
TestRoutes: A Manually Curated Method Level Dataset for
Test-to-Code Traceability

András Kicsi
akicsi@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged

László Vidács
lac@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged

MTA-SZTE Research Group on
Artificial Intelligence, University of

Szeged

Tibor Gyimóthy
gyimothy@inf.u-szeged.hu

Department of Software Engineering,
University of Szeged

MTA-SZTE Research Group on
Artificial Intelligence, University of

Szeged

ABSTRACT
High test-to-code traceability can be an important aspect of quality
assurance and can contribute to bug localization and code mainte-
nance. Several existing techniques and a considerable effort from
the scientific community already made significant advances in the
field. Despite this, readily accessible data on traceability links is very
scarce. To contribute to related research, we present a manually
curated test-to-code traceability dataset containing the traceability
information on 220 test cases. This method-level data was gathered
from 4 open-source software systems written in the Java language,
distinguishing not only focal information on test cases but also
highlighting the utilized helper methods on both the test and pro-
duction aspects of code. The data includes more than 2000 of such
method classifications.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
traceability, testing, test-to-code, dataset
ACM Reference Format:
András Kicsi, László Vidács, and Tibor Gyimóthy. 2020. TestRoutes: A Man-
ually Curated Method Level Dataset for Test-to-Code Traceability. In 17th
International Conference on Mining Software Repositories (MSR ’20), Octo-
ber 5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3379597.3387488

1 INTRODUCTION
Ensuring software quality is a vital topic with a vast amount of
scientific and industrial background. One of its main aspects is
software testing which aims to uncover the faults that lie within
the software. Extensive testing is considered good practice through-
out the world. In the case of a larger software system, staggering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387488

amounts of tests can be created as a byproduct of the development.
It is not rare for a system to incorporate tens of thousands of tests.

Traceability in software engineering is the ability to trace work
items across various software artifacts [Antoniol et al. 2002; Marcus
et al. 2005]. Having a large number of tests, even telling which part
of code a test aims to evaluate can mean a considerable difficulty.
This problem, tracing tests to their units under test, is called test-to-
code traceability. Inmany cases, it meansmore than just considering
the methods a test case calls, which can be abundant. It needs to
consider the intent of the author of the test, to point at specific
parts of the code that the author meant to test. While good coding
practices like following some kind of naming conventions can help
this process, even these can not solve every problem. Considering an
already existing system, retrospectively enforcing such conventions
can be bordering on the impossible. Thus, automatic extraction
methods are necessary to uncover the traceability links.

Several authors dealt with this problem on class level [Kicsi et al.
2018a; Rompaey and Demeyer 2009] but the main advantages of
proper traceability information lie in method level identification,
which could ease the development and open new doors for bug
localization. At method level, we can talk about focal methods [Gha-
fari et al. 2015] which are the methods the tests were written to
evaluate. The main challenge lies in finding these methods.

Lacking sufficiently certain focal information, the evaluation
of the proposed methods is always difficult. Our dataset aims to
ease this burden by providing manually annotated data that can
contribute to the efforts of the community. This paper introduces the
TestRoutes1 dataset and describes its properties and structure. The
dataset includes method level traceability links for 220 test cases. In
addition to linked pairs of methods, we provide the context of each
test both at test and production sides, involving more than 2000
manually discovered methods. Compared to data used in related
research, this dataset is a big step forward in granularity, in volume
and in supplying the context to the tests.

2 BACKGROUND
2.1 The Route of a Test Case
The dataset is named TestRoutes which alludes to themany different
methods a test usually visits during its run. In Listing 1, we display
Joda-Time’s org.joda.time.TestDateTime_Basics.testIsAfterNow() test
that asserts that the org.joda.time.base.AbstractInstant.isAfterNow()
method runs properly. Figure 1 illustrates this process.
1https://github.com/testroutes

https://doi.org/10.1145/3379597.3387488
https://doi.org/10.1145/3379597.3387488
https://github.com/testroutes

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Kicsi et al.

isAfter(instant : long)
AbstractInstant.

testIsAfterNow()
TestDateTime_Basics.

setUp()
TestDateTime_Basics.

tearDown()
TestDateTime_Basics.

currentTimeMillis()
DateTimeUtils.

