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Multiperiod work scheduling

Problem : CSL is a chain of computer service stores. The number of hours
of skilled repair time that CSL requires during the next five months is as
follows:

1 Month 1 (January): 6,000 hours

2 Month 2 (February): 7,000 hours

3 Month 3 (March): 8,000 hours

4 Month 4 (April) : 9,500 hours

5 Month 5 (May): 11,000 hours
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Multiperiod work scheduling

Assumptions and Constraints : At the beginning of January, 50 skilled
technicians work for CSL. Each skilled technician can work up to 160
hours per month.To meet future demands, new technicians must be
trained. It takes one month to train a new technician. During the month
of training, a trainee must be supervised for 50 hours by an experienced
technician.Each experienced technician is paid $2,000 a month (even if he
or she does not work the full 160 hours). During the month of training, a
trainee is paid $1,000 a month.At the end of each month, 5% of CSL’s
experienced technicians quit to join Plum Computers. Formulate an LP
whose solution will enable CSL to minimize the labor cost incurred in
meeting the service requirements for the next five months.
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Multiperiod work scheduling - solution

CSL must determine the number of technicians who should be trained
during month t (t = 1, 2, 3, 4, 5).Thus, we define

xt = number of technicians trained during month t(= 1, 2, 3, 4, 5)

CSL wants to minimize total labor cost during the next five month

Total labor cost = cost(trainees) + cost(experienced technicians)

To express the cost of paying experienced technicians, we need to define

yt = number of experienced technicians at the beginning of month t

Then the total labor cost is

z = (1000x1 + 1000x2 + 1000x3 + 1,000x4 + 1000x5)+

+(2000y1 + 2000y2 + 2000y3 + 2000y4 + 2000y5)

that CLS wants to minimize.
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Multiperiod work scheduling - solution

What constraints does CSL face? Note that we are given y1 = 50, and
that for t = 1, 2, 3, 4, 5, CSL must ensure that

Number of available technician hours during month t
≥ Number of technician hours required during month t

Because each trainee requires 50 hours of experienced technician time,
and each skilled technician is available for 160 hours per month,

Number of available technician hours during month t = 160yt + 50xt

This yields the following five constraints :

1 160y1 − 50x1 ≥ 6000 (month 1 constraint)

2 160y2 − 50x2 ≥ 7000 (month 2 constraint)

3 160y3 − 50x3 ≥ 8000 (month 3 constraint)

4 160y4 − 50x4 ≥ 9500 (month 4 constraint)

5 160y5 − 50x5 ≥ 11000 (month 5 constraint)
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Multiperiod work scheduling - solution

Note that:
Experienced technicians available at beginning of month t = Experienced
technicians available at beginning of month (t− 1) + technicians trained
during month (t− 1) - experienced technicians who quit during month
(t− 1). For February, this yields

y2 = y1 + x1 − 0.05y1 or y2 = 0.95y1 + x1

Similarly, for March, yields

y3 = 0.95y2 + x2

and for April
y4 = 0.95y3 + x3

and for May,
y5 = 0.95y4 + x4
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Multiperiod work scheduling - solution

Adding the sign restrictions xt ≥ 0 and yt ≥ 0 (t = 1, 2, 3, 4, 5), we obtain
the following LP:
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Vectors

Scalar = a number; can be real (π = 3.14 . . . ), rational (3/4),
integer (5, -8), etc.

Vector = sequence of numbers, for example (3, 1, 0, 2), we often

write x =
[
3 2 0 1

]
raw vector, or x =


3
1
0
2

 column vector

multiplying x =
[
x1 x2 . . . xn

]
by a :

ax =
[
ax1 ax2 · · · axn

]

addition of x =
[
x1 x2 . . . xn

]
and y =

[
y1 y2 . . . yn

]
vectors (of the same size):

x+ y =
[
x1 + y1 x2 + y2 . . . xn + yn

]
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Vectors

scalar product of x =
[
x1 x2 . . . xn

]
and

y =
[
y1 y2 . . . yn

]
vectors (of the same size):

xy = x1y1 + x2y2 · · ·+ xnyn

x and y orthogonal, if xy = 0
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Matrices

Matrix = 2-dimensional array of numbers, for example

A =


1 0 3 1
3 2 4 0
2 3 0 1
0 4 1 2


m× n matrix:

multiplying a matrix by a scalar :
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Matrices

adding matrices of the same size

multiplying matrices : A of size n×m-es multiplied by B of m× k

Note that AB 6= BA
except for this, matrix addition and multiplication obey exactly the
same laws as numbers
from now on vector with m entries is to be treated as a m× n matrix
(column)
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Matrices

multiplying matrix by a vector = just like multiplying two matrices

transpose of a matrix:

Note that (AT )T = A and (AB)T = BTAT
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System of linear equations

A system of linear equations has the following form

Using the matrix notation we can simply write it as Ax = b, where
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System of linear equations

For example

Let us multiply (from the left) both sides of the equation by this
matrix

This operation does not change the solutions to this system
(determinant 6= 0)
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System of linear equations

We can expand it back to the system of linear equations

The system on the right is in a dictionary form: In particular, we can
set x4 = 0 in which case we have a basic solution.

