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Graphs

G = graph or network consists of

— aset V of vertices (nodes, points) and
— aset E of edges (arcs, lines) which are connections between vertices.

write G = (V, E); write V(G) for vertices of G. and E(G) for edges of G.
(vertices are usually denoted 1 or v with subseripts; edges we usually denote ¢)

edges may have direction: an edge ¢ between 11 and v may go from u to v, we write ¢ = (1, v),

vertices V = {1,2,3,4,5,6}
edges E = { (1, ) (1,3), (2,5), (42),

(46),(5.3),(5.6))

(5,.3), (5,
weights ¢(1,2) = 2 (( 3)=5
c(2,5) =1 ¢(4,2) =3 c(4,6) =
c(53)=1 ¢(56)=2
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Graphs

if all edges do not have a direction (are undirected), we say that the network is undirected
edges may have weight: a weight of edge ¢ = (11, ) is a real number denoted c(¢) or c(1, ©), Ce. Cyo
a sequence of nodes and edges v, ¢, Up, €0, ... Ug_1, Gk, Uk 1S

— a path (directed path) if each ¢; goes from v; to v;,q
— a chain (undirected path) if each ¢; connects v; and @;,1 (in some direction)

(often we write: e1,€3,. .., ¢ 1s a path (we omit vertices) or write: ©1,02,. .., U 1s a path (we omit edges))
a network 1s connected if for every two nodes there 1s a path connecting them; otherwise it is disconnected
a cycle (loop. circuit) 1s a path starting and ending m the same node, never repeating any node or edge

a forest (acyclic graph) 1s an undirected graph that contains no cycles

a tree 1s a connected forest

Claim: A tree with 1 nodes contains exactly n — 1 edges. Adding any edge to a tree creates a cycle.
Removing any edge from a tree creates a disconnected forest.
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Graph representations

@ Graphs can be represented by matrices. For us the most important
ones are the
e incidence matrix
e adjacency matrix

1 €1 1
€1 €9 €3 €4 €5
1.1 0 0 1 -1
2|1 -1 0 0 0
310 1 1 0 0
410 0 1 -1 1 “ “ “
4 €3 3
1 2
1 2 3 4 5
10 L 0 0 0
211 0 1 1 0
310 1 0 1 0 3
410 1 1 0 1
5/0 00 1 0

o
"
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A Graph's incidence matrix is TU

Theorem. The incidence matrix of a directed graph is totally unimodular.

Proof. Easy to see by induction (according to the size of
subdeterminants).

Note: Combining this theorem with that we learnt in Lecture 5 we can
see that if an IP is given by an incidence matrix (of a graph) is simplified
to an LP problem. This makes easier to solve the problem (can be solved
in polynomial time), moreover the strength of duality can be utilized.
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Brief history and motivation

The Shortest Path Problem is one of the most important efficient
computational tools at this disposal

@ It is used everywhere, from GPS navigation and network
communication to project management, layout design, robotics,
computer graphics, and the list goes on

o First algorithms for the Shortest Path problem were designed by Ford
(1956), Bellman (1958), and Moore (1959). For non-negative weights,
a more efficient algorithm was first suggested by Dijkstra (1959).

@ All-pairs Shortest Path problem the first algorithms were founds by
Shimbel (1953), and by Roy (1959), Floyd (1962), and Warshall
(1962)
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Brief history and motivation

The Minimum Spanning Tree problem also has a rich history
@ The first known algorithm was developed by Boruvka (1926) for
efficient distribution of electricity

@ Later independently discovered by many researchers over the years:
Jarnik (1930), Kruskal (1956), Prim(1957), and Dijkstra (1959)
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Shortest path problem

vertices V = {1,2,3,4,5,6}
edges E = {(1 2),(1,3), (2 5), (4,2),

(
(4,6), (5,3), ( }
weights ¢(1,2) =2 ¢(1, 3) 5
c(2,5)=1 ¢(4,2)=3 c(4,6)=
c(53)=1 ¢(56)=2

Given a network G = (V, E) with two distinguished vertices 5, € V, find a shortest path from s to /

Example: In Figure 1 (left), a shortest path froms = 1to f = 61is 1,2, 5, 6 of total length 5, while for f = 3 a shortest
pathis 1, 2,5, 3 of length 4. We say that distance from node 1 to node 6 1s 5. Note that there is no path from s to
t = 4; we indicate this by defining the distance to 4 as oo.