isAfterNow()
AbstractInstant.

assert

false

assert

false

assert

true

Figure 1: The testing process of a test case of Joda-Time

pu b l i c vo id t e s t I sA f t e rNow () {
a s s e r t E q u a l s (f a l s e ,

new DateTime (TEST_TIME_NOW − 1) . i sAf terNow ()) ;
a s s e r t E q u a l s (f a l s e ,

new DateTime (TEST_TIME_NOW) . i sAf terNow ()) ;
a s s e r t E q u a l s (t rue ,

new DateTime (TEST_TIME_NOW + 1) . i sAf terNow ()) ;
}

Listing 1: An example on a JUnit test case of Joda-Time

The method aims to provide a boolean value signifying whether
the instance it belongs to resembles a date and time in milliseconds
after our current date and time. To evaluate this, the test calls the
method three times on instances set to be less, equal and greater
than our current date and time. This naturally increases through-
out development, thus the real present moment is not appropriate
for testing this method. The test uses a helper method, setUp()
to set several different global settings of the current run of Joda-
Time like the current date, time, locale and time zone to predefined
values (2002-06-09). The tearDown() helper method sets these set-
tings back to the original values after the testing is finished. When
the isAfterNow() method receives a call, it immediately makes
a call to the org.joda.time.base.AbstractInstant.isAfter() method
which expects a long value as a parameter, the milliseconds it
should compare to. This should be the current date and time, so
it calls the org.joda.time.DateTimeUtils.currentTimeMillis() method.
The real check is inside the isAfter() method, the decision is made
and is given back, eventually reaching the assertion. If everything
works properly, the process decides that only a moment in the
future is recognized as occurring in the future.

2.2 Systems Explored
The dataset contains information on four open-source software
systems written in the Java programming language. The version
and size information of these systems are displayed in Table 1.
Please refer to our readme on GitHub for further details. Commons
Lang is a module of the Apache Commons project that aims to add
new class manipulation possibilities to Java. Joda-Time provides
a replacement for the standard Java date and time classes which
was widely used before Java SE 8. JFreeChart helps displaying
various diagrams in several different formats in Java programs.
Gson supports the serialization and deserialization of Java objects.
JFreeChart is the largest of the systems but Joda-Time has the most
tests, more than a third of its total methods are tests.

Table 1: Versions and size of the systems explored

System Version Classes Prod. Methods Test methods

Commons Lang 3.4 596 4 050 2 473
Joda-Time 2.9.6 522 6 155 3 779
JFreeChart 1.0.19 953 9 355 2 239
Gson 2.8.0 757 1 543 924

3 DATASET
3.1 Structure
Our dataset distinguishes four different method level roles in the
testing process. The test cases are the methods aiming to assess
a specific part of the software. They often contain one or more
assertion statements and make method calls to conduct the eval-
uation. The test cases often enlist the aid of helper methods for
setup or modularity purposes. These methods are customarily well
separated from the production part of the source code. The focal
methods (the units under test) are the methods the test case aims
to test. There can be multiple focal methods for a test case, or even
none, for instance, if the test case evaluates a property of a whole
class. Focal methods can rarely achieve their full functionality by
themselves, test cases often make several other calls. These con-
textual calls and the calls made by the focal method can also be
important. Note that the call graph was not considered for the tests,
only those contextual production methods are marked whose cor-
rect behavior was found important in the current context, vitally
contributing to the pass of a test case. To our knowledge, there are
no precise definitions for the distinction of focal and contextual
methods. These are reliant on the probable intent of the author that
is hard to measure objectively. Tests and helper methods are easier
to distinguish as helpers usually do not make assertions.
t e s t _ c a s e _ i d ; method_id ; method_ro le
JT −000058 ; JT −000059 ; f o c a l
JT −000058 ; JT −000060 ; c o n t e x t u a l
JT −000058 ; JT −000061 ; c o n t e x t u a l
JT −000058 ; JT −000062 ; h e l p e r
JT −000058 ; JT −000063 ; h e l p e r

Listing 2: An extract from Joda-Time_routes.csv

The dataset includes two types of files. The traceability links
can be found in the route files (_routes.csv extension). An extract
displaying the very same traceability links we have seen before in

TestRoutes: A Manually Curated Method Level Dataset for Test-to-Code Traceability MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Figure 1 for the testIsAfterNow() test case can be seen in Listing 2.
The values are separated by semicolons. The first column marks the
test case, the second column contains a connected method while
the third column describes the nature of the connection, this is
either focal, contextual or helper. The methods are referenced by
unique identifiers that can be resolved using the data files.

