
Locally Linear Embedding and its Variants for Feature Extraction

Róbert Busa-Fekete, András Kocsor*
Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University of Szeged

H-6720 Szeged, Aradi vértanúk tere 1., Hungary
{ busarobi,kocsor} @inf.u-szeged.hu

* The author was supported by the János Bolyai fellowship of the Hungarian Academy of Sciences.

Abstract – Many problems in machine learning are hard to
manage without applying some pre-processing or feature
extraction method. Two popular forms of dimensionality
reduction are the methods of principal component analysis
(PCA) [2] and multidimensional scaling (MDS) [18]. In this
paper we examine Locally Linear Embedding (LLE), which is
an unsupervised, non-linear dimension reduction method that
was originally proposed for visualisation. We will show that LLE
is capable of feature extraction if we choose the right parameter
values. In addition, we extend the original algorithm for more
efficient classification. Afterwards we apply the methods to
several databases that are available at the UCI repository, and
then show that there is a significant improvement in
classification performance.

Keywords – Locally Linear Embedding, feature extraction
methods, non-linear feature map, parameter selection
algorithms

I. INTRODUCTION

Classification algorithms require that the objects to be
classified should be represented as points in a
multidimensional feature space. However, before executing
a learning algorithm, additional vector space
transformations may need to be applied on the initial
feature data. The reason for doing this is twofold: firstly
these transformations can improve classification
performance and, secondly, they can reduce the
dimensionality of the data (i.e. we can avoid the so-called
‘curse of dimensionality’ problem). In the literature
sometimes both the choice of the initial features and their
transformations are dealt with under the heading “ feature
extraction” . To avoid any misunderstanding here we will
cover only the latter, namely the transformation of the
initial feature set into another one. This, it is hoped, will
yield a more efficient or, at least, faster classification
procedure.

In this paper we consider the Locally Linear Embedding
(LLE) method, which was first introduced by Sam T.
Roweis and Lawrence K. Saul in 2000 [1]. It is an
unsupervised, non-linear dimensionality reduction
procedure. The aim here is to show how we can apply LLE

as a feature extraction technique if we choose suitable
parameter values.

We will also introduce and describe here some novel
and efficient versions of the original procedure. First of all
we combine the traditional Principal Component Analysis
(PCA) procedure [2] with LLE, which results in a method
that is less sensitive to linearly dependent input vectors. We
will also introduce a supervised version of the original
unsupervised LLE method by redefining the distances
between data points according to their class labels. Since it
is necessary to express the distances and the covariance
matrix of LLE in a kernel feature space (see Section III) we
will also introduce the kernel version of the method. Along
the way by modifying the kernel functions we can get
alternative methods. After applying the proposed methods
on the same data sets of various sizes and making
comparisons, we find that they are generally beneficial
prior to classification.

The structure of the paper is as follows. The original
method [1] will be described briefly in Section II. Then we
will present the above versions of the original LLE method
in Section III. In Section IV we will discuss the issue of
parameter selection for the proposed algorithms, and we
then round off the paper with some concluding remarks in
Section V.

II. THE ORIGINAL LOCALLY LINEAR EMBEDDING

In this section we will briefly describe the original LLE
method. While doing this we can also get an insight into the
mathematical background of the original algorithm and the
role of the parameters.

A. The LLE method

The main idea behind LLE is to embed the objects,
which are represented as multidimensional points, into a
lower dimensional space while preserving their
neighbourhoods. With this approach the neighbourhoods
will be retained in the following way: in the first step every
data point is expressed as a linear combination of its K-
nearest neighbours and, in the second step, the image points
in the embedded space are reconstructed using the weights

of the linear combination that were determined in the
higher dimensional space.