LP formulation: decision variables x;; for each (i,j) e E

Min Z T!'ijl‘if'
(ij)eE
1 ifi=s
2 Xij— 2 X = -1 ifi=t foreachi € V
jilij)eE j:(j.i)eE 0 otherwise

Xjj € {0,1} foreach (i,j) € E
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Dijksra's algorithm

Algorithm finds the length of a shortest path from s to every vertex of G (not only f)
Weights of edges are assumed to be non-negative. else the algorithm may output incorrect answer.

variables: d,, for each # € V. an estimate on the distance from s to u

s 0 ifu=s ‘ .
initialize: d, = ‘ all vertices are initially unprocessed
oo otherwise

Find an unprocessed vertex 1 with smallest dy,

For each (11, v) € E, update d, = min{dy, dy, + cyn}
Mark 1 as processed; repeat until all vertices are processed.
Report d; as distance from s to f

[ S
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Dijksra's algorithm

Step# | s a b ¢ d
1. Find an unprocessed vertex 1 with smallest dy, I 0 o0 o0 oo o0 oo
2. Foreach (u,v) € E., update d, = min{dy, dy + ¢yp} T2 5
3. Mark u as processed; repeat until all vertices are processed. .
4. Report d; as distance from s to 2 0 2 5 o 030 o
Example: 3. 0 2* 5 @ 3 o
4 5
4. 0* 2* 4 o 3 5
5. 0* 2* 4% e 3* 5
6. 0* 2 4 o~ 3% 5°
final | 0% 2* 4* oo* 3% 5%
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Dijksra's algorithm

Final
result

We can read the shortest path from 1 to 6: that is path 1,2,5,6.
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Minimum spanning tree

A power company delivers electricity from its power plant to neighbouring cities. The cities are interconnected by
power lines operated by various operators. The power company wants to rent power lines in the grid of least total cost
that will allow it to send electricity from its power plant to all cities.

Given an undirected network G = (V, E) find a collection F C E of minimum weight so that (V, F) is a tree.

(we say that (V, F) is a spanning tree because it spans all vertices)
Kruskal’s (Prim’s) algorithm

initialize: F to be empty: all edges are initially unprocessed
Kruskal’s algorithm:

1. Find an unprocessed edge ¢ of smallest weight w,.

2. If (V,FU {e}) is a forest, then add e to F.

3. Mark ¢ as processed and repeat until all edges have been processed.
4. Report (V, F) as a minimum-weight spanning tree.

Prim’s algorithm: replace 1 by 1’

1’ Find an unprocessed edge e of smallest weight that shares an endpoint with some edge in F
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Minimum spanning tree - Kruskal's algorithm




Network problems
000000008000000000000000

Maximum flow problem

A delivery company runs a delivery network between major US cities. Selected cities are connected by routes as
shown below. On each route a number of delivery trucks is dispatched daily (indicated by labels on the corresponding
edges). A customer is interested in hiring the company to deliver his products daily from Denver to Miami, and needs
to know how much product can be delivered on a daily basis.

— ) maximize z
|Ch1cago}T\{New York 0< ¥pc <2
2 —Xpc—XpH =z 0< xpg <1
Xpc —XCcH—XcN =0 0< xey <1
[Denver| 1 1 XpH+X¥cH —vgm = 0 0< xew <2
1 XCN—XNM =0 02\'.5;21
XNMHTYHM = 2 0< xyn < 3

Houston I—% Miami
‘ 3 ‘ conservation of low
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Maximum flow problem

In general, network G = (V, E):

s = source (Denver) uij =capacity of an edge ij (# trucks dispatched daily between i and )
t = sink (Miami) xij =flow on an edge if (# trucks delivering the customer’s products)
max z .
—z i=s

