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Abstract. In this paper we recall two kernel methods for discriminant
analysis. The first one is the kernel counterpart of the ubiquitous Linear
Discriminant Analysis (Kernel-LDA), while the second one is a method
we named Kernel Springy Discriminant Analysis (Kernel-SDA). It seeks
to separate classes just as Kernel-LDA does, but by means of defining
attractive and repulsive forces. First we give technical details about these
methods and then we employ them on phoneme classification tasks. We
demonstrate that the application of kernel functions significantly im-
proves the recognition accuracy.

1 Motivation

In the last two decades the dominant method for speech recognition has been the
hidden Markov modeling approach [12]. In the meantime, the theory of machine
learning has developed considerably and now has a wide variety of classification
algorithms for pattern recognition problems [4]. One such development is the
“kernel-idea”, which has become a key notion in machine learning [2], [5], [13].

The primary goal of this paper is to show alternative methods for phoneme
classification using state of the art kernel discriminant analyses. We describe
here both the well-know kernel version of Linear Discriminant Analysis [1], [7],
[9] and the Kernel Springy Discriminant Analysis, which we first proposed in [8].

2 Kernel Discriminant Analyses

Without loss of generality we shall assume that as a realization of multivariate
random variables, there are n-dimensional real attribute vectors in a compact
set X over R

n describing objects in a certain domain, and that we have a finite
n× k sample matrix X = [x1, . . . ,xk] containing k random observations. Let us
assume as well that we have r classes and an indicator function L : {1, . . . , k} →
{1, . . . , r}, where L(i) gives the class label of the sample xi. Let kj further denote
the number of vectors associated with label j in the sample data. Now let the dot
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product be implicitly defined by the kernel function κ : X×X → R in some finite
or infinite dimensional dot product space F with associated mapping φ : X →F
such that

∀x, z ∈ X κ(x, z) = φ(x) · φ(z). (1)

Usually φ is the feature map and F is the kernel feature space. This space
and dot product calculations over it are defined only implicitly via the kernel
function itself. The space F and map φ may not be explicitly known. We need
only define the kernel function, which then ensures an implicit evaluation over
F . The construction of kernels, when such a mapping φ exists, is a non-trivial
problem. Based on Mercer’s theorem we can use continuous, symmetric and
positive definite functions as kernels [2], [13].

The goal of discriminant analyses is to find a mapping h : X → Y which
leads to a new set of features that are optimal according to a given class sep-
aration criterion. In the case of kernel discriminant analysis the mapping is
nonlinear and has the following form: z → AFT φ(z), (z ∈ X ), where A is a
method dependent, real m × k matrix and F = [φ(x1), . . . , φ(xk)] is called the
image matrix of the sample. We should note here that K = FT F is the so-called
kernel matrix and, FT φ(z) can be calculated implicitly via the kernel function,
i.e. FT φ(z) = [κ(x1, z), . . . , κ(xk, z)]⊤.

2.1 Kernel-LDA

The ’kernelized‘ counterpart of Linear Discriminant Analysis, the Kernel-LDA
defines the row vectors of matrix A by the stationary points of the following
Rayleigh-quotient[7]:

τ(a) =
(Fa)

⊤
B(Fa)

(Fa)
⊤
W(Fa)

, Fa ∈ F , (2)

where B is the Between-class, while W is the Within-class Scatter Matrix of the
images of the sample over φ. Here the Between-class Scatter Matrix B shows the
scatter of the class mean vectors µj around the overall mean vector µ:

B =
∑r

j=1
kj

k
(µj − µ)(µj − µ)⊤

µ = 1
k

∑k

i=1 φ(xi)
µj = 1

kj

∑

L(i)=j φ(xi)

(3)

The Within-class Scatter Matrix W represents the weighted average scatter of
the covariance matrices Cj of the vectors with the class label j:

W =
∑r

j=1
kj

k
Cj

Cj = 1
kj

∑

L(i)=j(φ(xi) − µj)(φ(xi) − µj)
⊤

(4)

After some algebraic rearrangement, Eq. (2) takes the following form:

τ(a) =
a
⊤K(R − Î)Ka

a⊤K(I − R)Ka
, Fa ∈ F , (5)
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where K is the kernel matrix, [Î]ij = 1/k and

[R]ij =

{

1
kt

if t = L(i) = L(j)

0 otherwise.
(6)

This means that Eq. (2) can be expressed in terms of dot products of φ(x1), . . . ,
φ(xk) and that the stationary points of this quotient can be computed by solving
the generalized eigenvector problem K(R − Î)Ka = λ(K(I − R)K)a. To define
the transformation matrix A of Kernel-LDA we use only those eigenvectors which
correspond to the m dominant real eigenvalues.

