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Abstract. This paper presents a method for the syntactic parsing of
Hungarian natural language texts using a machine learning approach.
This method learns tree patterns with various phrase types described
by regular expressions from an annotated corpus. The PGS algorithm,
an improved version of the RGLearn method, is developed and applied
as a classifier in classifier combination schemas. Experiments show that
classifier combinations, especially the Boosting algorithm, can effectively
improve the recognition accuracy of the syntactic parser.

1 Introduction

Syntactic parsing is the process of determining whether sequences of words can
be grouped together. Syntactic parsing is an important part of the field of natural
language processing and it is useful for supporting a number of large-scale ap-
plications including information extraction, information retrieval, named entity
identification, and a variety of text mining applications.

Hungarian language is customarily defined as an agglutinative, free word or-
der language with a rich morphology. These properties make its full analysis
difficult compared to Indo-European languages. Unambiguous marks for the au-
tomatic recognition of phrase boundaries do not exist. For example, the right
bound of noun phrases could be the nouns as a head, but there is a possibility
of replacing noun phrase heads with its modifiers. Determining the left bound
of noun phrases is harder than the head, as it could be a determinant element.
However, due to the possibility of a recursive insertion, it is so not easy to decide
which determinant and head belong together.

This paper introduces the PGS (Pattern Generalization and Specialization)
algorithm, an improved version of the RGLearn algorithm [4], for learning syn-
tactic tree patterns, and it describes how one can improve the performance of
this learner by applying classifier combination schemas. Classifier combinations
aggregate the results of many classifiers, overcoming the possible local weakness
of the individual inducers, producing a more robust recognition. After comparing
them to related works the results look fairly promising.

This paper is organized as follows. Section 2 summarizes the related works on
the topic of syntactic parsing. Section 3 presents the method used for learning



grammar from an annotated corpus. Section 4 then gives a short introduction to
classifier combination techniques. The proposed methods are tested in Section 5.
After, conclusions and suggestions for future study are given in the last section.

2 Related works

Several authors published results of syntactic parsing especially made for En-
glish. Generally the performance is measured with three scores: precision, recall
and an Fβ=1 rate which is equal to 2*precision*recall/(precision*recall). The
latter rate has been used as the target for optimization. Ramshaw and Mar-
cus [7], for instance, built a chunker by applying transformation-based learning
(Fβ=1=92.0). They applied their method to two segments of the Penn Treebank
[6] and these are still being used as benchmark data sets. Tjong Kim Sang and
Veenstra [8] introduced cascaded chunking (Fβ=1=92.37). The novel approaches
attain good accuracies using a system combination. Tjong Kim Sang [9] utilized
a combination of five classifiers for syntactic parsing (Fβ=1=93.26).

Up till now there is no good-quality syntactic parser available for the Hungar-
ian language. Benchmark data sets for correctly comparing results on Hungarian
do not exist yet either. The HuMorESK syntactic parser [5] developed by Mor-
phoLogic Ltd uses attribute grammar, assigning feature structures to symbols.
The grammar part employed in the parser was made by linguistic experts. An-
other report on the ongoing work of a Hungarian noun phrase recognition parser
[10] is based on an idea of Abney’s [1] using a cascaded regular grammar and it
has been tested on a short text of annotated sentences (Fβ=1=58.78). The idea
of using cascaded grammars seems beneficial, this technique being used in all
Hungarian parser developments. A noun phrase recognition parser [4] is applied
machine learning methods to produce grammar of noun phrase tree patterns
from annotated corpus (Fβ=1=83.11).

3 Learning tree patterns

In this section the learning task of syntactic tree patterns will be described which
contains the preprocessing of training data, generalization and specialization of
tree patterns. An improved version of RGLearn [4] named PGS (Patten Gener-
alization and Specialization ) was used as a tree pattern learner. The novelty of
PGS is the use of λ parameters which have an influence on the quality of learned
tree patterns. The pattern unification method and the search method for best
patterns have also been modified.

3.1 Preprocessing of training data

The initial step for generating training data is to collect syntactic tree patterns
from an annotated training corpus. The complete syntax tree of sentence must
be divided into separate trees and a cascade tree building rules to prepare the



parser to reconstruct it. In parsing, using of context free grammar has a lot of
advantages, but the conditions of pattern usage may completely disappear. Some
structural information can be salvaged if tree patterns are used. To generate
cascaded grammar, linguistic experts have defined the following processing levels
for the Hungarian language:

– Short tree patterns of noun, adjective, adverb and pronoun phrases.
– Recursive complex patterns of noun, adjective, adverb and pronoun phrases.
– Recursive patterns of verb phrases.
– Recursive patterns of sub-sentences.

