The portfolio selection problem	Markowitz-modell	MAD model	Newspaper vendor / Inventory model

Applications of Linear Programming

lecturer: András London

University of Szeged Institute of Informatics Department of Computational Optimization

Lecture 8

The portfolio selee ●0000000	ction problem	Markowitz- 0000	-modell	MAD model 000	Newspaper vendor / Inventory model
	A 11	-			

The portfolio selection problem

The portfolio selection problem	Markowitz-modell	MAD model	Newspaper vendor / Inventory model
o●oooooo	0000	000	
The portfolio select	ion problem		

Given a set of assets (bond, stock, activity, etc.)

Question: How to compose a portfolio of them?

Suppose that the expected return of an investment in stock r is $\mathbb{E}(r)$ (That is an expected value calculated from historical time series data *in some way*)

Goal: Compose a portfolio with maximum expected return. If we invest in \boldsymbol{n} different assets, then

an LP model for the problem :

 $\sum_{i=1}^{n} x_i = 1$ [total capital] $x_i \ge 0$ [portion invested in r_i]

$$\max \sum_{i=1}^{n} \mathbb{E}(r_i) x_i$$

[total expected return]

The portfolio selection problem 00●00000	Markowitz-modell 0000	MAD model	Newspaper vendor / Inventory model	
The portfolio selection problem				

- We can assume that $\mathbb{E}(r_1) \ge \mathbb{E}(r_2) \ge \ldots \ge \mathbb{E}(r_n)$, then the optimal solution is $x_1^* = 1$, $x_2^* = \cdots = x_n^* = 0$, and the return is $\mathbb{E}(r_1)$.
- Generally true that if one follows this strategy will go bankrupt with probability 1. why?
- Unfortunately, the return on stocks that yield a large expected return is usually highly variable
- Thus, one often approaches the problem of selecting a portfolio by choosing an acceptable minimum expected return and **finding the portfolio with the minimum variance**

 \Rightarrow several approach developed (moreover, research on the topic is still very intensive) to solve the problem. Here we discuss two of them:

- Markowitz model, 1952; Nobel-prize in Economy, 1990
- MAD model (Konno and Yamazaki, 1990)

The portfolio selection problem	Markowitz-modell 0000	MAD model 000	Newspaper vendor / Inventory model
Portfolio selection –	example		

Let $\sigma(r)$ be the risk of investment in asset r (will be measured by the variance calculated from historical time series data).

Consider the returns of the following investments in the past 3 years:

	Year 1	Year 2	Year 3
Property (e.g. a house)	0.05	-0.03	0.04
Security (e.g. a bond)	-0.05	0.21	-0.10

The expected returns are calculated as:

$$\mathbb{E}(r_h) = \frac{0.05 - 0.03 + 0.04}{3} = 0.02$$
 és $\mathbb{E}(r_b) = \frac{-0.05 + 0.21 - 0.10}{3} = 0.02$
The **risks** are:

$$\sigma(r_h) = \sqrt{\frac{(0.02 - 0.05)^2 + (0.02 + 0.03)^2 + (0.02 - 0.04)^2}{3}} \approx 0.036 \text{ and}$$

$$\sigma(r_b) = \sqrt{\frac{(0.02 + 0.05)^2 + (0.02 - 0.21)^2 + (0.02 + 0.10)^2}{3}} \approx 0.164$$

The portfolio selection problem	Markowitz-modell	MAD model	Newspaper vendor / Inventory model
	0000	000	00000
Portfolio selection –	example		

If we invest 75% of the capital to the house and 25% to bond then the **return of the portfolio** is

$$\mathbb{E}(r_p) = \frac{(0.75 \cdot 0.05 + 0.25 \cdot -0.05)}{3} + \frac{(0.75 \cdot -0.03 + 0.25 \cdot 0.21)}{3} + \frac{(0.75 \cdot 0.04 + 0.25 \cdot -0.10)}{3} = \frac{(0.025 + 0.03 + 0.005)}{3} = 0.02$$

The portfolio risk is

$$\sigma(r_p) = \sqrt{\frac{(0.02 - 0.025)^2 + (0.02 - 0.03)^2 + (0.02 - 0.005)^2}{3}} \approx 0.019$$

However the **average risk** is $0.75 \cdot 0.036 + 0.25 \cdot 0.164 = 0.068$

\Rightarrow Diversification reduces the risk

The portfolio selection problem	Markowitz-modell 0000	MAD model 000	Newspaper vendor / Inventory model
Portfolio selection	– example		
	Ver 1	Year 2 Yea	
	Year I	rear∠ rea	ar 3

	i cui i		i cui o
Property	0.05	-0.03	0.04
Security	-0.05	0.21	-0.10

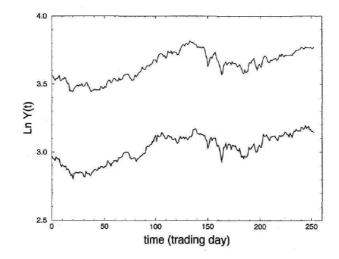
Covariance: is a measure of the joint variability of two random variables:

$$\operatorname{cov}_{p,s} = \frac{(0.02 - 0.05) \cdot (0.02 + 0.05)}{3} + \frac{(0.02 + 0.03) \cdot (0.02 - 0.21)}{3} + \frac{(0.02 - 0.04) \cdot (0.02 + 0.10)}{3} = -0.005$$