Z .\']',' - Z l’,']' = z i=t

jev jev 0 otherwise

jieE ijeE

S—— N——

flow into flow out of i
0 < x5 < wy forallij € E
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Maximum flow problem - The Ford-Fulkerson algorithm

In general, network G = (V, E):
s = source (Denver)

t = sink (Miami)

max z o
L i Ly =4
jev jev 0
jieE ijeE
N —

flow out of i
0 < Xjj

flow into

l(ii

uij =capacity of an edge ij (# trucks dispatched daily between i and )

xij =flow on an edge if (# trucks delivering the customer’s products)

z i=s
i=t
otherwise

forallij € E
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Maximum flow problem - The Ford-Fulkerson algorithm

Initial feasible flow x;; = 0 forallij € E.

A sequence of nodes vq, 0y, ..., 0y Is a chain if ;1 € E (forward edge) or v;10; € E (backward edge) for all
i=1,...,n—1Ifv; = sand v, = t, then we call it an (s, f)-chain. Consider an (s, f)-chain P.
The residual capacify of a forward edge i on P is defined as 11;; — x;; (the remaining capacity on the edge ij). The

residual capacity of a backward edge ij on P is defined as x;; (the used capacity of the edge 7).
The residual capacity of P is the minimum taken over residual capacities of edges on P.

If the residual capacity of P is positive € > 0, then P is an augumenting chain. If this happens, we can increase the
flow by increasing the flow on all forward edges by €. and decreasing the flow on all backward edges by €. This yields
a feasible flow of larger value z + e. (Notice the similarity with the Transportation Problem and the ratio test in the
Simplex Method — same thing in disguise.)

Optimality criterion: The flow x;; is optimal if and only if there is no augmenting chain.
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Maximum flow problem - The Ford-Fulkerson algorithm

Starting feasible flow Xij = 0 (indicated in boxes) — residual network (residual capacity shown on edges)

Chicago

Houston
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Maximum flow problem - The Ford-Fulkerson algorithm

augmenting chain of residual capacity | — increase flow by 1

augmenting chain of residual capacity 1 — increase flow by 1

‘ C hicago }—m—»{ New York

no path from Denver to Miami in the residual network — no augmenting chain — optimal solution found

— maximum flow has value 3
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Maximum flow problem - Minimum cut

Minimum Cut

For a subset of vertices A C V, the edges going befween the nodes in A and the rest of the graph is called a cut. We
write (A, A) to denote this cut. The edges going out of A are called forward edges. the edges coming into A are
backward edges. If A contains s but not f, then it is an (s, f)-cut.

The capacity of a cut (A, A) is the sum of the capacities of its forward edges.

For example, let A = {Denver,Chicago}. Then (A, A) is an (s, t)-cut of capacity 4. Similarly, let A. = {Denver,

Chicago, New York}. Then (A, A,) is an (s, t)-cut of capacity 3.

Theorem. (Max. flow - Min. cut) The maximum value of an (s,t)-flow is
equal to the minimum capacity of an (s,t)-cut.
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Maximum flow problem - Minimum cut

This is known as the Max-Flow-Min-Cut theorem — a consequence of strong duality of linear programming.

maximize z 0< xpc<2
—Xpc—XpH =z 0= xpu =l
Xpc —XCH—XCN =0 0< xep<1
XpH+XcH —xpm = 0 0< xen<2
XCN—XNM =0 Uzxym =zl
INMHYHM = 2 0=xum =3

Dual:

minimize 20pc + Upy + Vcy + 20en + Onm + 30aM
Optimal solution ( of value 3)

Yp —Yc < Upc
Yp — YH < UpH yp=vyc=yn=1 — A={DCN}
Yc —Yu < Uch yg=ym =0 min-cut
Yc— Un < UcwN Opy = ven = Onpg = 1
YN UM ONM vpc = vcn = oM =0
Yo —YM< Uum
Yp —ym= 1