3.2 Generalization of tree patterns

Using the collected tree patterns the syntactic parser is able to reconstruct the
tree structure of training sentences. But, in order to perform the syntactic parsing
of an unknown text to a fair accuracy, the collected tree patterns must be gener-
alized. Generalization means that the lexical attributes of each tag are neglected
except for the POS codes. In this phase the learning problem is transformed
into a classification problem. Namely, which set of lexical attributes would sup-
ply the best result for the decision problem of tree pattern matching, i.e a given
tree structure covers a given example or not. To support the learner, positive
and negative examples are collected from a training set for each tree type. The
example in Figure 1 shows the complete tree pattern learning process.

3.3 Specialization of tree patterns

Negative examples are the bad classifications of generalized tree pattern and
they must be eliminated. Therefore specialization selects each possible lexical
attribute from positive examples making new tree patterns and tries to find the
best tree patterns with unification.

The initial step of specialization generates all possible new tree patterns ex-
tending generalized tree patterns with exactly one attribute from the covered
positive examples. The next steps of specialization extends the set of tree pat-
terns with all possible new tree patterns by a combination of each pair of tree
patterns. The combination of two tree patterns means the union of their lexi-
cal attributes. To avoid the exponential growth of a tree pattern set weak tree
patterns are excluded by applying error statistics on positive and negative ex-
amples. Here the following score of a given tree pattern is used as the target for
maximization:

score = λ1*(pos-neg)/pos + λ2*(pos-neg)/(pos+neg)

where pos is the number of covered positive examples, neg is the number of
covered negative examples and λ1 + λ2 = 1.

Fruitful unifications dramatically decrease the negative coverage, resulting
positive coverage almost in the same time. The score maximization runs parallel
on every positive example. A new tree pattern is stored only if a covered positive



Sentence parts (examples):
1: . . . (NP Tf(ADJP Afp − sn)ADJP Np − sn)NP . . .
2: . . . (NP Tf(NP Afp − pn)NP Nc − pa −−− s3)NP . . .
3: . . . (NP (NP T i(NP Afs − sn)NP )NP (NP Nc − s2)NP . . .
4: . . . (NP Tf(ADJP Afp − sn)ADJP Nc − sn)NP . . .
5: . . . (NP Tf(ADJP Afp − sn)ADJP (ADJP Afp − sn)ADJP )NP . . .

Generalized pattern (one of four possible): (NP T ∗ (ADJP A∗)ADJP N∗)NP

Coverage: positive {1,4}, negative {2,3}, uncovered {5}
Specialized pattern: (NP T ∗ (ADJP A∗)ADJP N???n)NP

Coverage: positive {1,4}, negative {}, uncovered {2,3,5}

In the lexical codes each letter is a lexical attribute, the first one being the part of
speech. Notations:
T∗: determiner, A∗: adjective, N∗: noun, N???n: noun with a lexical attribute,
?: a letter of any kind, ∗: one or more letters of any kind,
(X ,)X : beginning and ending of phrase X, NP : noun phrase, ADJP : adjective phrase.

Fig. 1. A tree pattern learning example.

example exists where the score of new tree pattern is greater than the previous
maximum value. Specialization stops when the current step did not improve any
maximum value.

Appropriate setting of λ factors in linear combination can provide the optimal
tree pattern set. A greater λ1 may result in tree patterns with high coverage,
while a greater λ2 may result high accuracy but there is a possibility of low tree
patterns appearing with a low coverage.

4 Classifier Combinations

Classifier Combinations are effective tools for machine learning and can improve
the classification performance of standalone learners. A combination aggregates
the results of many classifiers, overcoming the possible local weakness of the in-
dividual inducers, producing a more robust recognition. A fair number of combi-
nation schemas have been proposed in the literature [12], these schemas differing
from each other in their architecture, the characteristics of the combiner, and the
selection of the individual classifiers. From a combination viewpoint, classifiers
can be categorized into the following types:

– abstract: the classifier yields only the most probable class label

– ranking: it generates a list of class labels in order of their probability

– confidence: the scores for each class are available

In the following we will assume that the classifiers are capable of generating
information of the confidence type.



4.1 Combination schemas

Let x denote a pattern, and (ω1, . . . , ωn) the set of possible class labels. The
parameters p

j
i will represent the output of the i-th classifier for the j-th class.

Furthermore, let L(x) denote the correct class labelling for each training sample
x ∈ S, and Ci refer to a function that maps the pattern x to the class label
assigned by the i-th classifier:

Ci(x) = ωk, k = argmax
j

p
j
i (x). (1)

The combined class probabilities p̂j are calculated from the corresponding values
of classifiers p

j
i according to combination rules described later. The class label

Ĉ(x) selected by the combiner is the one with the largest probability:

Ĉ(x) = ωk, k = argmax
j

p̂j(x). (2)

There are numerous combination rules mentioned in the literature. The tradi-
tional combination methods are listed here:
Sum Rule:

p̂j(x) =
N∑

i=1

p
j
i (x) (3)

Product Rule:

p̂j(x) =
N∏

i=1

p
j
i (x) (4)