2.2 Kernel-SDA

Kernel Springy Discriminant Analysis (Kernel-SDA) [8] was invented with goals
very similar to those of Kernel-LDA. The name Kernel Springy Discriminant
Analysis stems from the utilization of a spring & antispring model, which in-
volves searching for directions with optimal potential energy using attractive and
repulsive forces. In our case sample pairs in each class are connected by springs,
while those of different classes are connected by antisprings. New features can
be easily extracted by taking the projection of a new point in those directions
having a small spread in each class, while different classes are spaced out as
much as possible.

Now let the dot product again be implicitly defined by the kernel function
κ in some finite or infinite dimensional feature space F with associated trans-
formation φ such that κ(x, z) = φ(x) · φ(z) for all x, z. Further, let δ(Fa) the
potential of the spring model along the direction Fa in F , be defined by

δ(Fa) =

k
∑

i,j=1

((φ(xi) − φ(xj))
⊤Fa)2[M ]ij , Fa ∈ F (7)

where

[M ]ij =

{

−1, if L(i) = L(j)
1, otherwise

i, j = 1, . . . , k. (8)

Naturally, the elements of matrix M may be initialized with values different
from ±1 as well. The elements can be considered as a kind of force constant
and any pair of data points can have different force constant values. Similar to
Kernel-LDA, Kernel-SDA defines the row vectors of matrix A by the stationary
points of a Rayleigh-quotient, which in this case has the following form:

τ(a) =
δ(Fa)

(Fa)⊤(Fa)
=

(Fa)⊤D(Fa)

(Fa)⊤(Fa)
, (9)

where

D =

k
∑

i,j=1

(φ(xi) − φ(xj)) (φ(xi) − φ(xj))
⊤

[M ]ij . (10)
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Technically speaking, with the above τ definition Kernel-SDA searches for those
directions Fa ∈ F along which a large potential is obtained. It is straightforward
to see that the Rayleigh quotient for Kernel-SDA has the form:

τ(a) = 2
a
⊤K(M̃ − M)K⊤

a

a⊤Ka
, (11)

where K is the kernel matrix and M̃ is a diagonal matrix with the sum of each
row of M in the diagonal. Eq. (11) means that Eq. (9) can be expressed as a
function of dot products of φ(x1), . . . , φ(xk). Now the stationary points of τ(a)
can be obtained via an eigenanalysis of the following generalized eigenproblem:
(K(M̃ − M)K⊤)a = λKa. To define the transformation matrix A we use the
dominant m eigenvectors.

3 Phoneme Classification Results

Now we proceed with a description of the experiments. In this section we in-
vestigate the effect of the previous methods applied prior to classification in the
phoneme classification task.

Evaluation Domain. The classification techniques combined with discrim-
inant analyses as feature space transformation methods were compared using a
corpus which consists of several speakers pronouncing Hungarian numbers. 77%
of the speakers were used for training and 23% for testing. The ratio of male and
female talkers was 50%-50% in both the training and testing sets. The recordings
were made using a commercial microphone in a reasonably quiet environment,
at a sample rate of 22050Hz. The whole corpus was manually segmented and
labeled. Since some of these labels represented only allophonic variations of the
same phoneme, some labels were fused, and so we actually worked with a set of
28 labels. We made tests as well with two other groupings where the labels were
grouped into 11 and 5 classes, based on phonetic similarity. Hence we had three
phonetic groupings, which henceforth will be denoted by grp1, grp2 and grp3.

Initial Features. Before feature extraction the energy of each word was
normalized. After this the signals were processed in 512-point frames (23.2 ms),
where the frames overlapped by a factor of 3/4. A Fast Fourier Transform was
applied on each frame. After that 24 critical band energies and 16 mel-frequency
cepstral coefficients were calculated. Besides the above ones we also wanted to
do experiments with some more phonetically based features like formants. We
used gravity centers in 4 frequency bands as a crude approximation for formants.
Doing this we got 24 + 16 + 4 features altogether for each frame. Afterwards,
for each feature we took the average of the frame-based measurements for the
first quarter, the central part and the last quarter of the phoneme, which led to
44×3 = 132 features for each phoneme. By adding the duration of each phoneme
to this set we finally got a feature set consisting of 133 elements.