Before we discuss the LLE algorithm in detail, let us
represent the input data as D-dimensional points in a

Euclidean vector space: 1, , D
nx x ∈� � , and represent

the output vectors as 1, , d
ny y ∈� � , where d D�

First step: As we mentioned above we need to express
every point as a linear combination of its neighbours. Now

let n
ijw ∈� denote the jth weight of the linear

combination for the ith point. To solve the above problem,
we need to minimise the following expression:

2

1 1 2

() ,
n n

i ij j
i j

W x w x
= =

Φ = −� � (1)

where we have represented the weights in matrix form (the

ith row corresponds to the iw weight vector for the ith

point). Because we only consider the K-nearest neighbours
in the Euclidean sense for every point, every weight vector

iw can contain at most K non-zero elements. This means

that the matrix W will be mostly sparse. Afterwards,
without loss of generality, we may assume that the weights
sum up to one for each point, which will make the
optimisation problem easier.

Second step: In this part of the procedure we would like
to determine the image points in an optimal way as they
reflect the structure of the input dataset. Hence it seems
obvious that we should also minimise a similar expression
for the image points, but with the unknown matrix Y
containing the output vectors as its columns:

2

1 1 2

()
n n

i ij j
i j

Y y w y
= =

Ψ = −� � (2)

The minimum value here is invariant under the rotations
and translations of the image points. So let us assume that
the image points have been centralised, i.e. 0

n

ii n
y

=
=� and

have unit covariance, i.e.
1

1 n T
i ii

y y I
n =

=� , where I is the

identity matrix of size dxd. Solving this minimisation
problem, we can then determine the embedded image
points.

A good example of embedding a large three-dimensional
dataset into two dimensions is shown below, which was
first presented by the authors of the LLE method [19]. This
3-dimensional dataset gives us an indication of how the
points actually remain in their neighbourhoods.

Fig. 1. LLE maps a 3-dimensional dataset into a 2-dimensional one

B. Solving the two LLE optimisation problems

Both steps lead us to an optimisation problem that is
called the constrained least squares problem. Thus we
really need only solve the same general problem.

First step. We need to minimise the expression in Eq.

(1) subject to the constraint that the weights vectors iw

sum up to one. We can solve this equation for each point
separately. Let (1),..., ()N N K denote the indices of the

K-nearest neighbours for a fixed point, then we can
reexpress Eq. (1) in the following form:

2 2

i () () () ()
1 12 2

x ()
K K

iN j N j iN j i N j
j j

w x w x x
= =

− = −� � (3)

() ()
1 1

,
= =

=��
K K

i
iN j iN k jk

j k

w w c (4)

where we exploited the fact that the weights must sum up
to one, and then we rewrote the second term as the local
covariance matrix

() ()() ()= − ⋅ −i T
jk i N j i N kc x x x x (5)

Now that this expression has a closed form it is fairly
straightforward to find the minimum value. A good way of
doing this is by looking for the stationary point of the
Lagrange function:

1 () () ()
1 1 1

(,) (1),
K K K

iN j iN k jk iN j
j k j

L w w w c wλ λ
= = =

= + −�� � (6)

where λ is the Lagrange multiplier. In practice if we solve

the linear equation 1iCv = for every point where iv

corresponds to the K unknown elements in the vector iw ,

then we will obtain the same result, and it is easier to
compute. We should mention, however, that the C matrix
might sometimes be singular. To overcome this problem
we can add a small term to the C matrix:

:C C rI= + , (7)
where r is a small regularisation parameter that will have
only a negligible effect on the results.

Second step: We may rewrite the target function
represented in Eq (2). If we introduce the matrix M which
has the following form

() ()TM I W I W= − − , (8)

then the problem can be written in a more compact form.
That is,

() (),TY tr YMYΨ = (9)

where the matrix Y contains the image points as its
columns. And like the first problem, it can also be solved
using the Lagrange Multiplier Method, where the Lagrange
function now has the form

2 (,) () ()T TL Y tr YMY tr YY nIλ = + Λ − (10)

Here the matrix
�

 contains the Lagrange multipliers as
its diagonal elements. It is not hard to see that the stationary
points of this expression are the eigenvectors of the M
matrix, and its values are the corresponding eigenvalues.

