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Abstract. In some languages like Finnish or Hungarian phone duration is a
very important distinctive acoustic cue. The conventional HMM speech recog-
nition framework, however, is known to poorly model the duration information.
In this paper we compare different duration models within the framework of
HMM/ANN hybrids. The tests are performed with two different hybrid models,
the conventional one and the “averaging hybrid” recently proposed. Independent
of the model configuration, we report that the usual exponential duration model
has no detectable advantage over using no duration model at all. Similarly, ap-
plying the same fixed value for all state transition probabilities, as is usual with
HMM/ANN systems, is found to have no influence on the performance. How-
ever, the practical trick of imposing a minimum duration on the phones turns out
to be very useful. The key part of the paper is the introduction of the gamma dis-
tribution duration model, which proves clearly superior to the exponential one,
yielding a 12-20% relative improvement in the word error rate, thus justifying
the use of sophisticated duration models in speech recognition.

1 Introduction

In some languages like Finnish or Hungarian phone durations may be the only clue in
discriminating certain words. Good duration modelling can therefore be an important
issue. The conventional HMM speech recognition framework however does not really
make use of the duration information. Though the state transition probabilities can be
regarded as a geometric duration model, this model is not that effective. First, the geo-
metric distribution is a very poor approximation of real phone durations. Second, several
authors have reported that the state transition values have practically no influence on the
recognition scores [2]. In this paper we examine the issue of duration modeling within
the framework of HMM/ANN hybrids. Two types of hybrid models will be tested: the
conventional one known from the literature, and a novel one recently proposed. In both
cases we seek to answer two questions. First, we want to either prove or refute the com-
mon view that the geometric duration model is wholly ineffective. Second, we would
like to know whether the replacement of the geometric model with a more sophisticated
gamma distribution can improve the performance of the two hybrids.

2 A Segment-Based View of HMM/ANN Hybrids

This paper deals with the kind of HMM models where the usual Gaussian mixture
component is replaced by artificial neural network (ANN) estimates. We will refer to



such models as “HMM/ANN hybrids”. And, as a special case, the term “conventional
HMM/ANN hybrid” here will mean the model proposed by Bourlard et al. [1]. The
basic idea behind the latter is very simple: in a standard HMM, we replace the state-
conditional emission likelihood estimateŝP (xt|qk) by ANN-based posterior estimates
P̂ (qk|xt) divided by the state priorsP (qk). According to Bayes’ rule, this quotient will
be proportional to the state-conditional likelihood within a scaling factorP (xt), but this
factor does not influence the optimization, so the resulting system should behave like a
conventional HMM.

In the following we will adopt a more general approach of the ANN-based hybrid
models, where we prefer to interpret the decoding process as a search over phonetic seg-
mentations rather than state sequences. This may be done because HMM/ANN hybrids
do not use 3-state models, but have only one state per phone, so states directly corre-
spond to phones and any state sequence naturally corresponds to a segmentation (and
vice-versa). Because of this, instead of thinking in state sequences, the subsequences
where the model remains in the same state can be thought of as phonetic segments;
and the whole state sequence can be interpreted as a series of segments. This scheme is
more general that the traditional one and will allow us to introduce a new type of hybrid
model that we will call the “averaging hybrid” model. Moreover, the explicit duration
models we are going to discuss can be more readily explained within this framework.
However, we will also see that the conventional HMM/ANN hybrid is just a special
case of this representation.

Let us now examine how the hybrid model evaluates a supposed segment. LetX =
x1, ..., xT denote the observation sequence,U = u1, ..., uN a sequence of phonetic
units over a phone set{q1, ..., qM}, andS = s0, ..., sN a segmentation (given asN + 1
segment boundary time indices).

First of all, as is usual with HMMs, we separate the acoustic and language models.
Mathematically this means that we modelP (X|U)P (U)αL instead ofP (U |X). The
prior probability of a phone sequence,P (U), is produced by the language model, and
αL is a weighting factor that is found useful in practice [4]. Here we are going to focus
on the acoustic modelP (X|U). This factor is approximated by examining all possible
state sequences or, in our jargon, segmentationsS. That is,

P (X|U) =
∑

S

P (X, S|U) ≈ max
S

P (X, S|U). (1)

Next P (X, S|U) is decomposed into segment-level scores. In our general model
this decomposition looks like

P (X,S|U) ≈
N∏

i=1

P (ui|xsi−1
si−1

)αU · P (Si|xsi−1
si−1

)αS · I
P (ui)

, (2)

wherexsi−1
si−1

= xsi−1 , ..., xsi−1 denotes the observation subsequence belonging to the
ith segment, andP (Si|xsi−1

si−1
) can be interpreted as the probability thatxsi−1

si−1
is a cor-

rect phonetic segment. Theα weighting factors were simply introduced based on ex-
perience with a similar weighting factor for the language model.I is a phone insertion
penalty that can be used to balance the phone insertions and deletions; again, such a
factor is known to be useful in language modeling [4].



