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Abstract – Many problems in machine learning are hard to 
manage without applying some pre-processing or feature 
extraction method. Two popular forms of dimensionality 
reduction are the methods of principal component analysis 
(PCA) [2] and multidimensional scaling (MDS) [18]. In this 
paper we examine Locally Linear Embedding (LLE), which is 
an unsupervised, non-linear dimension reduction method that 
was originally proposed for visualisation. We will show that LLE 
is capable of feature extraction if we choose the right parameter 
values. In addition, we extend the original algorithm for more 
efficient classification. Afterwards we apply the methods to 
several databases that are available at the UCI repository, and 
then show that there is a significant improvement in 
classification performance. 

Keywords – Locally Linear Embedding, feature extraction 
methods, non-linear feature map, parameter selection 
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I. INTRODUCTION 

Classification algorithms require that the objects to be 
classified should be represented as points in a 
multidimensional feature space. However, before executing 
a learning algorithm, additional vector space 
transformations may need to be applied on the initial 
feature data. The reason for doing this is twofold: firstly 
these transformations can improve classification 
performance and, secondly, they can reduce the 
dimensionality of the data (i.e. we can avoid the so-called 
‘curse of dimensionality’  problem). In the literature 
sometimes both the choice of the initial features and their 
transformations are dealt with under the heading “ feature 
extraction” . To avoid any misunderstanding here we will 
cover only the latter, namely the transformation of the 
initial feature set into another one. This, it is hoped, will 
yield a more efficient or, at least, faster classification 
procedure. 

In this paper we consider the Locally Linear Embedding 
(LLE) method, which was first introduced by Sam T. 
Roweis and Lawrence K. Saul in 2000 [1]. It is an 
unsupervised, non-linear dimensionality reduction 
procedure. The aim here is to show how we can apply LLE 

as a feature extraction technique if we choose suitable 
parameter values. 

We will also introduce and describe here some novel 
and efficient versions of the original procedure. First of all 
we combine the traditional Principal Component Analysis 
(PCA) procedure [2] with LLE, which results in a method 
that is less sensitive to linearly dependent input vectors. We 
will also introduce a supervised version of the original 
unsupervised LLE method by redefining the distances 
between data points according to their class labels. Since it 
is necessary to express the distances and the covariance 
matrix of LLE in a kernel feature space (see Section III) we 
will also introduce the kernel version of the method. Along 
the way by modifying the kernel functions we can get 
alternative methods. After applying the proposed methods 
on the same data sets of various sizes and making 
comparisons, we find that they are generally beneficial 
prior to classification. 

The structure of the paper is as follows. The original 
method [1] will be described briefly in Section II. Then we 
will present the above versions of the original LLE method 
in Section III. In Section IV we will discuss the issue of 
parameter selection for the proposed algorithms, and we 
then round off the paper with some concluding remarks in 
Section V. 

II. THE ORIGINAL LOCALLY LINEAR EMBEDDING 

In this section we will briefly describe the original LLE 
method. While doing this we can also get an insight into the 
mathematical background of the original algorithm and the 
role of the parameters. 

A. The LLE method 

The main idea behind LLE is to embed the objects, 
which are represented as multidimensional points, into a 
lower dimensional space while preserving their 
neighbourhoods. With this approach the neighbourhoods 
will be retained in the following way: in the first step every 
data point is expressed as a linear combination of its K-
nearest neighbours and, in the second step, the image points 
in the embedded space are reconstructed using the weights 



of the linear combination that were determined in the 
higher dimensional space. 

Before we discuss the LLE algorithm in detail, let us 
represent the input data as D-dimensional points in a 

Euclidean vector space: 1, , D
nx x ∈� � , and represent 

the output vectors as 1, , d
ny y ∈� � , where d D�   

First step: As we mentioned above we need to express 
every point as a linear combination of its neighbours. Now 

let n
ijw ∈�  denote the jth weight of the linear 

combination for the ith point. To solve the above problem, 
we need to minimise the following expression: 
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where we have represented the weights in matrix form (the 

ith row corresponds to the iw weight vector for the ith 

point). Because we only consider the K-nearest neighbours 
in the Euclidean sense for every point, every weight vector 

iw  can contain at most K non-zero elements. This means 

that the matrix W will be mostly sparse. Afterwards, 
without loss of generality, we may assume that the weights 
sum up to one for each point, which will make the 
optimisation problem easier. 