How did we choose the matrix to multiply?
=⇒ we can choose the inverse matrix of the first three column of A.

inverse of A is an A−1 matrix, for which AA−1 = A−1A = I (I is the
identity matrix)
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Simplex alg. in matrix formulation

Given a LP in standard form :
n∑

j=1

aijxj ≤ bi i = 1,2, . . . ,m

xj ≥ 0 j = 1,2, . . . , n

max

n∑
j=1

cjxj

Adding the non-negative artificial variables:
n∑

j=1

aijxj + xn+i = bi i = 1,2, . . . ,m

xj ≥ 0 j = 1,2, . . . , n+m

max

n∑
j=1

cjxj
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Simplex alg. in matrix formulation

In matrix form we can write as:


a11 a12 · · · a1n 1
a21 a22 · · · a2n 1

...
. . .

am1 am2 · · · amn 1

 ·



x1
x2
...
xn
xn+1

...
xn+m


=


b1
b2
...
bm



(
c1 c2 · · · cn 0 · · · 0

)
·



x1
x2
...
xn
xn+1

...
xn+m


= z
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Simplex alg. in matrix formulation

Matrices and vectors used:

A =


a11 a12 · · · a1n 1
a21 a22 · · · a2n 1

...
. . .

am1 am2 · · · amn 1



x =



x1
x2
...
xn
xn+2

...
xn+m


c =



c1
c2
...
cn
0
...
0


b =


b1
b2
...
bm
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Simplex alg. in matrix formulation

The problem is matrix form then

Ax = b

x ≥ 0

max cTx

We know that a dictionary is uniquely determined by its the basic variables

let B be the index set of the basic variables, N be the index set of
the non-basic variables

Divide the matrices and vectors for two parts, based on the role (basic
or non-basic) of their elements in the dictionary
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Simplex alg. in matrix formulation

Let B denote the basis matrix formed by taking the columns of A
corresponding to the basic variables xB

Let N denote the columns of A corresponding to the non-basic variables
in xN

Divide the vectors as c =

(
cB
cN

)
, x =

(
xB
xN

)



Multiperiod work scheduling Linear algebra overview Simplex alg. in matrix formulation TU matrices

Simplex alg. in matrix formulation

We obtain that

Ax =
(
B N

)(xB
xN

)
= BxB +NxN

cTx =
(
cB cN

)(xB
xN

)
= cTBxB + cTNxN

and hence the optimization problem is given in the form:

BxB +NxN = b

x ≥ 0

max cTBxB + cTNxN
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Simplex alg. in matrix formulation

Assuming that B is invertible, we can rewrite:

Ax = b
BxB +NxN = b

B−1(BxB +NxN ) = B−1b
B−1BxB +B−1NxN = B−1b

xB +B−1NxN = B−1b
xB = B−1b−B−1NxN

Now we can substitute xB to the objective function

z = cTx = cTBxB + cTNxN
= cTB(B

−1b−B−1NxN ) + cTNxN
= cTBB

−1b+ (cTN − cTBB−1N)xN
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Simplex alg. in matrix formulation

We put it together to obtain the corresponding dictionary:

xB = B−1b−B−1NxN

z = cTBB
−1b+ (cTN − cTBB−1N)xN

The Basic solution, when xN = 0 is given as:

xB = B−1b, with the value of the objective function: z = cTBB
−1b.

The solution is optimal(maximal) if, if cTN − cTBB−1N ≤ 0, means that
the constant coefficients of the non-basic variables are non-positive.
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Totally unimodular matrices

A square matrix A is totally unimodular (TU) if its every square
submatrix has determinant 1, −1, or 0. (It follows that a TU matrix has
only 0,+1 or −1 entries)

Theorem. If A is totally unimodular, all entries of b and c vectors are
integers, then the basic solutions of the max cTx s.t. Ax ≤ b linear
program are integers. In other words, the coordinates of the corner points
of the P = {x : Ax ≤ b} polyhedron are integers.

Proof. The dictionary for xB basic solution is given in the form

xB = B−1b−B−1NxN

z = cTBB
−1b+ (cTN − cTBB−1N)xN
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Totally unimodular matrices

We can calculate the entries of B−1 using the Cramer-rule, such that

(B−1)i,j =
(−1)i+j det(Bji)

det(B)

where Bij is the matrix obtained from B by omitting raw j and column i.

Since now A is TU and det(B) 6= 0, then det(B) = ±1. It is easy to see
that each entry of Bji is integer.
Since xB = B−1b it immediately follows that xB is an integer vector. �

Remark. It is not obvious how to decide whether a given matrix is TU or
not. Good news is that TU matrices can be characterized, moreover, a fast
algorithm can be given to decide this characteristic.
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