Feature Space Transformation. After initial feature extraction we applied
feature space transformation methods, hoping for a better classification. Besides
LDA and SDA we also employed Principal Component Analysis (PCA), which
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served as a baseline method for comparison. In the case of PCA, SDA, Kernel-
SDA the original feature space was reduced to 32 dimensions, while in the case
of LDA and Kernel-LDA the number of features kept was always the number of
classes minus one.

Learning Methods. We employed five well-known classification algorithms
during the tests. TiMBL [3] is a Memory Based Learner which means a new ex-
ample is evaluated based on consuming the previous examples stored in the mem-
ory. C4.5 [11] is based on the well-known ID3 tree learning algorithm. The OC1
(Oblique Classifier 1) algorithm [10] learns by creating oblique decision trees.
The fourth, Artificial Neural Networks [4], is a conventional pattern recognition
tool. In the experiments we employed the most common feed-forward multilayer
perceptron network with the backpropagation learning rule. Gaussian Mixture

Model (GMM) [4] is a well-known discriminative learning method. It assumes
that the class-conditional probability distribution can be well approximated by
a convex sum of multidimensional normal distributions.

Experimental Results and Evaluation. The same experiments were car-
ried out on the three phoneme groupings grp1, grp2, grp3, all the learning meth-
ods being tested not just on each set but with each transformation technique.
Table 1 depicts the recognition accuracies for grp1, grp2 and grp3, respectively.
The columns show the five feature transformation methods and the rows corre-
spond to the classification algorithms applied. The maximum is shown in bold.

On examining the classifiers the first thing we notice is that the general
preference of the methods on the phoneme classification task is the following:
C4.5≺OC1≺GMM≺TiMBL≺ANN. As regards the feature space transforma-
tion methods we realized that the base-line PCA method was outperformed
by LDA (cf. [6]) and SDA, which was in turn surpassed by their kernel ver-
sions (Kernel-LDA and Kernel-SDA). Based on these observations we summarize
the efficiency relations of the methods as follows: PCA≺(LDA≈SDA)≺(Kernel-
LDA≈Kernel-SDA). Another thing we realized was that the efficiency of Kernel-
SDA improved when the number of classes decreased. We also noticed that
Kernel-SDA considerably helps the efficiency of C4.5, which for instance resulted
in the best accuracy value for the grp3 recognition problem.

4 Conclusions

This paper sought to study the effects of some kernel discriminant analyses on
phoneme classification, a basic task of speech recognition. After inspecting the
test results we can confidently say that it is worth experimenting with these
methods in order to obtain better classification results. The use of non-linearity
brought further improvements on the classification accuracy. Still, we should
note that the goals of feature space transformation and learning are practically
the same. That is, if we have a very efficient learner then there is almost no
need for a feature space transformation. Put the other way round, a proper
transformation of the feature space may make the data so easily separable that
quite simple learners will suffice. These are, of course, extreme examples.
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Table 1. Recognition accuracies for the classifier-transformation combinations

phoneme groupings classifier PCA LDA SDA K-LDA K-SDA

TIMBL 75.23 83.33 80.49 89.32 88.07
C4.5 56.20 67.80 66.90 83.80 78.90

Grp1 OC1 60.17 70.86 68.91 75.55 78.56
(28 classes) ANN 84.46 86.94 83.22 90.86 87.76

GMM 74.82 86.23 79.85 89.20 82.94

TIMBL 82.74 86.11 84.21 93.96 93.96
C4.5 69.30 83.00 79.60 88.58 92.50

Grp2 OC1 74.41 85.22 81.56 91.54 91.54
(11 classes) ANN 90.60 89.78 89.18 92.84 94.73

GMM 80.91 87.12 84.04 91.89 92.13

TIMBL 88.17 90.95 90.36 95.62 95.62
C4.5 79.10 92.50 90.90 94.30 96.60

Grp3 OC1 86.88 92.67 88.83 95.39 92.84
(5 classes) ANN 93.09 93.09 92.61 94.68 95.80

GMM 90.13 92.26 89.24 93.61 89.06
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