The data files (_data.csv extension) contain more information
on the referenced methods. An example with the same methods of
Joda-Time is displayed in Listing 3. Note that the separator here is
not the same as in the other file’s case, since semicolons can occur
in qualified names. The first column is the unique identifier of the
method while the following columns contain the header, qualified
name, starting and ending position of each method in this order.
Positions describe the line numbers of the methods in their files.

3.2 Data
The presented dataset contains information on four systems. The
number of methods in the dataset can be seen in Table 2 for each
system, grouped by category. Some interesting observations can
be made from this, for example, Joda-Time seems to use a large
number of test helpers while Commons Lang uses very few and
also appears to often test more than one method with a test case.
The number of production context methods also differ seriously.

Table 2: The number of methods by each role assigned

System Test Focal Prod. Context Test
Methods Methods Methods Helpers

Commons Lang 50 89 91 11
Joda-Time 50 54 312 101
JFreeChart 70 79 430 58
Gson 50 55 102 30

In our previous work [Csuvik et al. 2019a,b; Kicsi et al. 2018a] we
utilized naming conventions to extract class level traceability links
for evaluation purposes. This can be achieved by automatic means
but only in cases where known conventions were applied.While the
test cases of Commons Lang and Gson were chosen randomly from
the whole systems, in the case of Joda-Time and JFreeChart the
random choices in tests were limited to the test cases not applicable
to some very simple naming convention rules. Moreover, since only
these 70 tests were found not to be covered by naming conventions
in JFreeChart, it is possible to cover the whole system on class level
by combining our data and naming conventions. Most test cases
are not very isolated in their calls, they often make use of the same
methods. In Figure 2, a graph representation of the connections
is shown displaying the data on the Joda-Time system. The green
nodes represent the test cases, the white nodes mark every other
method within the dataset, and the edges correspond to the links
in the data. The majority of the graph forms a loosely-connected
subgraph with only a few isolated test cases.

The manual annotation has been conducted by an undergradu-
ate student. The main objective was capturing the author intent of
the tests relying on code comprehension, method calls, comments,
naming conventions and descriptive names. Review sessions were
held during the work with one of the authors and the annotator,

Figure 2: A graph of connections between test cases (green
colored nodes) and other methods from Joda-Time in the
dataset

addressing the guidelines and the encountered questionable cases.
The author reviewed the results after the annotation and corrected
the mistakes in both format and content. The test cases that were
found to be highly subjective or required a very deep understanding
of the system were exchanged to different test cases. About 15 tests
were replaced this way. In ongoing related research, this data is
already under use in evaluating various traceability techniques. For
this, another researcher also validated the data, checking 10 test
cases of each system he found no obvious mistakes. The gathering
and inspection of the data were conducted in a Java development
environment. The codebase was studied beforehand by all partici-
pants, the structure and purpose of the code were known, but the
tests have not been analyzed or run. After the manual annotation,
the systems were submitted to static analysis with the SourceMe-
ter[SourceMeter 2018] tool to obtain the normalized versions of the
qualified names and line information.

While most researchers seem to prefer evaluation with manually
annotated data [Ghafari et al. 2015; Rompaey and Demeyer 2009],
there are serious difficulties in its collection. The resulting data
is only rarely available publicly [Kicsi et al. 2018a; Qusef et al.
2014]. While most recent research efforts still evaluate on class
level, TestRoutes provides method-level granularity and in addition
to focal information also highlights the test and production context,
which to our knowledge haven’t been included yet in other dataset.

Let us address the threats to the validity of the data. Firstly, the
production context and focal information can be rather subjective,
thus different annotators might differ in judgment even though
comments and descriptive naming can imply the units under test
with high probability. The random test case selection aims to cover
a broad perspective but statistically significant statements can not
really be made about the whole systems based on them. We also
make no statements about the real naming convention coverage of
the systems, many of the test cases of JFreeChart and Joda-Time in
the data can also be covered by some form of conventions, we only
considered a simple method which we found sufficiently precise.