Max Rule:

p̂j(x) =
N

max
i=1

p
j
i (x) (5)

Min Rule:

p̂j(x) =
N

min
i=1

p
j
i (x) (6)

Borda Count:

p̂j(x) =
N∑

i=1

n∑

k=1

pk
i
(x)≤p

j

i
(x)

1 (7)

4.2 Boosting

Boosting[13] was introduced by Shapire as a method for improving the perfor-
mance of a weak learning algorithm. The algorithm generates a set of classi-
fiers by applying bootstrapping on the original training data set and it makes
a decision based on their votes. AdaBoost changes the weights of the training
instances provided as input for each inducer based on classifiers that were previ-
ously built. The final decision is made using a weighted voting schema for each
classifier, whose weights depend on the performance of the training set used to



Adaboost.M1 algorithm

Require: Training Set S of size m, Inducer I
Ensure: Combined classifier C∗

S′ = S with weights assigned to be 1/m
for i = 1 . . . T do

S′ = bootstrap sample from S
Ci = I(S ′)

εi =
∑

xj∈S′

Ci(xj)6=ωj

weight of xj

if εi > 1/2 then reinitialize sample weights
βi = εi

(1−εi)

for all xj ∈ S′ such Ci(xj) = ωj do

weight of xj = weight of xj · βi

end for

normalize weights of instances to sum 1
end for

C∗(x) = argmax
j

∑

i

Ci(x)=ωj

log
1

βi

build it. The Adaboost algorithm requires a weak learning algorithm whose error
is bounded by a constant strictly less than 1/2. In the case of multi-class clas-
sifications this condition might be difficult to guarantee, and various techniques
should be applied to overcome this restriction.

5 Experiments

5.1 Evaluation domain

In order to perform well and learn from the various Natural Language Processing

tasks and achieve a sufficient standard of Information Extraction, an adequately
large corpus had to be collected which serves as the training database. A rel-
atively large corpus of texts of various types was collected, called the Szeged
Corpus [2]. It has six topic areas of roughly 200 thousand words each, meaning
a text database of some 1.2 million words. One of the domain is short business
news items issued by the Hungarian News Agency1.

Initially, corpus words were morpho-syntactically analysed and then manu-
ally POS tagged by linguistic experts. The Hungarian version of the internation-
ally acknowledged MSD (Morpho-Syntactic Description) schema [3] was used for
the encoding of the words. The MSD encoding schema can store morphological
information about part-of-speech determined attributes on up to 17 positions.
About 1800 different MSD labels are employed in the annotated corpus. The
texts of the Szeged Corpus have been parsed, where annotators marked various
type of phrase structures.

1 MTI, Magyar Távirati Iroda (http://www.mti.hu), ”Eco” service.
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Fig. 2. Classification accuracy of the combination schemas on the training and testing
datatset (solid: Boosting, dashed: Sum Rule, dotted: Max Rule).

5.2 Evaluation methods

The training and test datasets were converted from a subset of the business
news domain of the Szeged Corpus. During the experiments we generated 50
learners by training the PGS algorithm on different training sets, these sets
beeing created by randomly drawing 4000 instances with replacement from the
original training set. The λ1 parameter of the PGS algorithm was selected for
optimal performance on the original train dataset. According to the preliminary
investigations the PGS algorithm attains its maximal recognition accuracy when
λ1 is set to 0.7, hence this setting was used during the combination experiments.

5.3 Results

The syntactic tree pattern recognition accuracy of the standalone classifier was
78.5 % on the business-news domain using 10-fold cross-validation. Based on
their performance the combination schemas can be divided into 3 groups. The
schemas Max, Min, and Prod have roughly the same performance: they can-
not significantly improve the classification accuracy of the PGS learner. Borda
Count and Sum rule can take advantage of combinations, and get an 82 % score
on the test data-set. The best classification was obtained by using the Boosting
algorithm, achieving an an accuracy of 86 %. Note that the Adaboost.M1 algo-
rithm cannot reduce the training error rate to zero owing to the fact that the
Boosting algorithm requires that the weighted error should be below 50%, and
this condition is not always fulfilled.

Fig. 2 shows the classification performance for schemas Max, Sum, and Boost-
ing. The graphs show the measured accuracy on the training and test datasets
as a function of the number of the applied classifiers in the combination schema.
Comparing these results with the performance of the standalone learner, we see
that combinations can improve the classification accuracy by some 10%.



6 Summary and future work

In this paper, the authors presented a general machine learning method for syn-
tactic parsing. A new learning method the PGS was introduced as an improved
version of the RGLearn algorithm. The accuracy of tree pattern recognition was
effectively improved using classifier combination schemas, the best performance
being achieved by the Boosting algorithm.

In the future we plan to use the ontological information that can be the
extension of a morpho-syntactic description. This system has been primarily
applied to the business news domain so far, but we would like to process other
Hungarian domains of the Szeged Corpus and to adapt the methods to parsing
English texts as well.
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