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Abstract— The recently introduced Convex Networks (CN) methodglobally optimal solution with commensurable performance
[1] is a convex reformulation of several well-known machine put the structure of the model employed gives the possibilit
learning algorithms like certain boosting methods and various ¢ controlling the compactness of the result. Our aim is to

Support Vector Machine algorithms. The special feature of the CN define a special family of subset selection algorithms —iiesp
method is that it employs a combination of basis functions to solve &

classification task of machine learning. The nonlinear Gauss-SeidelPY Fe.ature Selection [5] - V‘{hiCh can effe_Cti\@W increase th
iteration process for solving the CN problem converges globally andsparsity of the CN solution without degrading its perforican
fast, according to the corresponding proof. The most important  Now we will briefly outline the contents of the paper.

property of the CN solution is its sparsity, which means that the First we overview the Convex Network (CN) method, which
number of basis functions with nonzero coefficients is small, and !

can effectively be controlled by heuristics. The proposed techniquedill 1€ad to a constrained optimization formulation. In the
were inspired by an area of artificial intelligence, called Feature following section we introduce heuristics for controllitige
Selection. Numerical results and comparisons demonstrate thesparsity of the solution. In the numerical tests and conspas
effectiveness of the proposed methods on publicly available datasetgection we demonstrate the practical applicability of CN

As will be shown, the CN approach can perform learning tasks usmgcompared with ANN and SVM. Lastly, we round off with some
far fewer basis functions and generate sparse solutions. . . ) ’
conclusions and ideas for future research.

Keywords— machine learning, kernel methods, feature selection,
Gauss-Seidel iteration, sparse solutions IIl. BRIEF INTRODUCTION TO CONVEX NETWORKS

I. INTRODUCTION Tasks in machine learning often lead to classification and
regression problems where models which employ a convex

The widespread statistical machine learning algorithmgbjective function might be beneficial. Consider the prable
employ pre-collected databases to calibrate parameters @jfclassifyingn points in a compact set overR™, represented
the applied model. Due to the rapid development oBYy Xi,...,X,, Where each poink; belongs to one of the
communication networks, the size of the data sets ha&#asses{l,...,c}, as specified by, ...,y,. A multiclass
grown rapidly, making data mining methods essential. Sudproblem can be transformed into a set of binary classifinatio
algorithms should store the extracted information in a cachp tasks wherey; € {—1,+1}, which is in many ways like the
and easily retrievable form. One of the most prevalent nmachi one-against-all method [6] or the output coding scheme [7].
learning algorithms - Artificial Neural Networks (ANN) [2] Thus our investigation can be restricted to the problem of
- meets these requirements, as it has a compact form withokary classification without any loss of generality.
fast evaluation. However, the solution provided by its iiéag The discriminative approach of the above problem utilizes a
algorithm is only a local minima of the objective function,separator surface between classes, where the surfacenisdlefi
which may make the networks trained on the same databasgthe following set for a fixedy € R
inconsistent. The ubiquitous Support Vector Machine (SVM)
method [3], [4] leads to a quadratic programming task whose {z | f(z) =, z € X'}, f: X —R. (1)
own global optima defines the compactness of the information
retrieved. This automated selection can be beneficial sinbw let us assume that the surface that separates points
preliminary assumptions are not required, but it also mékas x1,...,X, optimally is searched for in the linear subspace of
technique inapplicable in certain cases. A recently pregos S, thatisf € Span(S)
approach, the Convex Networks (CN) method also has a

k
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Fig. 1. Possible loss functions

whereS denotes a finite set of continuous basis functions  closed set4, wherer is twice continuously differentiable and
lower bounded. Moreover, every level set of the function
S={A&x),....fux)}  fi:X=>R (3)  should be bounded and there must exist & 0 such that

. . o 0 < § < V47(x)). The limit point of the iteration is the
The separation ability of a discriminative surface can bg,ireme of the function oved [9].

characterized based on the positions of the sample poiriss: i o _ o _
optimal when the points are as far from the surface as pessibl Definition 1 (constrained Gauss-Seidel iteration)
and points with the same class label fall in the same haléespa

; - L altt = [of — ’}/V‘T(fo)]p >0
The more optimal the position of a labelled point is, the dairg i i AN 2P
the valuey; f(x;) will be. Thus it can be applied to define where
a measure for the separation ability of a surfgcever the

samplexy,...,x,. A possible formulation is (PRF - A [aff =z |a—z|?= miﬂ la—y|?
ye
n k d
an
9(a) = ZL yizajfj(xi) ) 4)
=t =t ZE = (Oéfi—‘rl’.,.,()égti?aé,..,,042)7 atJrl :ZZ+1~

where a twice continuously differentiable, monotone dasre
ing, lower bounded and convex loss-functibn R — R [7]
was introduced. Of the many possibilities two candidates ar
shown in Fig. I.