Second step: In this part of the procedure we would like 
to determine the image points in an optimal way as they 
reflect the structure of the input dataset. Hence it seems 
obvious that we should also minimise a similar expression 
for the image points, but with the unknown matrix Y 
containing the output vectors as its columns: 
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The minimum value here is invariant under the rotations 
and translations of the image points. So let us assume that 
the image points have been centralised, i.e. 0

n

ii n
y

=
=�  and 

have unit covariance, i.e.
1

1 n T
i ii

y y I
n =

=� , where I is the 

identity matrix of size dxd. Solving this minimisation 
problem, we can then determine the embedded image 
points. 

A good example of embedding a large three-dimensional 
dataset into two dimensions is shown below, which was 
first presented by the authors of the LLE method [19]. This 
3-dimensional dataset gives us an indication of how the 
points actually remain in their neighbourhoods. 

 

Fig. 1. LLE maps a 3-dimensional dataset into a 2-dimensional one 

B. Solving the two LLE optimisation problems 

Both steps lead us to an optimisation problem that is 
called the constrained least squares problem. Thus we 
really need only solve the same general problem. 

First step. We need to minimise the expression in Eq. 

(1) subject to the constraint that the weights vectors iw  

sum up to one. We can solve this equation for each point 
separately. Let (1),..., ( )N N K  denote the indices of the 

K-nearest neighbours for a fixed point, then we can 
reexpress Eq. (1) in the following form: 
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where we exploited the fact that the weights must sum up 
to one, and then we rewrote the second term as the local 
covariance matrix 

( ) ( )( ) ( )= − ⋅ −i T
jk i N j i N kc x x x x  (5) 

Now that this expression has a closed form it is fairly 
straightforward to find the minimum value. A good way of 
doing this is by looking for the stationary point of the 
Lagrange function: 
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where λ  is the Lagrange multiplier. In practice if we solve 

the linear equation 1iCv =  for every point where iv  

corresponds to the K unknown elements in the vector iw , 

then we will obtain the same result, and it is easier to 
compute. We should mention, however, that the C matrix 
might sometimes be singular. To overcome this problem 
we can add a small term to the C matrix: 

:C C rI= + , (7) 
where r is a small regularisation parameter that will have 
only a negligible effect on the results. 

Second step: We may rewrite the target function 
represented in Eq (2). If we introduce the matrix M which 
has the following form 

( ) ( )TM I W I W= − − , (8) 

then the problem can be written in a more compact form. 
That is, 

( ) ( ),TY tr YMYΨ =  (9) 

where the matrix Y contains the image points as its 
columns. And like the first problem, it can also be solved 
using the Lagrange Multiplier Method, where the Lagrange 
function now has the form 

2 ( , ) ( ) ( )T TL Y tr YMY tr YY nIλ = + Λ −  (10) 

Here the matrix 
�

 contains the Lagrange multipliers as 
its diagonal elements. It is not hard to see that the stationary 
points of this expression are the eigenvectors of the M 
matrix, and its values are the corresponding eigenvalues. 



One of the above-mentioned constraints was not included 
in the optimisation problem because if we also have the 
constraint 0

n

ii n
y

=
=�  we can discard the eigenvector with 

the smallest eigenvalue. In short, we can get the desired 
optimal image points if we write the d+1 eigenvectors of 
the matrix M in the matrix Y as its rows and leave out the 
eigenvector with the smallest eigenvalue. 

C. Choosing the parameters 

When using LLE we have to choose values for three 
parameters. These are the number of neighbours considered 
(K), the dimension of the image space (d) and the 
regularisation parameter (r). 

Perhaps the most important parameter is the image 
dimension of space, because it can have a big influence on 
the classification accuracy. Here we recommend a heuristic 
for choosing a ‘good’  value. In the case of the PCA method 
the dimension of the image space is determined by an 
eigenanalysis of the C correlation matrix of the sample as 

follows. Let 1 D, ,λ λ� stand for the eigenvalues of the 

matrix C. We then have to determine the dimension d of the 
image space, which must satisfy the following inequality: 

d

i
i 1
D

j
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v =

=

λ
≤

λ

�

�
 (11) 

For the PCA method it means that the ratio of the 
residual covariance and the original covariance of the 
sample should be higher than a given value v. In practice 
this value is usually fixed around 0.95-0.97. 