One of the above-mentioned constraints was not included
in the optimisation problem because if we also have the
constraint 0

n

ii n
y

=
=� we can discard the eigenvector with

the smallest eigenvalue. In short, we can get the desired
optimal image points if we write the d+1 eigenvectors of
the matrix M in the matrix Y as its rows and leave out the
eigenvector with the smallest eigenvalue.

C. Choosing the parameters

When using LLE we have to choose values for three
parameters. These are the number of neighbours considered
(K), the dimension of the image space (d) and the
regularisation parameter (r).

Perhaps the most important parameter is the image
dimension of space, because it can have a big influence on
the classification accuracy. Here we recommend a heuristic
for choosing a ‘good’ value. In the case of the PCA method
the dimension of the image space is determined by an
eigenanalysis of the C correlation matrix of the sample as

follows. Let 1 D, ,λ λ� stand for the eigenvalues of the

matrix C. We then have to determine the dimension d of the
image space, which must satisfy the following inequality:

d

i
i 1
D

j
j 1

v =

=

λ
≤

λ

�

�
 (11)

For the PCA method it means that the ratio of the
residual covariance and the original covariance of the
sample should be higher than a given value v. In practice
this value is usually fixed around 0.95-0.97.

Using the above approach we could also apply this
procedure to LLE. We could perform a similar
eigenanalysis for all of the local covariance matrices, and
then determine the dimension of image space using the
inequality in Eq. (11), which must hold true for all points in
the sample. If we do this the dimension of image space will
not be too low. And since this procedure is automatic the
LLE method can be applied to a wider range of problems.

Fig. 2. The mfeat database from the UCI repository is mapped into
2-dimensions with a proper parameter selection (K=30, D=6, d=3,

n=1800)

The number of neighbours considered is another
parameter. If we set it too high, the LLE method will be
slowed down. But in other circumstances it is worth
choosing a K value larger than the dimension of the input
space D, because it satisfies the condition for the local
covariance matrix for a given point,
namely () min(,)rank C D K= . Moreover, regularisation does

not play such an important role in determining the weights
in the first step described above. Figures 2 and 3 both show
what will happen when we set the K value too low. The
structure of the dataset breaks up, and the reconstruction
error is higher than normal.

Fig. 3. The mfeat database from the UCI repository is mapped into

2-dimensions with a poor choice of K (K=8, D=6, d=3, n=1800)

The last parameter that can be varied is the
regularisation parameter. The regularisation trick
guarantees that the local covariance matrices will not be
non-singular in the first step of LLE. Regularisation
translates the eigenvalues by r, so we should make the
value of r smaller than the smallest eigenvalue of the local
covariance matrices.

III. EXTENSIONS OF LLE, AND THEIR
APPLICATIONS TO FEATURE EXTRACTION

In this section we introduce some extensions of the
original LLE approach. Afterwards, we will say how they
can be applied to feature extraction.

A. The combination of PCA and LLE (PCA-LLE)

The first supervised extension of LLE that we will
describe here is a combination of PCA and the original
LLE method. Instead of using the K-nearest neighbours, we
may reconstruct the points with specific directions that will
be determined by the PCA method. We may obtain a better
reconstruction, so we can determine the image points using
more precise weights.

Before giving a formal description of PCA-LLE, let us
assume as well that we have k classes and an indicator
function:

{ } { }: 1, , 1, , ,→� �n kτ

where ()iτ gives the class label of the sample ix .

Furthermore, let iX denote the matrix that contains the

elements of the sample with class label i, and iC its

correlation matrix, assuming that the probabilities of the
elements are equal in the ith class. We will use this notation
later in this paper when we talk about the supervised case.

Next we should calculate the directions that the PCA
method determines for a given class i, the so-called
principal components. It means that we have determine the

eigenvectors of the correlation matrix iC of size DxD for

any class. Then we use these directions in Eq. (3) instead of
the K-nearest neighbours. The other steps of LLE remain
unchanged.