The problem of approximating the parameteased on
sparse sample data is ill-conditioned, and the classicg wa k
of solving it is to use regularization theory [8]. According {z | Zajfj(z) =, z € X}, f: X =R (6)
to this theory, the optimal separator surface can be oldaine j=1
by extending the separation measure of Eq. (4) with
regularization term, and searching for its minimum

Ill. SPARSE SOLUTIONS

The separator surface coded by a CN problem takes the
form

%r a fixed thresholdy € R. Basis functions with zero
coefficients can be eliminated when evaluating the model
. n & . and the remaining terms define the complexity of the CN
ming 7 (@) =3, L (y% Zj=1ajfi(xi)) tAetAa goiution.  The more the number of zero coefficients the
s.t. ac A=A x...x A faster the evaluation, which makes the CN method suitable
(5) for fast or real-time applications. However the coefficgent
are determined by the optimal solution of the mathematical
where) > 0 andA € R*** is an arbitrary symmetric positive- programming task, and the parameters can only increase the
definite matrix. Here we restrict our investigation to thesparsity by degrading the performance.
product space of non-empty intervals that also includes the In order to control the complexity, the number of
unconstrained task with casg = (—o0,c0). basis functions will be restricted by applying the follogin
It can readily be seen that Eq. (5) is a convex programmingpnstraint in the CN task
task which can be solved by one of the many techniques N
[9]. The suggested method, the constrained Gauss-Sei8gl (G Z Isign(as)| <
iteration technique, modifies one component of the solwdion — gmail =4
each step by the gradient rule. If the solution falls outsice h
domain it will be replaced by the nearest point of the set witlsuch a condition violates the closed and convex properfies o
the aid of projection mapping. The GS method is convergetiie domain so the suggested nonlinear Gauss-Seidel teghniq
for every functionr : A — R over a non-empty, convex and and other iterative methods cannot be applied to the prablem
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The only approach is to select a subset of orglédrom the to remove a function at the that particular level. These
available basis functions where the classification proldem problems are absent in the Sequential Forward Floating
be solved approximately as optimal as in the case of the Selection algorithm. It removes elements after the
complete one. This selection task is NP hard, so the employed extending step while the measure obtained is better than

heuristics can provide only suboptimal solutions by exegut the previous ones of the same order.
CN with different parameters several times. SFFS( q)

Measure-based subset selection is an active area of other Y ={1,....k};
fields in artificial intelligence like Feature Selection,[Shy. Yo=0; i = 0;
In that context one should selecfeatures from the available St epl:
m, SO as to maximize the classification performa_nce of a t = argminjey _y, CN(Y;U{j});
machine learning algorithm. The elaborated techniques can Vi =Y;U{th i =i + 1;
be employed for CN subset selection problem if the required if (i == q) goto Step3;
measure is the optimal objective function value of the etextu St ep2:
CN task. In the following .IeCN(I) denote this optimal value t = argminjey, CN (Y; — {j})
of the objective function in CN when the basis function set is if CN(Y;—{t})<CN(Y;_;) then
restricted in the following way: Y =Yi—{th i =i - 1;

S={fis(X).. fu(®)}  ir,..i €L ©) e Stepz;
SFS The Sequential Forward Selection method is a greedy goto Stepl;

approach for the measure-based subset selection problem. Step3: return Y
Starting with the empty index set it extends the indices

with the locally optimal element without backtracking. IV. RESULTS
SFS(q)
Y={1,....k}; I=0; We will now demonstrate the effectiveness of the CN
for i =1...q approach by comparing its results with Artificial Neural
t=argminjey_1 CN(IU{j}) Networks (ANN) and Support Vector Machines (SVM). In
I=TU{t}; order to evaluate how well each algorithm classifies an
return I, unknown dataset, we performed a tenfold cross-validagen t

PTA The SFS method is a sequential algorithm, henceon publicly available datasets from the UCI repository [10]
previous steps cannot be modified when detecting their We applied a feed-forward neural network (MLP) with one
latter impact on the result. A solution to the problem is thdiidden layer, where the number of hidden neurons was set to
Plus| Take Awayr approach which periodically extendsthree times the class number. The backpropagation learning
the actual index set biyelements and afterwards removegule was applied for training. MLP was trained five times on
r ones. By doing this the effects of previous selectionsach dataset and then we chose the parameter values which

can be eliminated during the execution. gave the best performance on the training sample. For the SVM
PTA(G, |, r) experiments,.we employed our 1-norm SVM implfementation
Y ={1,....k}; where the bias term was ai_asent [11] and multlclass cases
if (I >r) then were handled by the one-against-all approach. In additian,
i =0; I=0; goto Stepl: cosine polynomial kernel we applied made the SVM method
el se nonlinear with parameters= 3 ando = 1
i = k; I=Y; goto Step2; T q
St epl: /@(x,y):(xy+0) ) get, ceRL  (9)
repeat | tines = Iyl