Using the above approach we could also apply this 
procedure to LLE. We could perform a similar 
eigenanalysis for all of the local covariance matrices, and 
then determine the dimension of image space using the 
inequality in Eq. (11), which must hold true for all points in 
the sample. If we do this the dimension of image space will 
not be too low. And since this procedure is automatic the 
LLE method can be applied to a wider range of problems. 

 
Fig. 2. The mfeat database from the UCI repository is mapped into 
2-dimensions with a proper parameter selection (K=30, D=6, d=3, 

n=1800) 

The number of neighbours considered is another 
parameter. If we set it too high, the LLE method will be 
slowed down. But in other circumstances it is worth 
choosing a K value larger than the dimension of the input 
space D, because it satisfies the condition for the local 
covariance matrix for a given point, 
namely ( ) min( , )rank C D K= . Moreover, regularisation does 

not play such an important role in determining the weights 
in the first step described above. Figures 2 and 3 both show 
what will happen when we set the K value too low. The 
structure of the dataset breaks up, and the reconstruction 
error is higher than normal. 

 
Fig. 3. The mfeat database from the UCI repository is mapped into 

2-dimensions with a poor choice of K (K=8, D=6, d=3, n=1800) 

The last parameter that can be varied is the 
regularisation parameter. The regularisation trick 
guarantees that the local covariance matrices will not be 
non-singular in the first step of LLE. Regularisation 
translates the eigenvalues by r, so we should make the 
value of r smaller than the smallest eigenvalue of the local 
covariance matrices. 

III. EXTENSIONS OF LLE, AND THEIR 
APPLICATIONS TO FEATURE EXTRACTION 

In this section we introduce some extensions of the 
original LLE approach. Afterwards, we will say how they 
can be applied to feature extraction. 

A. The combination of PCA and LLE (PCA-LLE) 

The first supervised extension of LLE that we will 
describe here is a combination of PCA and the original 
LLE method. Instead of using the K-nearest neighbours, we 
may reconstruct the points with specific directions that will 
be determined by the PCA method. We may obtain a better 
reconstruction, so we can determine the image points using 
more precise weights. 

Before giving a formal description of PCA-LLE, let us 
assume as well that we have k classes and an indicator 
function: 

{ } { }: 1, , 1, , ,→� �n kτ  



where ( )iτ gives the class label of the sample ix . 

Furthermore, let iX  denote the matrix that contains the 

elements of the sample with class label i, and iC  its 

correlation matrix, assuming that the probabilities of the 
elements are equal in the ith class. We will use this notation 
later in this paper when we talk about the supervised case. 

Next we should calculate the directions that the PCA 
method determines for a given class i, the so-called 
principal components. It means that we have determine the 

eigenvectors of the correlation matrix iC of size DxD for 

any class. Then we use these directions in Eq. (3) instead of 
the K-nearest neighbours. The other steps of LLE remain 
unchanged.  

It may sometimes be a problem if the dataset has a very 
high dimension because the eigenanalysis of the correlation 
matrices may require much more computation. But we do 
not need to use all of the principal components, because we 
could consider only the K biggest one, and then PCA-LLE 
will work well. This extra-computation is, however, 
negligible for the eigenanalysis in the second step of LLE. 

B. Modified Supervised Locally Linear Embedding 
(MSLLE) 

The second supervised extension that will be examined 
here is the MSLLE method. It is based on the idea that we 
should make the class more separable before we apply LLE 
on the dataset. It can be managed with a redefinition of the 
distance matrix in such a way that the elements in the 
different classes have distances that are inversely 
proportion to each other. 