Correlation: Normalized covariance $\operatorname{corr}_{i,e} = \frac{-0.005}{0.036 \cdot 0.164} = -0.84$

- $-1 \le \operatorname{corr} \le 1$
- $\operatorname{corr} > 0$ positive correlation
- corr = 0 no correlation (~ independence, but \neq independence)
- $\operatorname{corr} < 0$ anticorrelation

The portfolio selection problem	Markowitz-modell	MAD model	Newspaper vendor / Inventory model			
	0000	000	00000			
Portfolio selection – example						



ábra. Exchange rate of Coca-Cola and Procter&Gamble in 1990

The portfolio selection problem	Markowitz-modell	MAD model	Newspaper vendor / Inventory model
0000000●	0000	000	
Expected value, va	ariance, covaria	ince	

Basic properties:

$$E(\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n) = E(\mathbf{X}_1) + E(\mathbf{X}_2) + \dots + E(\mathbf{X}_n)$$

var $(\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n) =$ var $\mathbf{X}_1 +$ var $\mathbf{X}_2 + \dots +$ var $\mathbf{X}_n + \sum_{i \neq j}$ cov $(\mathbf{X}_i, \mathbf{X}_j)$
 $E(k\mathbf{X}_i) = kE(\mathbf{X}_i)$
var $(k\mathbf{X}_i) = k^2$ var \mathbf{X}_i
cov $(a\mathbf{X}_i, b\mathbf{X}_j) = ab$ cov $(\mathbf{X}_i, \mathbf{X}_j)$

The portfolio selection problem	Markowitz-modell ●000	MAD model 000	Newspaper vendor / Inventory model
Portfolio selection -	Markowitz mo	odel	

The general model:

- (r_1, r_2, \ldots, r_n) the assets in the portfolio
- $\mathbf{x} = (x_1, x_2, \dots, x_n)$ portion of the capital invested in each individual asset

•
$$\sum_{i=1}^{n} x_i = 1$$
 and $x_i \ge 0 \; (\forall i)$

Risk: measured via the variance (squared deviation, i.e. $var = \sigma^2$)

Covariance matrix: contains the pairwise covariances of the (historical daily) stock returns

$$\mathbf{C} = \begin{pmatrix} \operatorname{cov}_{11} & \operatorname{cov}_{12} & \cdots & \operatorname{cov}_{1n} \\ \operatorname{cov}_{21} & \operatorname{cov}_{22} & \cdots & \operatorname{cov}_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}_{n1} & \operatorname{cov}_{n2} & \cdots & \operatorname{cov}_{nn} \end{pmatrix}$$

 $\operatorname{cov}_{ii} = \sigma^2(r_i) = \operatorname{var}(r_i)$

The portfolio selection problem Markowitz-modell MAD model Newspa 00000000 0000 0000 0000 00000 00000 00000 00000 00000 00000 000000 000000 000000 000000 000000 000000 000000 0000000000 000000000000000000000000000000000000	per vendor / Inventory model

A Portfolio risk:

$$\operatorname{var}\left(\sum_{i=1}^{n} \mathbb{E}(r_i) x_i\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \operatorname{cov}_{ij} x_i x_j\right) = \mathbf{x}^T \mathbf{C} \mathbf{x}$$

Efficient portfolio: A portfolio that

- provides the greatest expected return for a given level of risk,
- or equivalently, the lowest risk for a given expected return.

Portfolio selection –	Markowitz m	nodel	
The portfolio selection problem	Markowitz-modell ००●०	MAD model	Newspaper vendor / Inventory model

Let R be the **minimum expected return** of an investment. We can formulate the following quadratic programming problem:

$$\sum_{i=1}^{n} \mathbb{E}(r_i) x_i \ge R$$
$$\sum_{i=1}^{n} x_i = 1$$
$$x_i \ge 0$$
$$i = 1, 2, \dots, n$$
$$\boxed{\min \mathbf{x}^T \mathbf{C} \mathbf{x}}$$

That is **minimizing the risk** given a **minimum expected return**. A solution of the problem called optimal portfolio.