t=argminjey 1 CN(IU{j}); The basis functions for the CN problem were defined with the

iIf: flu{f}_ ') - é)t; ét en3: aid of the above kernel function based on the points from the
_ = a9 P3; training set. There were
Step2:
repeat r times i(z) =y,k(2,x%;5). j=1,...,n 10
t = argminjer CN(I— {5}) fi(z) = y;r (2, %) J 7o (10)
I=I={t} i =i -1 The coefficients of the basis functions were not restricted i
if (i == 0q) goto Step3; our tests, i.e. we used the domaih= (—oo,00)". In the
goto Stepl; regularization term of Eq. (5) we set the identity matrix aqu
Step3: return I to A with A = 1.
SFFS During PTA r removing steps always follow The correctness for the various methods obtained by tenfold

extending ones. Hence it is possible to execute #sting are summarized in Table I. Besides the results pextiu
removing step when the evolving set has a worse measurg ANN and SVM at the settings described, the correctness
value than the previous one of the same order. Conversebf, the CN method when sparsity was controlled by various
an extending step can be performed when it is bettdreuristics is also shown. It confirms that the CN classificati



Table I. Ten-fold cross-validation training and testing results on some UCI datasets. ANN is a feed-forward neural network with a hidden layer

where the number of hidden units was set to three times the number of classes. SVM used the cosine polynomial kernel defined in Eq. (9) for

nonlinearity. Using Eq. (10) the CN method applied the same basis functions. The sparsity was controlled by limiting the number of available
basis functions at 10%, 20% and 30% to the complete sets, respectively.

SFS
PTA 10% 20% 30% 100% ANN SVM
SFFS
94.66 94.77 94.91
balance 94.75 95.19 94.92 95.41 | 86.35 90.63
95.41 94.97 95.08
69.46 69.22 68.96
bupa 69.20 70.66 71.41 71.92 | 68.07 74.39
70.37 71.20 69.88
84.36 88.62 86.63
glass 85.10 86.56 85.74 86.23 | 69.87 84.70
85.18 85.47 86.91
89.24 91.81 90.71
iono 91.51 92.25 92.71 92.41 | 86.17 91.09
92.13 93.24 92.48
93.07 93.55 94.64
monks 92.80 91.85 90.79 96.51 | 87.28 95.82
92.65 94.90 95.49
77.86 76.43 75.97
pima 78.42 77.14 76.55 7482 | 76.09 75.58
77.74 76.49 78.03
97.44 97.22 97.38
wdbc 97.35 96.96 96.16 96.93 | 97.61 97.62
97.18 97.29 97.43
76.26 75.92 74.75
wpbc 78.06 78.19 77.03 79.63 | 76.41 77.36
75.82 76.39 79.98

method is indeed just as effective as the ubiquitous machimdfectively controlled by the feature selection based istius,

learning algorithms.
surpassed in many cases.
classification performance could be achieved by restrdtie

In fact, their performances were eveas presented here. Future work includes a new heuristiesibas
What is more, even betmm a CN objective function which can be utilized in very
large classification problems. We also plan to use chunking

solutions via introducing constraints on the parametens. kalgorithms like those described in [12] for problems which d
ANN terminology, accepting a locally optimal solution migh not fit in the memory.

be regarded as a restriction of this kind, as it prevents the
method from overfitting the training data. A similar behavio
can be observed when applying heuristics for controllirgy th
sparsity in the CN method. The accuracies obtained frontll
tenfold testing are shown in the table for cases when weduhit ,
the order of the selected subset of Eg. (10) to 10, 20 and 30%

of the original one. ThéTA algorithm was executed with [3]
settingsi = 3 andr» = 1. As can be seen, all the algorithms
selected subsets that yielded reasonable test resultskifldi  [4]

of capacity reduction in the CN learning method induces & sort®!
of regularization, as reflected in the results. Namely, cedu
bases outperform the original ones in many cases. The warious]
algorithms introduced here attained their best perforraammc

different tasks. In general, different preferences dutimg [7]
learning phase will lead the user to choose different hicsis

8

V. CONCLUSIONS )

(9]

This paper gave an overview of the CN method, whiciplo
is a reformulation of certain machine learning algorithms,
including several well-known nonlinear classification huats.

1]
The proposed formula can be solved by the convergth
nonlinear Gauss-Seidel iteration process. We also peedrm
numerical tests, and the results indicate that it can H&?
considered as a rival classification method to both ANN and
SVM. Moreover, the sparsity of the CN problem can be
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