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Abstract. Most machine learning algorithms are sensitive to class imbalances
of the training data and tend to behave inaccurately on classes represented by
only a few examples. The case of neural nets applied to speech recognition is no
exception, but this situation is unusual in the sense that the neural nets here act
as posterior probability estimators and not as classifiers. Most remedies designed
to handle the class imbalance problem in classification invalidate the proof that
justifies the use of neural nets as posterior probability models. In this paper we ex-
amine one of these, the training scheme called probabilistic sampling, and show
that it is fortunately still applicable. First, we argue that theoretically it makes the
net estimate scaled class-conditionals instead of class posteriors, but for the hid-
den Markov model speech recognition framework it causes no problems, and in
fact fits it even better. Second, we will carry out experiments to show the feasibil-
ity of this training scheme. In the experiments we create and examine a transition
between the conventional and the class-based sampling, knowing that in practice
the conditions of the mathematical proofs are unrealistic. The results show that
the optimal performance can indeed be attained somewhere in between, and is
slightly better than the scores obtained in the traditional way.

1 Introduction

Most machine learning algorithms are prone to inferior performance when the training
data is imbalanced, that is when the number of training examples accessible from the
various classes is significantly different. In such cases it is frequently observed that
the classifier is biased towards predicting the more common classes, performing worse
on the rarer classes. Although the exact explanation of this behavior may differ from
algorithm to algorithm (see [9] for general reasons), in the hope of an improvement it
is always possible to alter the effective class frequencies by presenting more examples
from the rarer classes to the learning algorithm. These methods come under the general
name of “resampling techniques” [9]. (See the material of the workshops [4] and [5] for
more details on techniques proposed to handle class imbalance.)

The class imbalance problem is also present in speech recognition because the nat-
ural distribution of speech sounds (phones) is not uniform. However, the solutions pro-
posed by the machine learning community are not necessarily applicable here. This is
because most machine learning papers dealing with the topic focus on classification
performance, while in speech recognizers the sub-unit models are used as probability



estimators. In particular, the so-called “Hidden Markov Model/Artificial Neural Net
(HMM/ANN) hybrid recognizers” [2] apply ANNs to estimate the posterior probabili-
ties of the classes. This is made possible by a nice theoretical proof which shows that,
under ideal conditions, ANNs estimate the class posteriors [1]. In practice, however,
the class imbalance of the training set can lead to inaccurate estimates. A natural idea
is to apply the resampling techniques, but these invalidate the proof, so their applica-
tion is theoretically questionable. In this paper we examine one peculiar resampling
method, the “probabilistic sampling” training technique recommended by Lawrence et
al. [6], and argue that it is still usable in training ANNs for HMM/ANN hybrids. First,
in Section 2 we point out that theoretically it forces the network to estimate scaled class-
conditional probabilities instead of class posteriors and this poses no real problem as the
recognizer can be easily modified to work with these. Then we show experimentally in
Section 3 that when the recognizer is built on a net trained by probabilistic sampling, it
yields the same good or slightly better performance than with the conventional training.
The paper rounds off with some conclusions and remarks in Section 4.

2 HMM/ANN Hybrids

Several ways of applying ANNs to speech recognition have been proposed (see [7] or
[3] for a review), but the most popular of these is the “hybrid HMM/ANN” paradigm
of Bourlard et al. [2]. This approach exploits the fact that, under ideal conditions, ANN
classifiers approximate the class posteriors. That is, denoting the space of the local
feature vectors by X and the set of class labels by C, we can use them to estimate
P (C|X). In the hybrid framework the HMM states play the role of the classes of the
ANN, and the states usually directly correspond to phone classes. The HMM framework
requires the class-conditionalsP (X|C), which can be calculated from the posteriors
by Bayes’ rule asP (X|C) = P (C|X) · P (X)/P (C). From the HMM optimization
point of viewP (X) is a constant scaling factor and can be ignored. So the HMM/ANN
hybrids work withP (C|X)/P (C), which thus gives an estimate ofP (X|C) to within
a scaling factor. TheP (C|X) values are produced by an ANN, and theP (C) values
are obtained by a simple frequency counting of the class labels over the training corpus.