Let us examine the two main components of Eq. (2). The first,P (ui|xsi−1
si−1

), which
will be referred to asPU later on, represents the fact that each phonetic unitui has
to be identified fromxsi−1

si−1
= xsi−1 , ..., xsi−1, the signal segment mapped to it. This

segment-based posterior probability can be approximated by the formula:

P (ui = qk|xsi−1
si−1

) ≈
1

P (ui=qk)d(i)−1

∏si−1
j=si−1

P̂ (ui = qk|xj)
∑M

r=1

[
1

P (ui=qr)d(i)−1

∏si−1
j=si−1

P̂ (ui = qr|xj)
] , (3)

whereP̂ (ui = qr|xj) are the frame-based posterior estimates andd(i) = si − si−1 is
just a compact notation for the length of the segment.

In classifier combination theory Eq. (3) is known as theproduct ruleand is used
for obtaining an estimate of the class posteriors from the estimate ofd(i) independent
classifiers [8]. Note that the role of the denominator is simply to normalize the esti-
mates of the different phone classes so that they add up to one. It would not be required
if the frames were truly independent. But, in fact, both theoretical arguments and ex-
perimental findings show that the frames are far from being independent. In [9] it was
demonstrated that we obtain more reasonable estimates if we normalize the values and
do not rely on the unrealistic independence assumption.

Alternatively, we could use theaveraging ruleof classifier combination theory:

P (ui = qk|xsi−1
si−1

) ≈
∑si−1

j=si−1
P̂ (ui = qk|xj)

d(i)
. (4)

Note that in this case the estimates belonging to the various classes always add up
to one, ensuring that the estimates form a correct probability distribution.

Now let us turn our attention to the other component,P (Si|xsi−1
si−1

). Its role is to
compute the probability that the given segment indeed corresponds to a phone, and
hence to guide the model towards finding the correct segmentation of the signal. Du-
ration models are possible candidates because the duration information is implicitly
present inxsi−1

si−1
. The next section is devoted to a detailed discussion of some of the

duration models that are available. Here we present an alternative, and a rather unusual
interpretation of this component. This approach makes use of the frame-based poste-
rior estimates to construct an approximation forP (Si|xsi−1

si−1
). It is based on the idea

that a disagreement of the frame-based experts is likely to refer to a phonetically in-
homogenious segment. Hence, it is reasonable to look for a formula that expresses the
coherence of the frame-based scores. In [9] the formula

P (Si|xsi−1
si−1

) ≈
M∑

k=1

P̂ (ui = qk|xsi−1
si−1

) (5)

was proposed for this purpose, based on the argument that the larger the disagreement
between the frame-based experts, the smaller the value is for this expression. Conse-
quently, it may be interpreted as a measure of incoherence of the frame-based posteri-
ors, and can be used as an estimate forP (Si|xsi−1

si−1
). From now on we will refer to this

approximation forP (Si|xsi−1
si−1

) asPS .



Note that the incoherence of the frame-based estimates and the duration of the seg-
ment are quite different pieces of information, so it seems reasonable to make use both
of them. In the experiments we will incorporate bothPS and duration modelsPD in the
model configurations, and they will be combined in the formPαS

S PαD

D .

3 Duration Models

No Duration Model. It has been observed by several researchers and reported in the
literature that the values of the state transition probabilities have practically no effect on
the recognition result [2]. Thus it is theoretically possible not to use a duration model
at all. The results obtained this way can serve as a baseline for comparing the effect of
the various duration models.
Exponential (Geometric) Duration Model. Hidden Markov models incorporate an
implicit duration model coded by the self-transition probabilities of the states. If the
self-transition probability of a stateq is denoted byaqq, then the probability that the
models stays in stateq for d steps (the duration ofd frames) isPD(d) = (1−aqq)ad−1

qq .
This corresponds to a discrete geometric distribution, or an exponential one if we think
in term of a continuous distribution. The great advantage of this exponential duration
model is that it can be calculated recursively, that isPD(d) = PD(d − 1) · aqq, so it
nicely fits the dynamic programming framework of HMMs. However, in practice the
duration of phones does not follow an exponential distribution. The example in Fig. 1
clearly demonstrates this fact.