3.3 Possible Uses
The knowledge of real traceability links facilitates test-driven de-
velopment and improves software evolution. It can enable seamless
integration between continuous code changes and unit tests, and
serve as an important source of system documentation [Ghafari

MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Kicsi et al.

" method_id " , " method_header " , " me thod_qua l i f i ed_name " , " m e t h o d _ s t a r t _ l i n e " , " method_end_ l ine "
" JT −000058 " , " vo id t e s t I sA f t e rNow () " , " org . j oda . t ime . Te s tDa t eT ime_Bas i c s . t e s t I sA f t e rNow () V" , " 452 " , " 456 "
" JT −000059 " , " boo l ean isAf terNow () " , " org . j oda . t ime . base . A b s t r a c t I n s t a n t . i sAf terNow () Z " , " 332 " , " 334 "
" JT −000060 " , " boo l ean i s A f t e r (long i n s t a n t) " , " org . j oda . t ime . base . A b s t r a c t I n s t a n t . i s A f t e r (J) Z " , " 322 " , " 324 "
" JT −000061 " , " long c u r r e n t T imeM i l l i s () " , " org . j oda . t ime . Da t eT imeUt i l s . c u r r e n t T imeM i l l i s () J " , " 71 " , " 73 "
" JT −000062 " , " vo id se tUp () " , " org . j oda . t ime . Te s tDa t eT ime_Bas i c s . se tUp () V" , " 109 " , " 117 "
" JT −000063 " , " vo id tearDown () " , " org . j oda . t ime . Te s tDa t eT ime_Bas i c s . tearDown () V" , " 119 " , " 127 "

Listing 3: An extract from Joda-Time_data.csv

et al. 2015]. Our dataset serves these goals, it can provide a common
ground in evaluating test-to-code traceability solutions, potentially
contributing to a better understanding of different traceability link
extraction methods and lead to their best combination. Data is
highly necessary for all future improvements.

The dataset is mainly intended for test-to-code traceability re-
search evaluation purposes. It provides more detailed data than the
currently available alternatives and can also be used in method-
level evaluations. As method-level traceability links are very rarely
recoverable relying on naming conventions, automatic options are
highly limited in this case. Manual data is likely to be the most ac-
curate evaluation option. The dataset is also suitable for class-level
assessment. While the test cases of Commons Lang and Gson rep-
resent random tests from the systems, the test cases of Joda-Time
and JFreeChart contain random tests that are not covered by nam-
ing conventions, also enabling evaluations on how the presence
of naming conventions influences a method. As some traceability
links can be extracted automatically with naming conventions, we
are planning to also include these in the future. We plan to provide
a MySQL database of the data for easier querying.

4 RELATEDWORK
Traceability in software engineering research usually means the
discovery of traceability links from requirements or related natu-
ral text documentations towards the source code [Antoniol et al.
2002; Marcus et al. 2005]. Recovery methods have been investi-
gated between several types of textual documents like bug descrip-
tions [Rath et al. 2018] and even tests [Kaushik et al. 2011]. In
these methods conceptual analysis [Diaz et al. 2013; Panichella et al.
2013] is widely applied for fault localization [Moreno et al. 2014],
test-prioritization [Saha et al. 2015], feature analysis [Kicsi et al.
2018b] and traceability link recovery between, for example, tests
and requirements [Marcus and Maletic 2003].

Test-to-code traceability is an intensively studied topic [Mader
and Egyed 2012; Parizi 2016; Parizi et al. 2014] as well. Individual
ways have been proposed like plugins integrated into development
environments [Philipp Bouillon, Jens Krinke, Nils Meyer 2007] and
also methods relying on static or dynamic analysis [Sneed 2004] or
analyzing the co-evolution of the code [Vidács and Pinzger 2018].
Call graphs, the information in method or class names and times-
tamps have also been successfully utilized in this process. Rompaey
et al. [Rompaey and Demeyer 2009] used three systems to evalu-
ate the effectiveness of 6 different recovery techniques. Qusef et
al. [Qusef et al. 2010] improved the last call before assert technique
with data flow analysis, relying highly on data dependencies. In
their follow-up works [Qusef et al. 2011, 2014] dynamic slicing is
used to increase the number of identified connections and precision
is maintained using the latent semantic indexing (LSI) technique. In

our previous paper [Kicsi et al. 2018a], we provided a deeper analy-
sis of the LSI method as a traceability link recovery technique at
class level. Ghafari et al. [Ghafari et al. 2015] proposed an algorithm
using program slicing and call information at method level.