3 Probabilistic Sampling

Let us now examine why and when ANNs estimate the class posteriors, and what hap-
pens if training is performed by probabilistic sampling. Let us assume that the network
hasK outputs denoted byyk (k = 1, ...,K), and that it is trained by minimizing the
sum-of-squares error1. We will also assume that the training data is sampled in such a
way that its distribution follows the real distributionP (X) of the data points overX.
Under these conditions it can be shown that if the size of the training data is allowed to
go to infinity, the error function can be written as

E =
1
2

∑

k

∫
[yk(x)− < tk|x >]2 P (x)dx + B, (1)

1 A similar proof exists for the minimum cross-entropy error criterion as well [1].



whereB is a constant that is not important here, and< tk|x > is the conditional
average of the target valuestk at x [1]. Obviously, Eq. (1) takes its minimum when
yk =< tk|x >. Now, if the network structure and the labelling of the training data
follow the 1-of-K coding scheme (that istk takes a value of 1 for the correct class
output and 0 for the rest), it is easy to show that< tk|x > approximatesP (ck|x) (again
assuming a representative sampling and an infinite amount of sample data at pointx).

Examining Eq. (1) more closely, we see that at any pointx of the input spaceX it
is < tk|x >, the local ratio of positive and negative examples from classck, that deter-
mines the optimal value foryk. The local errors of these estimates are in turn weighted
by P (x), which forces the network to give a closer approximation in those regions of
the input space where the density of input data is high, and permits it to give a poorer
approximation in regions where the data density is lower. If class labels correlate well
with certain regions of the input spaceX (which we may assume, otherwise the learn-
ing task would be insoluble), then the data density will be lower in those regions where
the sparsely represented classes lie. This provides the main reason why the network will
perform worse on these classes.

This observation leads to the idea of altering the effective class frequencies by pre-
senting more examples from the rarer classes to the learner. In practice, of course, we
usually have no way of generating further samples from any class, so resampling is
simulated by replicating some of the samples of the rarer classes. An extreme case of
this is when the training data set is manipulated so that it contains the same amount of
training examples from each class. When training an ANN with the backpropagation
algorithm, there is of course no need to really replicate the samples: only the algorithm
has to be modified slightly. Usually the training data items are presented to the algo-
rithm in a random order, that is at each iteration a data item is randomly chosen from
the full database. We will refer to this method as “full sampling”. A possible alternative
is to first choose a class at random, and then randomly pick a training sample from the
samples belonging to this class. We will call this general, two-step sampling scheme
“probabilistic sampling” [6], and the special case when each class is chosen with uni-
form probability “uniform class sampling”. In general, however, the choice of the class
can follow any distribution, not just a uniform one. For example, if classk is chosen
with probabilityP (ck), that is its own prior probability, then the two-step sampling ap-
proach will be practically equal to the traditional one-step full sampling scheme. This
will allow us to generate a continuum between full sampling and uniform class sam-
pling by linearly interpolating the probability of classck betweenP (ck) and 1

K .
Let us now discuss how the optimum of the error function of Eq (1) changes when

using uniform class sampling instead of full sampling. We will see that manipulating the
class frequencies influences both the global data distribution and the local conditional
averages. First let us examine the data distribution, which was originally written as

P (X) =
∑

k

P (X|ck)P (ck). (2)

The manipulation of the class frequencies can be formalized by weighting the terms as

P ′(X) =
∑

k

P (X|ck)P (ck)Wk, (3)



whereWk are class-dependent weights. From this we can see that modifying the class
frequencies changes the focus of the error function, as it modifiesP (X). If class labels
correlate well with certain regions of the input space, then giving more samples from
the sparse classes indeed corresponds to giving more samples from the low data density
regions, thus forcing the net to give a better approximation in these areas.

However, the local conditional probabilities are also influenced by this weighting.
Clearly, the newP ′(ck|X) values can be written as

P ′(ck|X) =
P (X|ck)P (ck)Wk∑
j P (X|cj)P (cj)Wj

. (4)

We can think of the denominator as a normalizing factor required to make the local
estimates add up to one. In the case of uniform class samplingWk is inversely propor-
tional toP (ck) and cancels it out, so overall theP ′(ck|X) values will be proportional
to P (X|ck). These will be the local targets of the network, so we can say that with uni-
form class sampling the neural network learns the class-conditionalsP (X|ck) within
a scaling factor. This causes no problem when integrating the network into the HMM
framework, and in fact makes it even simpler: the division by the class priorsP (ck) can
be omitted, and the scaling factor will not affect the final maximization process.

4 Experimental Results

All the results presented in this paper were obtained using the MTBA Hungarian Tele-
phone Speech Database [8]. This is the first Hungarian speech corpus that is publicly
available and has a reasonably large size. The most important data block of the cor-
pus contains the recordings of phonetically balanced sentences that were read out aloud
by 500 speakers. Recordings were made via mobile and line phones with the speak-
ers varying both in age and gender. All the sentences were manually segmented and
labelled at the phone level, and these manually allocated phone labels served as target
classes when training the neural net. Altogether 58 different phonetic symbols occur
in the database, but after fusing certain rare allophones we worked with only 52 phone
classes in the experiments.

