
Speeding Up Dynamic Search Methods

in Speech Recognition

Gábor Gosztolya, András Kocsor

MTA-SZTE Research Group on Artificial Intelligence
H-6720 Szeged, Aradi vértanúk tere 1., Hungary

{ggabor, kocsor}@inf.u-szeged.hu

Abstract. In speech recognition huge hypothesis spaces are generated.
To overcome this problem dynamic programming can be used. In this pa-
per we examine ways of speeding up this search process even more using
heuristic search methods, multi-pass search and aggregation operators.
The tests showed that these techniques can be applied together, and
their combination could significantly speed up the recognition process.
The run-times we obtained were 22 times faster than the basic dynamic
search method, and 8 times faster than the multi-stack decoding method.

In speech recognition enormous hypothesis spaces arise. To handle them we
can use dynamic programming, where we can avoid calculating the same values
several times, which leads to a dramatic speed-up of a speech recognizer system.
But this is not enough for real-world applications, hence we have to look for
other ways of making improvements while preserving the recognition accuracy.
Here we carry out experiments using search heuristics, aggregation operators
and multi-pass search, and apply ideas for speeding up the heuristic search.

1 The Speech Recognition Problem

We have a speech signal given by a series of observations A = a1 . . . at, and a
set of phoneme sequences W . We look for the word ŵ ∈ W = arg max P (w|A)
which, via Bayes’ theorem, is equivalent to ŵ = arg max(P (A|w) ·P (w))/P (A).
P (A) is the same for all w, so ŵ = arg max P (A|w)P (w). Let w be o1o2 . . . on, as
oj is the jth phoneme of w. Let A1, . . . , An be non-overlapping segments of A. We
assume that the phonemes are independent, i.e. P (A|w) can be obtained from
P (A1|o1), . . . , P (An|on). To calculate P (A|w), we can use aggregation operators
at two levels: g1 supplies the P (Aj |oj) values as g1(P (atj−1

|oj), . . . , P (atj
|oj)),

while g2 is used to construct P (A|w) as g2(P (A1|o1), . . . , P (An|on)).
Instead of a probability p we will use a cost c = −ln p. g1 will be the addition

operator. A hypothesis is a pair of phoneme series and segment series. The dy-
namic programming method uses a table with the ai speech frames indexing the
columns and the phoneme-sequences indexing the rows. A cell holds the lowest
cost of the hypotheses having its phoneme-sequence and ending at its frame.
To compute the value of a cell we take the value of an earlier frame and its

1

2 Gosztolya and Kocsor

phoneme-sequence without its last phoneme, and add up the cost of this last
phoneme on the interleaving frames. The result is the minimum of these sums.

2 Speeding Up the Recognition Process

The dynamic programming search technique, despite its effectiveness, tends to
be quite slow. In this section we discuss some methods that speed it up while
keeping the recognition accuracy at an acceptable rate.

Heuristic Search Methods. These techniques fill only a part of the table.
So the result will not always be optimal, but we can get a notable speed-up
with little or no loss in accuracy. The multi-stack decoding algorithm fills a
fixed number (stack size) of cells (the ones with the lowest costs) for a row. The
Viterbi beam search fills the cell with the best value, and the cells close to it
defined by a beam width parameter. Here we used the multi-stack approach.
Speed-up Improvements. In earlier works [1] we presented some speed-up
ideas for the multi-stack decoding algorithm, which we also want to use here.

i) One possibility is to combine multi-stack decoding with a Viterbi beam
search. At each column, belonging to one time instance, we fill only a fixed
number of cells, and also discard those which are far from the best-scoring value.

ii) Another approach is based on the fact that the later the time instance, the
fewer hypotheses (and filled cells) are need. Thus we filled s ·mi cells belonging
to the ai frame, where 0 < m < 1 and s is the original stack size parameter.

iii) Actually, we need to fill more cells at those speech frames close to pro-
nounced phoneme bounds. We trained an ANN to estimate whether a given
time instance was a phoneme bound or not. Then we constructed a function
that approximates the stack size based on the output of this ANN.
Multi-Pass Search. Multi-pass methods work in several steps: in the first pass
the worse hypotheses are discarded because of some condition requiring low
computational time. We reduced the number of phoneme groups for this reason.
In later passes only the remaining hypotheses are examined, but with a more
detailed phoneme grouping. The last pass (P0) uses the original phoneme set.
To create the phoneme-sets first a distance function of the original ph1, . . . , phm

phonemes is defined: d(phi, phj) is based on the ratio of phi-s classified as phj

and vice versa. We can use the higher value (d1) or the average (d2) as the metric.
The distance between phoneme-groups can be the minimum distance between
their phones (Dmin), or the maximum (Dmax) [2]. The recognition steps using
the resulting phoneme-sets were P1 and P2.

3 Tests and Results

The train database consisted of 500 speakers, each uttering 10 sentences via
telephone. In the test database the 431 speakers uttered the name of a town.
The HTK system [3] yielded 92.11% here. We first improved the recognition rate
with aggregation operators [1], then the multi-stack decoding algorithm was used

Speeding Up Dynamic Search Methods 3

Phoneme Passes Used Improvements
group P0 P1 P2 – i iii ii

standard • ◦ ◦ 169,330.43 72,199.19 58,735.97 55,702.61

d
1

• • ◦ 110,300.97 32,382.85 30,727.94 30,103.32
Dmin • ◦ • – – – –

• • • – – – –
• • ◦ 111,047.41 26,591.38 20,769.16 19,306.91

Dmax • ◦ • 135,975.42 62,053.11 53,021.70 51,019.48
• • • 170,505.40 70,249.03 61,114.36 59,737.51

d
2

• • ◦ 111,042.23 26,920.40 20,857.46 19,327.69
Dmin • ◦ • – – – –

• • • – – – –
• • ◦ 91,889.07 47,328.51 38,515.23 36,914.01

Dmax • ◦ • 217,525.55 98,423.11 78,825.82 76,961.10
• • • 216,652.05 107,467.50 88,106.10 87,416.17

Table 1. Recognition results. The basic dynamic search method resulted in 431,607.07
phoneme-identifications, while the Viterbi beam search produced 131,791.63

with the lowest stack size that kept the optimal accuracy. Next, multi-pass tests
were applied. After we used the speed-ups in the sequence described in [1]. The
speed of a configuration was the lowest one with accuracy above 92%, and was
measured in average phoneme-identifications normalized to the last pass. We see
that only those multi-pass configurations including P2 were unsuccessful. Using
both the multi-stack decoding algorithm and the Viterbi beam search (improve-
ment i) resulted in a 48-76% reduction in running times. Improvement iii reduced
running times by 20%, and improvement ii also produced a slight speed-up.

4 Conclusion

In this paper we examined a dynamic search method, and some ways of speeding
up this search process. We employed several tools like heuristic search, aggrega-
tion operators, multi-pass search and other ideas, which resulted in a dramatic
speed-up with the same level of accuracy. In the end our method proved to be 22
times faster than the dynamic search algorithm, 6 times than the Viterbi beam
search, and 8 times faster than the multi-stack decoding method.

References

1. G. Gosztolya, A. Kocsor, Aggregation Operators and Hypothesis Space Reduc-
tions in Speech Recognition, Proc. of TSD, LNAI 3206, pp. 315-322, Springer, 2004.

2. G. Gosztolya, A. Kocsor, A Hierarchical Evaluation Methodology in Speech
Recognition, Submitted to Acta Cybernetica, 2004.

3. S. Young et al., The HMM Toolkit (HTK) (software and manual),
http://htk.eng.cam.ac.uk/