First of all we need to calculate the local covariance 

matrix C using the distances between the elements. Let ijd  

stand for the distance between the elements i and j, and let 

( )max
1 ,
max
≤ ≤

= ij
i j n

D d . Now let us introduce a new spacing 

parameter α . This allows us to redefine the distances in 
the following way: 

max

, ( ) ( )
:

( ) ,

=�
= � + −�

ij

ij
ij ij

d if i j
d

d D d otherwise

τ τ
α

 (12) 
It is easy to see that two elements that belong to 

different classes will have bigger distances, while those in 
the same class will not. But the distances of the former will 
be altered by only a small amount if they are relatively far 
from each other. Using a physics metaphor, points in 
different classes are repelled with a force law that is 
inversely proportional to the distance between them, but 
points in the same class are unaffected. 

In this case it is more convenient if we calculate the 
local covariance matrix in the following form: 

( ), ( ) , ( ) ( ) ( )

1
.

2
= + +i

jk i N j i N k N j N kc d d d  (13) 

We get a new method called MSLLE where we can 
increase the separation between the classes in the 
embedded space. We propose this method only for feature 

extraction, because this method does not preserve the 
neighbourhoods between the elements. So it is not a 
suitable procedure for visualisation. 

C. Kernel Locally Linear Embedding (KLLE) 

The kernel idea can be applied in cases where the input 
of some algorithm consists of the pairwise dot (scalar) 
products of the elements of an n-dimensional dot product 
space. In this case, simply by a proper redefinition of the 
two-operand operation of the dot product, we can have an 
algorithm that will now be executed in a different dot 
product space, which is probably more suitable for solving 
the original problem. Of course, when replacing the 
operand, we have to satisfy certain criteria, because not 
every function is suitable for implicitly generating a dot 
product space. According to Mercer’s theorem the family 
of the Mercer Kernels is an appropriate choice  [20],[11]. 

The KLLE method is a kernelised version of the original 
LLE, which was introduced in [7]. Now let the dot product 
be implicitly defined by the kernel function κ  in some 
finite or infinite dimensional feature space �with 
associated transformationφ : 

(x, y) (x) (y)κ = φ ⋅φ  (14) 
Than we can express the local covariance matrix for a 

given point ix : 
i ,
jk i i i N( j) i N(k) N( j) N(k)c (x ,x ) (x ,x ) (x ,x ) (x ,x )φ = κ − κ − κ + κ

Using different kernel functions we get alternative 
algorithms in this way. For instance we could choose one 
of the two well-known kernel functions: 

1. Polynomial kernel function: 
T q

1(x, y) (x y ) ,q , +κ = + σ ∈ σ∈� �

 
2. Rational quadratic kernel: 

2

2

x y
(x,y) 1 ,

x y
+−

κ = − σ∈
− + σ

�

  

D. The methods as a feature extraction algorithms 

In many areas of science LLE is very helpful (e.g. in 
data mining, bioinformatics), because it gives an insight 
into the structure of the dataset being examined. This 
method was originally intended for visualising the data. If 
we would like to use the original LLE for feature 
extraction, then we need to embed a new element into the 
image space. In the case of LLE there is no transformation 
that has a compact form. So we suggest the following 
straightforward method for determining the image of a new 
point z: let us find the K-nearest neighbours of z in the 
original space, and then let us calculate the weights 
according to the first step of the LLE method, and then 
determine the image of z as the linear combination of the 
image of the K-nearest neighbours of point z. All of the 
algorithms that are introduced in Section III can use this 
method for determine the image point of each new element. 



IV. EXPERIMENTS 

Our proposed methods were tested on many databases 
that are available at the UCI Repository [15]. We compared 
the performance of the algorithms with the help of three 
well-known classifiers [21]: Distance Weighted k-Nearest 
Neighbours (DKNN), Inverse Distance Weighted k-Nearest 
Neighbours (IDKNN) and Nearest Mean Classifier (NM). 
The accuracy of the classifiers was assessed using 10 fold 
cross validation.  

A. Tests 

The first dataset we examined is called wine, which 
contains 13 parameters about 178 different Italian wines. 
We set up the value of parameter K 20= , and the 

regularisation parameter 5r 10−= . The automatic method 
that we suggested in Section II for determining the 
dimension of the image space gives a result of d 10=  for 
all of the algorithms except KLLE. With the latter the 
feature space can be infinite, thus this automatic method 
will not work. So we also give d a value of 10 in KLLE. 
There is another parameter of the KLLE method: the kernel 
function. We used the polynomial kernel function with 
parameter with q 3, 0.01= σ = . In addition the α  

parameter was set to 0.3 in MSLLE. The results with these 
parameters can be seen in the table below. 