The evaluation of the proposed approaches in test-to-code link
recovery is usually accomplished using manually collected links.
Rompaey et al. [Rompaey and Demeyer 2009] used 71 randomly
selected tests in their evaluation in class level recovery. Similarly,
the study of Qusef et al. [Qusef et al. 2014] is evaluated at class
level, the authors provided 358 traceability links in their online ap-
pendix. Kicsi et al. [Kicsi et al. 2018a] used naming conventions as
a standard, and provided data for 5 open source projects including
thousands of class level traceability links. The algorithm proposed
by Ghafari et al. [Ghafari et al. 2015] is evaluated at method level us-
ing 50manually produced links. Currently, we are aware of only two
datasets publicly available: a class level manually curated dataset
from Qusef et al. [Qusef et al. 2014] and a class level dataset that
relies on automatically mined data of naming conventions from
Kicsi et al. [Kicsi et al. 2018a]. Our proposal contains 2000 method
classifications for 220 tests at the method level and also provides the
potentially important context both in the test suite and in the pro-
duction code. We argue that it is important to consider test-to-code
traceability links together with their closely related neighborhood.

5 CONCLUSIONS
Test-to-code traceability provides the target of test cases in the
production code. State-of-the-art algorithms are typically evalu-
ated using a relatively small number of manually collected links.
In addition, only very few of these links are available, which ham-
pers the comparative evaluation of novel methods. In this paper,
we described a manually curated dataset, which contains trace-
ability links for 220 test cases at method level granularity from
4 open-source Java programs. The dataset includes not only the
traceability links but also highlights the context of the test and
production methods. The whole dataset consists of more than 2000
categorizations of methods that were manually examined. The data
is also available at https://doi.org/10.5281/zenodo.3741674.

ACKNOWLEDGMENTS
This work was supported in part by the ÚNKP-19-4-SZTE New
National Excellence Program and grant TUDFO/47138-1/2019-ITM
of the Ministry for Innovation and Technology, by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002), by the Hungarian
Government. László Vidács was also funded by the János Bolyai
Scholarship of the Hungarian Academy of Sciences. We acknowl-
edge the help of Alex Oláh.

https://doi.org/10.5281/zenodo.3741674

TestRoutes: A Manually Curated Method Level Dataset for Test-to-Code Traceability MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. 2002. Recovering

traceability links between code and documentation. IEEE Transactions on Software
Engineering 28, 10 (oct 2002), 970–983.

Viktor Csuvik, András Kicsi, and László Vidács. 2019a. Evaluation of Textual Simi-
larity Techniques in Code Level Traceability. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), Vol. 11622 LNCS. 529–543.

Viktor Csuvik, Andras Kicsi, and Laszlo Vidacs. 2019b. Source code level word embed-
dings in aiding semantic test-to-code traceability. In Proceedings - 2019 IEEE/ACM
10th International Workshop on Software and Systems Traceability, SST 2019. 29–36.

Diana Diaz, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Silvia Takahashi, and
Andrea De Lucia. 2013. Using code ownership to improve IR-based Traceability
Link Recovery. In 2013 21st International Conference on Program Comprehension
(ICPC). IEEE, 123–132.

Mohammad Ghafari, Carlo Ghezzi, and Konstantin Rubinov. 2015. Automatically
identifying focal methods under test in unit test cases. In 2015 IEEE 15th International
Working Conference on Source Code Analysis andManipulation (SCAM). IEEE, 61–70.

Nilam Kaushik, Ladan Tahvildari, and Mark Moore. 2011. Reconstructing Traceabil-
ity between Bugs and Test Cases: An Experimental Study. In 2011 18th Working
Conference on Reverse Engineering. IEEE, 411–414.