<0 —+ given an optimal solution, let A be the nodes whose y
. Venr. O v .
¥DC, UDH, UCH, VCN, UNMy VHM =~ value is the same as that of source

YD, Yc, YH, YN, Y unrestricted — (A, A) minimum cut
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Maximum flow problem - Minimum cut

York

3
maximum flow minimum cut
~ min Y 05
max 2 —z i=s ijeE
E xj — Z Xy = z i—t Yi — ¥ < vy forallij € E
jev jev 0 otherwise _
jieE ijeE Vs yr > 1

v = 0 forallij € E

0 < f\.‘ij' < ”fj for all 1) cE s : /
;i unrestricted foralli e V
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Minimum cost flow problem

A delivery company runs a delivery network between major US cities. Selected cities are connected by routes as
shown below. On each route a number of delivery trucks is dispatched daily (indicated by labels on the corresponding
edges). Delivering along each route incurs a certain cost (indicated by the $ figure (in thousands) on each edge). A
customer hired the company to deliver two trucks worth of products from Denver to Miami. What is the least cost of
delivering the products?

(0) 43 (0) minimize
5xpc +3xpH +4xcH +3xcn +4xnM + 5XHEM 0< xpc<2
Xpc+XpH =2 0<axpy <1
—Xpc +XcH+XeN =0 0< xeg <1
—Xpy—YcH +xpgm = 0 0< xen €2
3 —XcNTXNM =0 0<xym <1
—XNM—YEM =—2 0<xum <3

Houston
(0) 2 (—2) conservation of low
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Minimum cost flow problem

Network G = (V, E):
uj; =capacify of an edge (i, j) € E (# trucks dispatched daily between 7 and f)
Xij =flow on an edge (i, ) € E (# trucks delivering the customer’s products)
¢jj =coston an edge (i, ) € E (cost of transportation per each truck)
b; =net supply of a vertex i € V (amount of products produced/consumed at node 7)
min Y o
(i,j)eE

v — i = b
E gl j;’ Jt \”_,

jev
ijeE jice  net supply
———

flow out of i flow into 7

0 < Xij < Ujj fOI'allijE

Necessary condition: Eb,- = 0.

1
If there are no capacity constraints, the problem is called the Transshipment problem.
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Summary

Network G = (V, E) has nodes V and edges E.
e Each edge (i,j) € E has a capacity u;; and cost c;;.
e Each vertex i € V provides net supply b;.

Foraset S C V. write S for V' \ S and write E(S, S) for the set of edges (i,j) € E withi € Sand j € S. The pair
(S, S) is called a cut. (Where applicable) there are two distinguished nodes: s =source and f =sink.

Minimum spanning tree

Prifnal Obstruction (to feasibility): _
min ) o set SC Vwith® # S # Vsuchthat E(S,S) =@
(ij)eE
Y x>0 foll‘a}I;Q v y
(i/)E(S9) where @ # S #
——
edges from S to S

i > 0 forall (i,j) € E
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Summary

Shortest path problem
Primal Dual
min ) e max ys — ¢
(ij)<E 1 i—s o N
Yoxg — Y oxp =4 -1 i=t foralliev Y~y ¢ forall(ij)€E
jev jev 0 else - unresiri - all i
d5ee ek y; unrestricted  foralli € V/
N — N —

flow out of i flow into i
X 2 0 forall (i,j) € E

Obstruction (to feasibility): set S C V withs € Sand f € S such that E(S,S) = @
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Summary

Maximum-flow problem

Primal Dual
max z min )y
z i=s (ij)eE
Y oxi— Y vp=4q -z i=t forallieV Vi — y 4 0. >0 forall (i) EE
jev jev 0 else Ul orall (i, /)
(i.j)EE (i) eE ye — ys =1
0 < x; <y  forall(i,j) €E vy > 0 forall (i) € E
z unrestricted y; unrestricted  foralli € V

Obstruction (to feasibility): set S C V with s € Sand f € Ssuch thatz > Z Ujj
(ij)€E(S,5)

(no flow bigger than the capacity of a cut) capacity of the cut (S, S)