 
Table I. The performance of the 3 distinct classifiers on the wine 

datasets using 10 fold cross validation 

 DKNN IDKNN NM 
Without feature 

extraction  
93.33% 93.14% 95.55% 

LLE 95.55% 96.66% 96.66% 
MSLLE 97.22% 97.22% 97.22% 

PCA-LLE 95.55% 97.22% 96.11% 
KLLE 94.44% 95.00% 96.66% 

 
The second database on which we tried the algorithms 

was called the heart_disease, which contains data about 
peoples who had heart disease. This database has the 
following parameters: n 294,K 15= = , and the 

embedding carried out had 4d 8,r 10−= = . Table II shows 

the results. The last row gives the classification 
performance using KLLE. After trying many kernels, the 
polynomial kernel seemed the best choice for this problem. 
The α  parameter in the MSLLE method was set to 0.2. 

 
Table II. The performance of the 3 distinct classifiers on the 

heart_disease datasets using 10 fold cross validation 

 DKNN IDKNN NM 
Without feature 

extraction  
55.73% 60.85% 56.34% 

LLE 64.94% 62.89% 62.48% 
MSLLE 57.48% 57.75% 60.62% 

PCA-LLE 61.89% 61.21% 60.17% 
KLLE 62.56% 60.85% 61.87% 

 

In Table III we can see the results of classification on 
the database internet_advertisements. This represents a 

set of possible advertisements on Internet pages. We chose 
this set because, the database contains 3279 instances, and 
the number of dimensions compared to the number of 
instances (D=1558) is relatively high, so it seemed ideal for 
using a feature extraction method. The embedding was 
carried out using the following parameters: 

3d 50,K 50,r 10−= = = . We again used KLLE with a 

polynomial kernel function, with values q 3, 0.01= σ = , 

and MSLLE with a spacing value of 0.3α = . 
 
Table III. The performance of the 3 distinct classifiers on the 

internet_advertisements datasets using 10 fold cross validation 

 DKNN IDKNN NM 
Without feature 

extraction  
88.23% 89.85% 88.07 

LLE 90.88% 90.75% 91.27% 
MSLLE 92.46% 92.68% 92.81% 

PCA-LLE 91.01% 91.27% 91.27% 
KLLE 91.91% 91.27% 90.32% 

 

B. Evaluation 

Using three different databases we showed how the 
algorithms work as a feature extraction method. In the first 
test (wine) it attained its highest value with MSLLE and 
PCA-LLE, but with PCA-LLE the choice of classifiers had 
a smaller effect on the performance. So the embedded 
dataset may be more reliable. In the second test 
(heart_disease) we can see that LLE achieved the highest 
score of all. Clearly this automatic method for determining 
the dimension of the embedded space also made the 
original LLE algorithm suitable for feature extraction. 
What is more, in this case the second best result was 
provided by KLLE. We should mention here that the choice 
of the kernel function significantly influences the accuracy, 
and it is no easy task to find a suitable one for a given 
classification problem. Finally, in the last test 
(internet_advertisements) the results again showed that 
the PCA-LLE method was the least sensitive to the choice 
of classifiers, but the best result was achieved by MSLLE. 
With the latter we had to choose an additional parameter α , 
and we found empirically that this algorithm gives a good 
performance when α has a value between 0.2-0.4. 

V. CONCLUSIONS 

The experiments demonstrated that the LLE method and 
its extensions are good not just for visualisation, but for 
feature extraction as well. We showed experimentally with 
datasets of various sizes that it is worth extending the 
original LLE method because we can achieve a significant 
improvement in performance for many classification 
problems.  

In this paper we introduced a new combination of PCA 
and LLE, a supervised version of LLE and we reviewed a 
kernelised form of the original method [7]. We then carried 
out tests using three basic classifiers. These tests confirmed 
that it was indeed reasonable to extend the LLE method. In 
the future we intend to combine it with other feature 



extraction methods to learn more about the effect of 
combinations on the classification performance of datasets. 
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