It may sometimes be a problem if the dataset has a very
high dimension because the eigenanalysis of the correlation
matrices may require much more computation. But we do
not need to use all of the principal components, because we
could consider only the K biggest one, and then PCA-LLE
will work well. This extra-computation is, however,
negligible for the eigenanalysis in the second step of LLE.

B. Modified Supervised Locally Linear Embedding
(MSLLE)

The second supervised extension that will be examined
here is the MSLLE method. It is based on the idea that we
should make the class more separable before we apply LLE
on the dataset. It can be managed with a redefinition of the
distance matrix in such a way that the elements in the
different classes have distances that are inversely
proportion to each other.

First of all we need to calculate the local covariance

matrix C using the distances between the elements. Let ijd

stand for the distance between the elements i and j, and let

()max
1 ,
max
≤ ≤

= ij
i j n

D d . Now let us introduce a new spacing

parameter α . This allows us to redefine the distances in
the following way:

max

, () ()
:

() ,

=�
= � + −�

ij

ij
ij ij

d if i j
d

d D d otherwise

τ τ
α

 (12)
It is easy to see that two elements that belong to

different classes will have bigger distances, while those in
the same class will not. But the distances of the former will
be altered by only a small amount if they are relatively far
from each other. Using a physics metaphor, points in
different classes are repelled with a force law that is
inversely proportional to the distance between them, but
points in the same class are unaffected.

In this case it is more convenient if we calculate the
local covariance matrix in the following form:

(), () , () () ()

1
.

2
= + +i

jk i N j i N k N j N kc d d d (13)

We get a new method called MSLLE where we can
increase the separation between the classes in the
embedded space. We propose this method only for feature

extraction, because this method does not preserve the
neighbourhoods between the elements. So it is not a
suitable procedure for visualisation.

C. Kernel Locally Linear Embedding (KLLE)

The kernel idea can be applied in cases where the input
of some algorithm consists of the pairwise dot (scalar)
products of the elements of an n-dimensional dot product
space. In this case, simply by a proper redefinition of the
two-operand operation of the dot product, we can have an
algorithm that will now be executed in a different dot
product space, which is probably more suitable for solving
the original problem. Of course, when replacing the
operand, we have to satisfy certain criteria, because not
every function is suitable for implicitly generating a dot
product space. According to Mercer’s theorem the family
of the Mercer Kernels is an appropriate choice [20],[11].

The KLLE method is a kernelised version of the original
LLE, which was introduced in [7]. Now let the dot product
be implicitly defined by the kernel function κ in some
finite or infinite dimensional feature space �with
associated transformationφ :

(x, y) (x) (y)κ = φ ⋅φ (14)
Than we can express the local covariance matrix for a

given point ix :
i ,
jk i i i N(j) i N(k) N(j) N(k)c (x ,x) (x ,x) (x ,x) (x ,x)φ = κ − κ − κ + κ

Using different kernel functions we get alternative
algorithms in this way. For instance we could choose one
of the two well-known kernel functions:

1. Polynomial kernel function:
T q

1(x, y) (x y) ,q , +κ = + σ ∈ σ∈� �

2. Rational quadratic kernel:

2

2

x y
(x,y) 1 ,

x y
+−

κ = − σ∈
− + σ

�

D. The methods as a feature extraction algorithms

In many areas of science LLE is very helpful (e.g. in
data mining, bioinformatics), because it gives an insight
into the structure of the dataset being examined. This
method was originally intended for visualising the data. If
we would like to use the original LLE for feature
extraction, then we need to embed a new element into the
image space. In the case of LLE there is no transformation
that has a compact form. So we suggest the following
straightforward method for determining the image of a new
point z: let us find the K-nearest neighbours of z in the
original space, and then let us calculate the weights
according to the first step of the LLE method, and then
determine the image of z as the linear combination of the
image of the K-nearest neighbours of point z. All of the
algorithms that are introduced in Section III can use this
method for determine the image point of each new element.