András Kicsi, László Tóth, and László Vidács. 2018a. Exploring the benefits of utilizing
conceptual information in test-to-code traceability. Proceedings of the 6th Interna-
tional Workshop on Realizing Artificial Intelligence Synergies in Software Engineering
(2018), 8–14.

András Kicsi, László Vidács, Viktor Csuvik, Ferenc Horváth, Arpád Beszédes, and
Ferenc Kocsis. 2018b. Supporting Product Line Adoption by Combining Syntactic
and Textual Feature Extraction. In International Conference on Software Reuse, ICSR
2018 (Madrid, Spain). Springer International Publishing.

Patrick Mader and Alexander Egyed. 2012. Assessing the effect of requirements
traceability for software maintenance. IEEE International Conference on Software
Maintenance, ICSM (2012), 171–180.

Andrian Marcus and Jonathan I. Maletic. 2003. Recovering documentation-to-source-
code traceability links using latent semantic indexing. 25th International Conference
on Software Engineering, 2003 (2003), 125–135.

Andrian Marcus, Jonathan I Maletic, and Andrey Sergeyev. 2005. Recovery of Trace-
ability Links between Software Documentation and Source Code. International
Journal of Software Engineering and Knowledge Engineering (2005), 811–836.

Laura Moreno, John Joseph Treadway, Andrian Marcus, andWuwei Shen. 2014. On the
use of stack traces to improve text retrieval-based bug localization. In Proceedings -
30th International Conference on Software Maintenance and Evolution, ICSME 2014.
IEEE, 151–160.

A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshyvanyk, and A.
De Lucia. 2013. When and How Using Structural Information to Improve IR-Based
Traceability Recovery. In 2013 17th European Conference on Software Maintenance
and Reengineering. IEEE, 199–208.

Reza Meimandi Parizi. 2016. On the gamification of human-centric traceability tasks in
software testing and coding. In 2016 IEEE 14th International Conference on Software
Engineering Research, Management and Applications (SERA). IEEE, 193–200.

Reza Meimandi Parizi, Sai Peck Lee, and Mohammad Dabbagh. 2014. Achievements
and Challenges in State-of-the-Art Software Traceability Between Test and Code
Artifacts. IEEE Transactions on Reliability 63 (2014), 913–926.

Friedrich Steimann Philipp Bouillon, Jens Krinke, Nils Meyer. 2007. EzUnit: A Frame-
work for Associating Failed Unit Tests with Potential Programming Errors. In Agile
Processes in Software Engineering and Extreme Programming. Vol. 4536. Springer
Berlin Heidelberg, 101–104.

Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and David Binkley.
2011. SCOTCH: Test-to-code traceability using slicing and conceptual coupling. In
IEEE International Conference on Software Maintenance, ICSM. IEEE, 63–72.

Abdallah Qusef, Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, and Dave Binkley.
2014. Recovering test-to-code traceability using slicing and textual analysis. Journal
of Systems and Software 88 (2014), 147–168.

Abdallah Qusef, Rocco Oliveto, and Andrea De Lucia. 2010. Recovering traceability
links between unit tests and classes under test: An improved method. In IEEE
International Conference on Software Maintenance, ICSM. IEEE, 1–10.

Michael Rath, David Lo, and PatrickMäder. 2018. Analyzing requirements and traceabil-
ity information to improve bug localization. In Proceedings of the 15th International
Conference on Mining Software Repositories - MSR ’18. ACM Press, New York, New
York, USA, 442–453.

Bart Van Rompaey and Serge Demeyer. 2009. Establishing traceability links between
unit test cases and units under test. In European Conference on Software Maintenance
and Reengineering, CSMR. IEEE, 209–218.

Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015. An
Information Retrieval Approach for Regression Test Prioritization Based on Pro-
gram Changes. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. IEEE, 268–279.

H.M. Sneed. 2004. Reverse engineering of test cases for selective regression testing. In
European Conference on Software Maintenance and Reengineering, CSMR 2004. IEEE,
69–74.

SourceMeter 2018. SourceMeter Webpage. https://www.sourcemeter.com/.
László Vidács and Martin Pinzger. 2018. Co-evolution Analysis of Production and

Test Code by Learning Association Rules of Changes. In 2018 IEEE Workshop on
Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE 2018)
(Campobasso, Italy). IEEE, 31–36.

https://www.sourcemeter.com/