Network problems
0000000000000000000000e0

Summary

Minimum-cost (s, t)-flow problem

Primal Dual
min CiiXi
(,-J;Eg S max fys — fp— Y. 05
f (ij)eE
i=s ..
Y oxi— Y oxi={ ~f i=t foraliev ¥ — ¥ —vj<cy forall(ij)EE
(ee d5ee 0 ke v = 0 forall (i,j) €E

- .. y; unrestricted foralli € V
0 < x; < wy forall (i,j) € E g

Obstruction (to feasibility): set S C V withs € Sand t € S such that f > Z Ujj
(i,i)E(5,9)
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Summary

Transshipment problem

Primal Dual
min 2 CijXjj
(ij)eE max E by;
) iev
E xXij — E Xjpo= b foralli € V .
= = - vi — vy < ¢ forall(i,j) € E
(h])<E (ji)<E net supply

y; unrestricted  foralli € V
x> 0 forall (i,j) € E

Obstruction (to feasibility): set S C V such that Z b; > 0and E(S,S) = @

ieS
Minimum-cost network flow problem
Primal Dual
nin Z CijXij max Y by — Y wvy
(i,j)eE icV (ij)eE
Y wj— Y xi=1b forallieV Vi — ¥ — vy < ¢ forall(i,j) €E
jev jeV A o
(i.j)eE (ji)eE vj = 0 forall(i,j) €E
0 < Xif < Ujj for all (i,j) cE yi unrestricted  foralli € V

Obstruction (to feasibility): set S C V such that ) _b; > ) wij
ies (ij)€E(5,8)



Examples
©000

Example #1

A new car costs $12,000. Annual maintenance costs are as follows: mq = $2,000 first year, no = $4, 000 second
year, m3 = $5,000 third year, my = $9,000 fourth vear, and m5 = $12,000 fifth year and on. The car can be sold
for s; = $7,000 in the first year, for s, = $6,000 in the second year, for s3 = $2,000 in the third year, and for
s4 = $1, 000 in the fourth year of ownership.

An existing car can be sold at any time and another new car purchased at $12,000. What buying/selling strategy for
the next 5 years minimizes the total cost of ownership?

Nodes=1{0,1,2,3,4,5}

Edge (i, j) represents the act of buying a car in year / and selling in
vear j. The weight is the price difference plus the maintanence cost,
ie., the weight is

e, j) = $12,000 — s(;_jy + i1 + iz + ... 41

Answer: the length of a shortest path from node 0 to node 5.
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Example #2

Sunco Oil wants to ship the maximum possible amount of oil (per hour)
via pipeline from node so to node si in Figure. On its way from node so to
node si, oil must pass through some or all of stations 1, 2, and 3. The
various arcs represent pipelines of different diameters. The maximum
number of barrels of oil (millions of barrels per hour) that can be pumped
through each arc is shown in the Table. Each number is called an arc
capacity. Formulate an LP that can be used to determine the maximum
number of barrels of oil per hour that can be sent from so to si.

Arc Capacity
so, 1) 2
so, 2)

R - B ww
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Example #3

Five male and five female entertainers are at a dance. The goal of the
matchmaker is to match each woman with a man in a way that maximizes
the number of people who are matched with compatible mates. Table
describes the compatibility of the entertainers. Draw a network that makes
it possible to represent the problem of maximizing the number of
compatible pairings as a maximum-flow problem.

Loni Meryl Katharine Linda Victoria

Anderson Streep Hepburn Evans Principal
Kevin Costner — C — — —
Burt Reynolds C — — — —
Tom Selleck C C — — —
Michael Jackson C C — — C
Tom Cruise — — C C C

Note: C indicates compatibility.
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Example #3

the arc joining each woman to the sink has a capacity of 1, conservation
of flow ensures that each woman will be matched with at most one man.
Similarly, because each arc from the source to a man has a capacity of 1,
each man can be paired with at most one woman. Because arcs do not
exist between noncompatible mates, we can be sure that a flow of k units
from source to sink represents an assignment of men to women in which &
compatible couples are created.
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