local estimate. In the following this
relatively fast and simple method for fundamental frequency es-
timation will be referred to ascwt (correlation with threshold).

In the second phase of processing, we refine the estimates
of thecwt algorithm by running the least-squares harmonic ap-
proximation algorithm, evaluating it only in a certain interval
and resolution around the estimate obtained from thecwt step.
The algorithm that includes both thecwt and the subsequent
harmonic approximation step will be referred to ascwt-hap
later on. Thecwt andcwt-hap algorithms were applied with
the following parameters during the tests:

• cwt: The threshold on the correlation strength was set
to 0.63 and the window size was 512 samples. The re-
sulting estimates were median-smoothed with their left
and right neighbor.

• cwt-hap: The correlation threshold was set to 0.63
and the windows size was set to 512. As for the para-
meters of the harmonic approximation step, the weight-
ing window was a rectangular one. The frequency res-
olution was 2 Hertz, and the neighborhood in which
we searched for a refinement over thecwt estimate
was [-20Hz; 20Hz]. The resulting estimates were again
median-smoothed with their left and right neighbor. Fur-
thermore, to reduce the run time, the number of sinu-
soidal components were not calculated from the sam-
pling rate and the fundamental frequencyω, as suggested
earlier, but we limited the highest possible frequency to
5000 Hz (instead of half the sampling rate).

4. Experiments and Results
4.1. Details of Evaluation

The best way to compare pitch estimation algorithms is to eval-
uate them over a dedicated database that contains precise and
verified pitch estimates. Fortunately, there are such databases
available. The usual way to create reliable reference pitch es-
timates for them is to record a laryngograph signal in parallel
with the speech signal, because pitch estimation is much easier
than that for the former. In the databases we used, these es-
timates were further corrected manually, and so-called ‘mask’
data was also given, specifying where the signal is voiced – the
pitch estimators were only tested on these signal segments.

The evaluation itself was as follows. When evaluating
the methods, values that differed by more than 20% from

laryngograph-derived estimates were counted as ‘gross errors’.
This criterion is used in many studies, and an error of this mag-
nitude can be expected to be significantly reduced by a refine-
ment algorithm such as our harmonic approximation method.
Naturally, we took care to run all the algorithms under similar
conditions: for example, the search interval for the fundamental
frequency was always the same. The exact parameters for each
algorithm will be specified later on.

4.2. Databases Used

For testing we applied the following, freely accessible pitch
databases:

The Keele Pitch Database. It contains the recordings of
10 speakers, five male and five female, reading a phonet-
ically balanced text, the ’North Wind story’ for a total of
0.15 hours of speech [6]. For further details see the URL
”http://www.liv.ac.uk/Psychology/HMP/projects/pitch.html”.

The Edinburgh fda Evaluation Database. It contains
the recordings of one male and one female speaker, each
speaking 50 English sentences for a total of 0.12 hours of
speech, for the purpose of evaluatingF0-estimation algo-
rithms [1]. The database can be downloaded from the URL
”http://www.cstr.ed.ac.uk/ pcb/fdaeval.tar.gz”.

4.3. Reference Methods

During the tests we compared our method with the following
algorithms, which are mostly traditional and well-known. For
each algorithm we will give a brief description and the para-
meter settings that were used. In each case the window size
was 512 samples, the windows shift was 100 samples, and the
interval in which we searched for the fundamental frequency es-
timate was [60; 400] Hz (corresponding to a [τmin; τmax] limit
on the period, depending on the sampling rate). All the codes
applied were our own implementation, apart from theyin al-
gorithm that was downloaded from the web.

• acf(1): It will denote the standard autocorrelation co-
efficient based method that computes the coefficients

rt(τ) =

t+w−1
∑

j=t

xjxj+τ (6)

for a given signalx and time indext, then converts these
values to the weighted coefficients [9]

r′t(τ) =

{

rt(τ)(1 − τ/τmax), ifτ ≤ τmax

0, otherwise , (7)

the size of the time window beingw. The resulting pitch
estimate is the frequency value corresponding to thatτ

value where the functionr′t(τ) takes its global maxi-
mum.

• acf(2): This denotes a modified version of the pre-
vious method that calculates the following coefficients
[9]:

r
′′

t (τ) =

t+w−τ−1
∑

j=t

xjxj+τ . (8)

• amdf: The amdf estimator evaluates the following
function for each possibleτ :

dt(τ) =

t+w−1
∑

j=t

|xj − xj+τ |, (9)



then the pitch estimate obtained as the frequency value
corresponding to thatτ value where the functiondt(τ)
takes its global minimum [8].

• nacf: This algorithm calculates a set of normalized au-
tocorrelation coefficients, according to the formula

nt(τ) = rt(0)[1 − rt(τ)2
/

(rt(0)rt+τ (0))]. (10)

The pitch estimate is again obtained as the frequency
value corresponding to thatτ period where the function
nt(τ) takes its global minimum.

• yin: this is a fundamental frequency estima-
tor algorithm that consists of several processing
phases [2]. We applied the original implementa-
tion of the inventor during the tests. The cor-
responding Matlab code can be downloaded from
”http://www.ircam.fr/pcm/cheveign/sw/yin.zip”.

4.4. Results and Discussion

The results are summarized in Table 1. They show that the
conventional algorithms make gross errors relatively frequently,
and our experience indicates that these are mostly octave errors.
yin and the two algorithms proposed here can significantly re-
duce the number of errors; we observed that the remaining ones
are mostly committed at the boundaries of voiced and voiceless
sections. We were somewhat surprised to see that ourcwt al-
gorithm that was introduced only to initialize the harmonic ap-
proximation algorithm already outperformed the recently pro-
posedyin method. Its error rate was decreased further by the
harmonic approximation step, resulting in a further 20% relative
reduction in the error rate.

method DB1 DB2

acf(1) 9.0% 14.1%
acf(2) 4.8% 11.1%
amdf 7.0% 8.6%
nacf 7.6% 10.5%
yin 3.2% 4.4%
cwt 2.9% 4.0%

cwt-hap 2.3% 3.2%

Table 1:Gross errors of the different methods on databases DB1
and DB2.

5. Conclusions and Future Work
This paper proposed a pitch estimation algorithm that is based
on optimal harmonic model fitting. The algorithm operates di-
rectly on the time-domain signal and has a relatively simple
mathematical background. To increase its efficiency and ac-
curacy, the algorithms was combined with an autocorrelation-
based initialization phase. The results indicate that even the
first phase outperforms the conventional methods and is slightly
better than the results for theyin algorithm. The harmonic ap-
proximation (second phase) brings about a further improvement
as well.

Looking at the behavior of the algorithm more closely, we
can say that the significance of the first phase turned out to be
much higher than we had initially expected. Besides reducing
the processing time, which was the main motivation for its in-
troduction, it actually attained such a good performance that the
harmonic approximation phase improved its results at a lesser

rate than we had originally hoped. The other reason for this is
that just evaluating the error of the harmonic model in a small
interval around the result of the first phase can correct only cer-
tain kind of errors. We think that a significant further improve-
ment might be obtained by refining the strategy of how we cal-
culate the pitch estimates from the error function values. For
example, wider intervals could be examined if we had proper
heuristics to exclude false optima. This is what we intend to
look into in the near future.
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