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Abstract– The recently introduced Convex Networks (CN) method
[1] is a convex reformulation of several well-known machine
learning algorithms like certain boosting methods and various
Support Vector Machine algorithms. The special feature of the CN
method is that it employs a combination of basis functions to solve a
classification task of machine learning. The nonlinear Gauss-Seidel
iteration process for solving the CN problem converges globally and
fast, according to the corresponding proof. The most important
property of the CN solution is its sparsity, which means that the
number of basis functions with nonzero coefficients is small, and
can effectively be controlled by heuristics. The proposed techniques
were inspired by an area of artificial intelligence, called Feature
Selection. Numerical results and comparisons demonstrate the
effectiveness of the proposed methods on publicly available datasets.
As will be shown, the CN approach can perform learning tasks using
far fewer basis functions and generate sparse solutions.
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I. INTRODUCTION

The widespread statistical machine learning algorithms
employ pre-collected databases to calibrate parameters of
the applied model. Due to the rapid development of
communication networks, the size of the data sets has
grown rapidly, making data mining methods essential. Such
algorithms should store the extracted information in a compact
and easily retrievable form. One of the most prevalent machine
learning algorithms - Artificial Neural Networks (ANN) [2]
- meets these requirements, as it has a compact form with a
fast evaluation. However, the solution provided by its learning
algorithm is only a local minima of the objective function,
which may make the networks trained on the same database
inconsistent. The ubiquitous Support Vector Machine (SVM)
method [3], [4] leads to a quadratic programming task whose
own global optima defines the compactness of the information
retrieved. This automated selection can be beneficial since
preliminary assumptions are not required, but it also makesthe
technique inapplicable in certain cases. A recently proposed
approach, the Convex Networks (CN) method also has a
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globally optimal solution with commensurable performance,
but the structure of the model employed gives the possibility
of controlling the compactness of the result. Our aim is to
define a special family of subset selection algorithms – inspired
by Feature Selection [5] – which can effectively increase the
sparsity of the CN solution without degrading its performance.

Now we will briefly outline the contents of the paper.
First we overview the Convex Network (CN) method, which
will lead to a constrained optimization formulation. In the
following section we introduce heuristics for controllingthe
sparsity of the solution. In the numerical tests and comparisons
section we demonstrate the practical applicability of CN
compared with ANN and SVM. Lastly, we round off with some
conclusions and ideas for future research.

II. BRIEF INTRODUCTION TO CONVEX NETWORKS

Tasks in machine learning often lead to classification and
regression problems where models which employ a convex
objective function might be beneficial. Consider the problem
of classifyingnpoints in a compact setX overRm, represented
by x1, . . . , xn, where each pointxi belongs to one of the
classes{1, . . . , c}, as specified byy1, . . . , yn. A multiclass
problem can be transformed into a set of binary classification
tasks whereyi ∈ {−1,+1}, which is in many ways like the
one-against-all method [6] or the output coding scheme [7].
Thus our investigation can be restricted to the problem of
binary classification without any loss of generality.

The discriminative approach of the above problem utilizes a
separator surface between classes, where the surface is defined
by the following set for a fixedγ ∈ R

{z | f(z) = γ, z ∈ X}, f : X → R. (1)

Now let us assume that the surface that separates points
x1, . . . ,xn optimally is searched for in the linear subspace of
S, that isf ∈ Span(S)

{

h : X → R | h(x) =

k
∑

i=1

αifi(x), x ∈ X , α ∈ R
k

}

, (2)
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Fig. 1. Possible loss functions

whereS denotes a finite set of continuous basis functions

S = {f1(x), . . . , fk(x)} fi : X → R. (3)

The separation ability of a discriminative surface can be
characterized based on the positions of the sample points: it is
optimal when the points are as far from the surface as possible,
and points with the same class label fall in the same half-space.
The more optimal the position of a labelled point is, the larger
the valueyif(xi) will be. Thus it can be applied to define
a measure for the separation ability of a surfacef over the
samplex1, . . . ,xn. A possible formulation is

g (α) =

n
∑

i=1

L



yi

k
∑

j=1

αjfj(xi)



, (4)

where a twice continuously differentiable, monotone decreas-
ing, lower bounded and convex loss-functionL : R → R [?]
was introduced. Of the many possibilities two candidates are
shown in Fig. I.

The problem of approximating the parameterα based on
sparse sample data is ill-conditioned, and the classical way
of solving it is to use regularization theory [8]. According
to this theory, the optimal separator surface can be obtained
by extending the separation measure of Eq. (4) with a
regularization term, and searching for its minimum

minα τ (α) =
∑n

i=1
L

(

yi

∑k

j=1
αjfj(xi)

)

+ λα
T Aα

s.t. α ∈ A = A1 × . . . ×Ak

(5)

whereλ > 0 andA ∈ R
k×k is an arbitrary symmetric positive-

definite matrix. Here we restrict our investigation to the
product space of non-empty intervals that also includes the
unconstrained task with caseAi = (−∞,∞).