The proper values foraqq can be found quite easily. We only need one piece of
data for this, namely the average duration for the model to stay in stateq. In our one-
state model the statesq directly correspond to phones, so this average duration can be
estimated as the mean of the phone durations over a manually segmented speech corpus.
FromMq, the empirical mean of the dataaqq can be estimated byaqq = (Mq − 1)/Mq

or aqq = exp(−1/Mq), depending on whether we are using a discrete geometric or a
continuous exponential distribution.
Shared Exponential Duration Model.While in conventional HMM systems the state
transition probabilities are estimated as part of the expectation maximization training
procedure, in HMM/ANN systems it is common practice to use the same fixed value for
all state transition probabilities [3]. It may be interpreted as if all phones had the same
shared duration model. In our experiments the shared parameter value was set to 0.7.
Exponential Duration Model with Minimum Duration Restriction. If we compare
the data histogram and the exponential curve fit over it in Fig. 1, we see that the largest
mismatch is with small durations. A relatively simple remedy for this is to impose a
minimal duration on the phones during the decoding process. For the duration model
this corresponds to zeroing out the first couple of values (see Fig. 1). It is also interesting
to observe that, in a 3-state model, phones are implicitly constrained to have at least 3
frames (if skipping states is forbidden). Restricting the minimal duration to 3 frames in
a 1-state model will have a similar effect. Actually, in the experiments we set this value
to 4 rather than 3 because this yielded slightly better results.
Gamma Distribution Duration Model. Quite evidently, the exponential duration model
gives a very poor approximation of the real distribution, even with a minimum duration
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Fig. 1. Fitting a duration histogram by various pdfs.

restriction. It is natural, then, to look for another type of distribution that is only slightly
more complicated, but fits the data much better. One possibility is to use the gamma
distribution for this purpose. Mathematically it has the form [12]:

PD(d) =
(d/β)γ−1e−d/β

βΓ (γ)
, (6)

whereγ is the shape parameter,β is the scale parameter, andΓ is the gamma function.
The method of moments estimators of the gamma distribution areγ = M2

q /Vq and
β = Vq/Mq, whereMq andVq are the empirical mean and variation of the data [12].

A purely practical issue is that the gamma function cannot be computed directly but
requires numerical approximations. Note, however, that it does not influence the shape
of the curve but simply acts as a normalizing constant. Realizing this, we replaced it
by a third parameter whose value is estimated by minimizing the mean square error
between the histogram of durations and the approximation given byPD(d).

Fig. 1 shows that a gamma distribution indeed fits the data much better than an expo-
nential distribution. The price to be paid for this is that the former cannot be computed
recursively, so the usual dynamic programming decoding scheme has to be modified.
This brings some additional complexity to the decoding process. Fortunately, this extra
burden is manageable, because the other components (PU andPS) can still be computed
recursively, and evaluatingPD(d) for different d values is not cpu demanding. The
reader should see [7] and [6] for more on how the conventional HMM or HMM/ANN
structure has to be modified to incorporate explicit duration models in them.

4 Experimental Results

Database.All the results presented here were obtained using the MTBA Hungarian
Telephone Speech Database [10]. This is the first Hungarian speech corpus that is pub-



licly available and has a reasonably large size. The most important data block of the
corpus contains recorded sentences that were read out loud by 500 speakers. These sen-
tences are relatively long (40-50 phones per sentence), and were selected in such a way
that together all the most frequent phone connections of Hungarian occur in them. The
recordings were made via mobile and line phones, and the speakers were chosen so
that their distribution corresponded to the age and gender distribution of the Hungarian
population. All the sentences were manually segmented and labelled at the phone level.
A set of 58 phonetic symbols was used for this purpose, but after fusing certain rarely
occurring allophones, we worked with only 52 phone classes in the experiments.

For training purposes 1367 sentences were selected from the corpus. The word
recognition tests described here were performed on another block of the database that
contains city names. All the 500 city names (each pronounced by a different caller)
were different. From the 500 recordings only 431 were employed in the tests as the rest
contained significant non-stationary noise or were misread by the caller. The language
model created for the words was a simple pronunciation dictionary that contained one
phonetic transcript for each word and assumed that all of them had equal priors.
Preprocessing.For acoustic preprocessing we applied the Hvite module of the well-
known Hidden Markov Model Toolkit (HTK) [11]. We used the most popular prepro-
cessor configuration, that is we extracted 13 MFCC coefficients along with the corre-
sponding delta and delta-delta values, thus obtaining the usual 39-element feature vec-
tor [11]. For recognition we used our own HMM/ANN decoder implementation, which
was earlier found to have a performance similar to that of the standard HTK recognizer.
Model Configurations. The neural net used in the system contained 150 sigmoidal
hidden neurons and a softmax output layer. Training was performed by conventional
backpropagation. The net was trained by making use of the manual segmentation of
the database, that is no embedded training was applied here (although a Viterbi-like
embedded training scheme is known to be applicable to hybrid models [1]).