IV. EXPERIMENTS

Our proposed methods were tested on many databases
that are available at the UCI Repository [15]. We compared
the performance of the algorithms with the help of three
well-known classifiers [21]: Distance Weighted k-Nearest
Neighbours (DKNN), Inverse Distance Weighted k-Nearest
Neighbours (IDKNN) and Nearest Mean Classifier (NM).
The accuracy of the classifiers was assessed using 10 fold
cross validation.

A. Tests

The first dataset we examined is called wine, which
contains 13 parameters about 178 different Italian wines.
We set up the value of parameter K 20= , and the

regularisation parameter 5r 10−= . The automatic method
that we suggested in Section II for determining the
dimension of the image space gives a result of d 10= for
all of the algorithms except KLLE. With the latter the
feature space can be infinite, thus this automatic method
will not work. So we also give d a value of 10 in KLLE.
There is another parameter of the KLLE method: the kernel
function. We used the polynomial kernel function with
parameter with q 3, 0.01= σ = . In addition the α

parameter was set to 0.3 in MSLLE. The results with these
parameters can be seen in the table below.

Table I. The performance of the 3 distinct classifiers on the wine

datasets using 10 fold cross validation

 DKNN IDKNN NM
Without feature

extraction
93.33% 93.14% 95.55%

LLE 95.55% 96.66% 96.66%
MSLLE 97.22% 97.22% 97.22%

PCA-LLE 95.55% 97.22% 96.11%
KLLE 94.44% 95.00% 96.66%

The second database on which we tried the algorithms

was called the heart_disease, which contains data about
peoples who had heart disease. This database has the
following parameters: n 294,K 15= = , and the

embedding carried out had 4d 8,r 10−= = . Table II shows

the results. The last row gives the classification
performance using KLLE. After trying many kernels, the
polynomial kernel seemed the best choice for this problem.
The α parameter in the MSLLE method was set to 0.2.

Table II. The performance of the 3 distinct classifiers on the

heart_disease datasets using 10 fold cross validation

 DKNN IDKNN NM
Without feature

extraction
55.73% 60.85% 56.34%

LLE 64.94% 62.89% 62.48%
MSLLE 57.48% 57.75% 60.62%

PCA-LLE 61.89% 61.21% 60.17%
KLLE 62.56% 60.85% 61.87%

In Table III we can see the results of classification on
the database internet_advertisements. This represents a

set of possible advertisements on Internet pages. We chose
this set because, the database contains 3279 instances, and
the number of dimensions compared to the number of
instances (D=1558) is relatively high, so it seemed ideal for
using a feature extraction method. The embedding was
carried out using the following parameters:

3d 50,K 50,r 10−= = = . We again used KLLE with a

polynomial kernel function, with values q 3, 0.01= σ = ,

and MSLLE with a spacing value of 0.3α = .

Table III. The performance of the 3 distinct classifiers on the

internet_advertisements datasets using 10 fold cross validation

 DKNN IDKNN NM
Without feature

extraction
88.23% 89.85% 88.07

LLE 90.88% 90.75% 91.27%
MSLLE 92.46% 92.68% 92.81%

PCA-LLE 91.01% 91.27% 91.27%
KLLE 91.91% 91.27% 90.32%

B. Evaluation

Using three different databases we showed how the
algorithms work as a feature extraction method. In the first
test (wine) it attained its highest value with MSLLE and
PCA-LLE, but with PCA-LLE the choice of classifiers had
a smaller effect on the performance. So the embedded
dataset may be more reliable. In the second test
(heart_disease) we can see that LLE achieved the highest
score of all. Clearly this automatic method for determining
the dimension of the embedded space also made the
original LLE algorithm suitable for feature extraction.
What is more, in this case the second best result was
provided by KLLE. We should mention here that the choice
of the kernel function significantly influences the accuracy,
and it is no easy task to find a suitable one for a given
classification problem. Finally, in the last test
(internet_advertisements) the results again showed that
the PCA-LLE method was the least sensitive to the choice
of classifiers, but the best result was achieved by MSLLE.
With the latter we had to choose an additional parameter α ,
and we found empirically that this algorithm gives a good
performance when α has a value between 0.2-0.4.