It can readily be seen that Eq. (5) is a convex programming
task which can be solved by one of the many techniques
[9]. The suggested method, the constrained Gauss-Seidel (GS)
iteration technique, modifies one component of the solutionat
each step by the gradient rule. If the solution falls outsidethe
domain it will be replaced by the nearest point of the set with
the aid of projection mapping. The GS method is convergent
for every functionτ : A → R over a non-empty, convex and

closed setA, whereτ is twice continuously differentiable and
lower bounded. Moreover, every level set of the function
should be bounded and there must exist aδ > 0 such that
0 < δ ≤ ∇2

iiτ(x)). The limit point of the iteration is the
extreme of the function overA [9].

Definition 1 (constrained Gauss-Seidel iteration)

αt+1

i =
[

αt
i − γ∇iτ(zt

i)
]p

i
γ > 0

where

[ ]
p

: R
k → A [α]

p
= z ⇔ ‖α− z‖2 = min

y∈A
‖α− y‖2

and

z
t
i = (αt+1

1 , . . . , αt+1

i−1
, αt

i, . . . , α
t
k), α

t+1 = z
t
k+1.

III. SPARSE SOLUTIONS

The separator surface coded by a CN problem takes the
form

{z |
k

∑

j=1

αjfj(z) = γ, z ∈ X}, f : X → R. (6)

for a fixed thresholdγ ∈ R. Basis functions with zero
coefficients can be eliminated when evaluating the model
and the remaining terms define the complexity of the CN
solution. The more the number of zero coefficients the
faster the evaluation, which makes the CN method suitable
for fast or real-time applications. However the coefficients
are determined by the optimal solution of the mathematical
programming task, and the parameters can only increase the
sparsity by degrading the performance.

In order to control the complexity, the number of
basis functions will be restricted by applying the following
constraint in the CN task

k
∑

i=1

|sign(αi)| ≤ q (7)

Such a condition violates the closed and convex properties of
the domain so the suggested nonlinear Gauss-Seidel technique
and other iterative methods cannot be applied to the problem.



The only approach is to select a subset of orderq from the
available basis functions where the classification problemcan
be solved approximately as optimal as in the case of the
complete one. This selection task is NP hard, so the employed
heuristics can provide only suboptimal solutions by executing
CN with different parameters several times.

Measure-based subset selection is an active area of other
fields in artificial intelligence like Feature Selection [5], say.
In that context one should selectr features from the available
m, so as to maximize the classification performance of a
machine learning algorithm. The elaborated techniques can
be employed for CN subset selection problem if the required
measure is the optimal objective function value of the executed
CN task. In the following letCN(I) denote this optimal value
of the objective function in CN when the basis function set is
restricted in the following way:

S = {fi1(x), . . . , fil
(x)} i1, . . . , il ∈ I. (8)

SFS The Sequential Forward Selection method is a greedy
approach for the measure-based subset selection problem.
Starting with the empty index set it extends the indices
with the locally optimal element without backtracking.

SFS(q)
Y = {1, . . . ,k}; I = ∅;
for i = 1...q

t = argminj∈Y −I CN (I ∪{j})
I = I ∪{t};

return I;

PTA The SFS method is a sequential algorithm, hence
previous steps cannot be modified when detecting their
latter impact on the result. A solution to the problem is the
Plus l Take Awayr approach which periodically extends
the actual index set byl elements and afterwards removes
r ones. By doing this the effects of previous selections
can be eliminated during the execution.

PTA(q, l, r)
Y = {1, . . . ,k};
if (l > r) then
i = 0; I = ∅; goto Step1;

else
i = k; I = Y ; goto Step2;

Step1:
repeat l times

t = argminj∈Y −I CN (I ∪{j});
I = I ∪{t}; i = i + 1;
if (i == q) goto Step3;

Step2:
repeat r times

t = argminj∈I CN (I −{j})
I = I −{t}; i = i - 1;
if (i == q) goto Step3;

goto Step1;
Step3: return I;

SFFS During PTA r removing steps always followl
extending ones. Hence it is possible to execute a
removing step when the evolving set has a worse measure
value than the previous one of the same order. Conversely,
an extending step can be performed when it is better

to remove a function at the that particular level. These
problems are absent in the Sequential Forward Floating
Selection algorithm. It removes elements after the
extending step while the measure obtained is better than
the previous ones of the same order.

SFFS(q)
Y = {1, . . . ,k};
Y0 = ∅; i = 0;

Step1:
t = argminj∈Y −Yi

CN (Yi ∪{j});
Yi+1 = Yi ∪{t}; i = i + 1;
if (i == q) goto Step3;

Step2:
t = argminj∈Yi

CN (Yi −{j})
if CN (Yi −{t}) < CN (Yi−1) then

Yi−1 = Yi −{t}; i = i - 1;
goto Step2;

else
goto Step1;

Step3: return Yq;

IV. RESULTS

We will now demonstrate the effectiveness of the CN
approach by comparing its results with Artificial Neural
Networks (ANN) and Support Vector Machines (SVM). In
order to evaluate how well each algorithm classifies an
unknown dataset, we performed a tenfold cross-validation test
on publicly available datasets from the UCI repository [10].