For training purposes 1367 sentences were selected from the corpus. The word
recognition tests reported here were performed on another block of the database that
contains city names. All the 500 city names (each pronounced by a different caller)
were different. From the 500 recordings only 431 were employed in the tests, as the
rest contained significant non-stationary noise or were misread by the caller. All words
were assumed to have equal priors in the word recognition tests.

For acoustic preprocessing we applied the Hvite module of the well-known Hidden
Markov Model Toolkit (HTK) [10]. We used the most popular preprocessor configura-
tion, that is we extracted 13 MFCC coefficients along with the corresponding delta and
delta-delta values, thus obtaining the usual 39-element feature vector [10]. For recogni-
tion we used our own HMM/ANN decoder implementation, which was earlier found to
have a performance similar to that of the standard HTK recognizer.

The neural net used in the system contained 150 sigmoidal hidden neurons and a
softmax output layer. Training was performed by conventional backpropagation. Be-



Fig. 1.Word recognition accuracies(%) as a function ofλ, with and without division by the priors.

sides comparing the full sampling and uniform class sampling methods, we decided to
create a transition between them by making the algorithm select classck with a proba-
bility (1−λ)P (ck)+λ 1

K , and tested it with variousλ values between 0 and 1. We did so
for purely empirical reasons. It should not be forgotten that the whole investigation here
originated from the observation that the mathematical proof regarding the estimation of
the posteriors assumes ideal conditions, and that in practice problems with imbalanced
classes were reported. Our argument of Section 3 regarding the estimation of scaled
class-conditionals also assumes ideal conditions that do not hold in reality. So while
full sampling tends to behave poorly on rarer classes, uniform class sampling may do
just the opposite due to over-compensation. This is why it seemed practically justified
to create a transition between the two extremes.

As regards division by the class priors, we argued that theoretically it is required
when using full sampling and not when using uniform class sampling. However, it
is not obvious whether we should use it when the training scheme is somewhere in
between. Furthermore, there is evidence that under certain conditions even the conven-
tional model may not require this division [2]. Owing to these uncertainties, we decided
to always run the recognizer with the division factor and without it.

The stopping criterion is always a critical issue with every gradient-based algorithm.
With our system we have the long-known observation that a certain fixed number of
iterations (with a gradually decreased learning rate) produces a nearly optimal solution
which cannot be significantly improved either by further iterations or subtle training
criteria. However, because uniform class sampling changes the distribution of the data,
we could not be sure that the usual amount of iterations were enough in this case. So in
each case we allowed two further rounds of 10 iterations. The results reported are the
averages of the three scores obtained after the three iteration cycles. We should mention
here that these never differed significantly, their deviation always being around 1-1.5%,
which can be attributed to the random factors present in the whole training process.

Figure 1 shows the recognition results for differentλ values, both with and without
division by the priors. Clearly, aλ around 0.1 seems optimal when dividing by the



priors, and aλ of 0.7 resulted in the best results when no division by the priors was
applied. These are both better than the corresponding results atλ = 0.0 andλ = 1.0
which should have performed the best, according to the proofs discussed in Section
3. This justifies the point that in practice it is worth using the probabilistic sampling
scheme for the training of ANNs of HMM/ANN hybrids as it can bring about a modest
improvement over the conventional method (λ = 0.0, division by the priors).

5 Conclusions

This paper investigated the feasibility of the probabilistic sampling training scheme for
the training of the ANN components of HMM/ANN hybrid speech recognizers. First we
examined uniform class sampling, which is a special case of probabilistic sampling. We
argued that although it invalidates the a posteriori probability proof of the conventional
training scheme, it is still usable because it gives estimates of the class-conditional
probabilities (within a scaling factor) and, in fact, the recognition system requires just
these anyway. Second, we suspected that in practice it might be worth interpolating be-
tween the conventional full sampling and uniform class sampling, as the mathematical
proofs made unrealistic assumptions. In the experiments we indeed found that the op-
tima are somewhere in between – aroundλ = 0.1 andλ = 0.7 respectively, depending
on whether we divide by the class priors or not. In both cases our results were slightly
better that those obtained by the conventional approach (λ = 0, division by the priors).
This justifies our use of the proposed training scheme in HMM/ANN hybrids.
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