Two different model configurations were examined in the experiments. In our short-
hand notation, the formula evaluated for each segment is

PαU

U · PαS

S · PαD

D · I
P (ui)

. (7)

In the first model configurationPU is calculated using the product rule (Eq. (3)),
PS is obtained from Eq. (5), and the duration modelPD and insertion penaltyI will
be varied from experiment to experiment. Both theαU andαS exponents will be set to
1. Notice that in this casePS is the same as the denominator ofPU so they cancel out.
Moreover, with theP (ui) in the denominator the exponent ofP (ui) will becomed(i),
the number of frames in the segment. So in practical terms what is left is the product
of the frame-based probabilities, with one division by the class priors per frame. This
means that this configuration is equivalent to the conventional HMM/ANN model –
apart from, of course, the duration component that we are going to experiment with.

In the second configurationPU is calculated using the averaging rule (Eq. (4)),PS

is obtained from Eq. (5), and the duration modelPD and insertion penaltyI will again
be varied.αU will be set to 1, butαS in this case will be set to 0.1, which was found to
be optimal earlier [9]. We will refer to this configuration as the averaging hybrid model.



Model Configuration
Duration Model Conventional Averaging

No duration model 18.10% 34.11%
No dur. model, min.dur=4 6.04% 12.06%
Shared exponential 15.32% 10.21%
Shared exp., min.dur=4 6.96% 5.10%
Exponential 13.00% 10.21%
Exponential, min.dur=4 7.20% 9.28%

Table 1.Word error rates for various exponential model settings.

Conventional Hybrid Averaging Hybrid
Duration Model αD I WER αD I WER

No duration model – 1.5117 5.80% – 0.2542 4.87%
Shared exp. dur. mod. 0.2667 2.0360 5.80% 0.9343 0.8061 4.87%
Exponential dur. mod. 0.3406 3.8044 5.80% 0.5603 1.0981 4.87%
Gamma duration model0.3823 3.3117 5.10% 0.3069 0.4158 3.94%

Table 2.Word error rates (WER) after fine-tuningαD andI.

5 Results and Discussion

In the first series of experiments we were interested in finding out how the minimum
duration restriction and/or sharing a common exponential base influences the perfor-
mance of the exponential duration model. In these experiments theαD exponent and
the insertion penaltyI were always set to 1. Table 1 summarizes the results. From the
scores it is quite apparent that the minimum duration constraint significantly improves
the recognition performance (not to mention that it also dramatically decreases the run
time). As regards the other question, it was surprising to see that both exponential mod-
els can be detrimental to the recognition score, and the model using the same fixed value
performed better than the phone-specifically tuned one. But this was probably due to an
improper choice ofαD andI (the averaging hybrid turned out to be especially sensitive
to these). So the optimization of these parameters was a reasonable next step.

In the second set of experiments the weight factorαD and insertion penaltyI were
fine-tuned (with the minimum duration restriction always being turned on). The optimal
parameter values were found by a global optimization algorithm called SNOBFIT [5].
The resulting values along with the recognition scores are shown in Table 2. The results
apparently underpin the belief that the exponential duration model brings no advantage
over using no duration model at all (and, according to Table 1, with an improperly cho-
sen exponent it can be even detrimental!). Furthermore, the practice of using one shared
exponential base value instead of phone-specific ones also proved reasonable, as these
models did not differ in performance. These findings seem independent of the model
configuration used – conventional or averaging. In both cases only the gamma dura-
tion model was better than not applying a duration model at all. It achieved a 12-20%
relative improvement in the word error rate, depending on the system configuration.



6 Conclusions

This paper investigated the feasibility of applying sophisticated duration models – in
our case the gamma distribution within the framework of HMM/ANN hybrids. In ad-
dition, we were also curious to see whether the exponential duration model is indeed
ineffective. Two kinds of hybrid model configurations were examined in the test, the
conventional one and the recently proposed “averaging hybrid”. Independent of the
configuration used, we found that the exponential duration model had no detectable
influence on the recognition performance. Hence the practice of replacing the phone-
based self-transition probabilities by a quasi-ad hoc constant is indeed harmless – as
this simplified exponential duration model is just as ineffective as the original one. On
the contrary, we found that imposing a minimum duration constraint on the phonetic
segments not only speeds up the decoding process, but also significantly improves the
results. The other thing that yielded an improvement was the gamma duration model.
Thus, altogether we are justified in saying that the exponential duration model inherent
to HMM is a really poor one, and that replacing it with just a slightly more complicated
model can certainly bring a modest improvement to the error rate.

Finally, let us remark that we did not discuss the differences between the conven-
tional and the averaging hybrids because we were more interested in the duration mod-
els. But the scores clearly show the superiority of the averaging hybrid – at least, on this
corpus. Moreover, during the experiments we found that the averaging model is much
more tunable so, hopefully, with the introduction of new components it can be more
easily improved. This is the direction we plan to take in the near future.
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