We applied a feed-forward neural network (MLP) with one
hidden layer, where the number of hidden neurons was set to
three times the class number. The backpropagation learning
rule was applied for training. MLP was trained five times on
each dataset and then we chose the parameter values which
gave the best performance on the training sample. For the SVM
experiments, we employed our 1-norm SVM implementation
where the bias term was absent [11] and multiclass cases
were handled by the one-against-all approach. In addition,the
cosine polynomial kernel we applied made the SVM method
nonlinear with parametersq = 3 andσ = 1

κ (x,y) =

(

x
T
y

‖x‖ ‖y‖
+ σ

)q

. q ∈ ♮, σ ∈ R+ (9)

The basis functions for the CN problem were defined with the
aid of the above kernel function based on the points from the
training set. There were

fj (z) = yjκ (z,xj) . j = 1, . . . , n (10)

The coefficients of the basis functions were not restricted in
our tests, i.e. we used the domainA = (−∞,∞)

n. In the
regularization term of Eq. (5) we set the identity matrix equal
to A with λ = 1.

The correctness for the various methods obtained by tenfold
testing are summarized in Table I. Besides the results produced
by ANN and SVM at the settings described, the correctness
of the CN method when sparsity was controlled by various
heuristics is also shown. It confirms that the CN classification



Table I. Ten-fold cross-validation training and testing results on some UCI datasets. ANN is a feed-forward neural network with a hidden layer

where the number of hidden units was set to three times the number of classes. SVM used the cosine polynomial kernel defined in Eq. (9) for

nonlinearity. Using Eq. (10) the CN method applied the same basis functions. The sparsity was controlled by limiting the number of available

basis functions at 10%, 20% and 30% to the complete sets, respectively.

SFS
PTA

SFFS
10% 20% 30% 100% ANN SVM

balance
94.66

94.75
95.41

94.77
95.19

94.97

94.91
94.92

95.08
95.41 86.35 90.63

bupa
69.46

69.20
70.37

69.22
70.66

71.20

68.96
71.41

69.88
71.92 68.07 74.39

glass
84.36

85.10
85.18

88.62
86.56

85.47

86.63
85.74

86.91
86.23 69.87 84.70

iono
89.24

91.51
92.13

91.81
92.25

93.24

90.71
92.71

92.48
92.41 86.17 91.09

monks
93.07

92.80
92.65

93.55
91.85

94.90

94.64
90.79

95.49
96.51 87.28 95.82

pima
77.86

78.42
77.74

76.43
77.14

76.49

75.97
76.55

78.03
74.82 76.09 75.58

wdbc
97.44

97.35
97.18

97.22
96.96

97.29

97.38
96.16

97.43
96.93 97.61 97.62

wpbc
76.26

78.06
75.82

75.92
78.19

76.39

74.75
77.03

79.98
79.63 76.41 77.36

method is indeed just as effective as the ubiquitous machine
learning algorithms. In fact, their performances were even
surpassed in many cases. What is more, even better
classification performance could be achieved by restricting the
solutions via introducing constraints on the parameters. In
ANN terminology, accepting a locally optimal solution might
be regarded as a restriction of this kind, as it prevents the
method from overfitting the training data. A similar behavior
can be observed when applying heuristics for controlling the
sparsity in the CN method. The accuracies obtained from
tenfold testing are shown in the table for cases when we limited
the order of the selected subset of Eq. (10) to 10, 20 and 30%
of the original one. ThePTA algorithm was executed with
settingsl = 3 andr = 1. As can be seen, all the algorithms
selected subsets that yielded reasonable test results. This kind
of capacity reduction in the CN learning method induces a sort
of regularization, as reflected in the results. Namely, reduced
bases outperform the original ones in many cases. The various
algorithms introduced here attained their best performance on
different tasks. In general, different preferences duringthe
learning phase will lead the user to choose different heuristics.

V. CONCLUSIONS

This paper gave an overview of the CN method, which
is a reformulation of certain machine learning algorithms,
including several well-known nonlinear classification methods.
The proposed formula can be solved by the convergent
nonlinear Gauss-Seidel iteration process. We also performed
numerical tests, and the results indicate that it can be
considered as a rival classification method to both ANN and
SVM. Moreover, the sparsity of the CN problem can be

effectively controlled by the feature selection based heuristics,
as presented here. Future work includes a new heuristics based
on a CN objective function which can be utilized in very
large classification problems. We also plan to use chunking
algorithms like those described in [12] for problems which do
not fit in the memory.
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