V. CONCLUSIONS

The experiments demonstrated that the LLE method and
its extensions are good not just for visualisation, but for
feature extraction as well. We showed experimentally with
datasets of various sizes that it is worth extending the
original LLE method because we can achieve a significant
improvement in performance for many classification
problems.

In this paper we introduced a new combination of PCA
and LLE, a supervised version of LLE and we reviewed a
kernelised form of the original method [7]. We then carried
out tests using three basic classifiers. These tests confirmed
that it was indeed reasonable to extend the LLE method. In
the future we intend to combine it with other feature

extraction methods to learn more about the effect of
combinations on the classification performance of datasets.

VI. REFERENCES

[1] L.K. Saul, S.T. Roweis: Nonlinear dimensionality reduction by
locally linear embedding, Science, 290:2323-2326,2000.

[2] Jollife, I. T. (1986), Principal Component Analysis, Springer-Verlag
[3] M. A. Aizerman, E. M. Braverman, L. I. Rozonoer, "Theoretical

foundation of the potential function method in pattern recognition
learning," Automat. Remote Cont., Vol. 25, pp. 821-837, 1964.

[4] B. E. Boser, I. M. Guyon, V. N. Vapnik: A Training Algorithm for
Optimal Margin Classifiers, in Proc. of the Fifth Annual ACM
Conference on Computational Learning Theory, D. Haussler (eds.),
ACM Press, Pittsburg, pp. 144-152, 1992.

[5] P.G. Ciarlet, J.L. Lious: Handbook of Numerical Analysis, North-
Holland, Amsterdam.

[6] F. Cucker, S. Smale, "On the mathematical foundations of learning,"
Bull. Am. Math. Soc., Vol. 39, pp. 1-49, 2002.

[7] D. DeCoste : Visualizing Mercer Kernel Feature Spaces Via
Kernelized Locally Linear Embeddings, Machine Learning System
Group, Jet Propulsion Laboratory, California Institute of
Technology, M/S 126/347, 4800 Oak Grove Drive, Pasadena, CA
91109, USA

[8] J. Ham, D.D. Lee, S. Mika, B. Schölkopf: Kernel view of the
dimensionality reduction of manifolds, Technical Report No. TR-
110, Max Planck Institute for Biological Cybernetics, 2003

[9] D. J. Hand, Kernel discriminant analysis, Research Studies Press,
New York, 1982.

[10] Kernel Machines Web site, http://kernel-machines.org.
[11] J. Mercer: Functions of positive and negative type and their

connection with the theory of integral equations, Philos. Trans. Roy.
Soc. London, A, Vol. 209, pp. 415-446, 1909.

[12] S.N. Mukherjee: Locally Linear Embedding for Speech Recognition,
Churchill College, University of Cambridge, 2002

[13] E. Parzen: On the estimation of the probability density function and
mode, Annals of Mathematical Statistics, Vol. 33, pp. 1065-1076,
1962.

[14] http://www.cs.toronto.edu/~roweis/lle/code.html
[15] http://www.ics.uci.edu/ mlearn/MLRepository.html
[16] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer,

New York, 1995.
[17] V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons Inc.,

1998.
[18] T. Cox and M. Cox. Multidimensional Scaling (Chapman & Hall,

London, 1994).
[19] L.K. Saul, & S.T. Roweis: Think Globally, Fit Locally Unsupervised

Learning of Non-linear Manifolds, Technical Report MS CIS-02-18,
University of Pennsylvania, 2002.

[20] F. Cucker, S. Smale: On the mathematical foundations of learning,
Bull. Am. Math. Soc., Vol. 39, pp. 1-49, 2002.

[21] Richard O. Duda, Peter E. Hart and David G. Stork, Pattern
Classification, Wiley & Sons (2001).