Portfolio selection –	Markowitz m	odel	
The portfolio selection problem	Markowitz-modell 000●	MAD model 000	Newspaper vendor / Inventory model

Remarks:

- Non-linear (e.g. quadratic) optimization
- Efficient algorithms exist for solving such problems
- \bullet A difficulty: computing (estimating) the elements of the covariance matrix ${\bf C}$
- instead, we can maximize e.g. the mean absolute error $\mathbb{E}(|\sum_i (r_i \mathbf{E}(r_i)) x_i|)^1$

 $^1\,\mathrm{if}\;r=(r_1,\ldots,r_n)$ follows a multivariate normal distribution then the two method is equivalent

The portfolio selection problem	Markowitz-modell 0000	MAD model ●00	Newspaper vendor / Inventory model
Portfolio selection –	MAD model		

- Mean Absolute Deviation
- Developed by Konno and Yamazaki uses the observed data directly and avoids the calculation of $\mathbb{E}(r_i)$ and C
- Let T be number of observations (closure prices of T days) of n investments and let r_{it} be the observation of the return of investment i

Let

$$r_i = \frac{1}{T} \sum_{t=1}^T r_{it} \text{ és } a_{it} = r_{it} - r_i$$

be the observed average return, and the difference of the individual returns from the average, respectively

The portfolio selection problem	Markowitz-modell 0000	MAD model ⊙●⊙	Newspaper vendor / Inventory model
Portfolio selection -	MAD model		

The following optimization problem can be given:

$$\sum_{i=1}^{n} r_i x_i \ge R$$
$$\sum_{i=1}^{n} x_i = 1$$
$$x_i \ge 0 \qquad \qquad i = 1, 2, \dots, n$$

$$\min \left| \frac{1}{T} \sum_{t=1}^{T} \left| \sum_{i=1}^{n} a_{it} x_i \right|$$

This is not an LP, but can be formulated as LP.

Portfolio selection -	MAD model		
The portfolio selection problem	Markowitz-modell 0000	MAD model ○○●	Newspaper vendor / Inventory model

Fortiono selection - MAD model

MAD model as LP:

$$\sum_{i=1}^{n} a_{it} x_i \ge -y_t \qquad t = 1, 2, \dots, T$$

$$\sum_{i=1}^{n} a_{it} x_i \le y_t \qquad t = 1, 2, \dots, T$$

$$\sum_{i=1}^{n} r_i x_i \ge R$$

$$\sum_{i=1}^{n} r_i x_i = 1$$

$$x_i \ge 0 \qquad i = 1, 2, \dots, n$$

$$y_t \ge 0 \qquad t = 1, 2, \dots, T$$

$$\min \ \frac{1}{T} \sum_{t=1}^{T} y_t$$

The portfolio selection problem	Markowitz-modell	MAD model	Newspaper vendor / Inventory model
	0000	000	•0000
Inventory model ²			

Suppose that a company has to decide an order quantity x of a certain product (newspaper) to satisfy demand d. The cost of ordering is c > 0 per unit.

If the demand d is bigger than x, then a back order penalty of $b \ge 0$ per unit is incurred. The cost of this is equal to b(d-x) if d > x, and is zero otherwise. On the other hand if d < x, then a holding cost of $h(x-d) \ge 0$ is incurred. The total cost is then

$$G(x,d) = cx + b[d-x]_{+} + h[x-d]_{+},$$

where $[a]_+ = \max\{a, 0\}$. We assume that b > c

The objective is to minimize G(x, d). Here x is the decision variable and the demand d is a parameter

² based on the lecture notes A Tutorial on Stochastic Programming by Alexander Shapiro and Andy Philpott

The portfolio selection problem	Markowitz-modell	MAD model	Newspaper vendor / Inventory model
	0000	000	0000
Inventory model			

The non-negativity constraint $x \ge 0$ can be removed if a back order policy is allowed. The objective function G(x, d) can be rewritten as

$$G(x,d) = \max\{(c-b)x + bd, (c+h)x - hd\}$$

which is **piecewise linear** with a minimum attained at x = d.

That is, if the demand d is known, then (no surprises) the **best decision** is to order exactly the demand quantity d.

We can write the problem as an LP

$$\begin{array}{ll} \min_{\substack{x,t \\ \text{s.t.}}} & t \\ \text{s.t.} & t \geq (c-b)x + bd, \\ & t \geq (c+h)x - hd, \\ & x \geq 0. \end{array}$$

The portfolio selection problem	Markowitz-modell 0000	MAD model 000	Newspaper vendor / Inventory model
Inventory model			

For a numerical instance suppose c = 1, b = 1.5, and h = 0.1. Then

$$G(x,d) = \begin{cases} -0.5x + 1.5d, & \text{if } x < d\\ 1.1x - 0.1d, & \text{if } x \ge d. \end{cases}$$

Let d = 50. Then G(x, 50) is the pointwise maximum of the linear functions plotted in Figure 1.

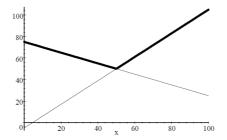


Figure 1: Plot of G(x, 50). Its minimum is at $\bar{x} = 50$

The portfolio selection problem	Markowitz-modell 0000	MAD model 000	Newspaper vendor / Inventory model
Inventory model			

- Consider now the case when the ordering decision should be made before a realization of the demand becomes known.
- One possible way to proceed in such situation is to view the demand *D* as a **random variable**
- We assume, further, that the *probability distribution* of *D* is known (e.g. estimated from historical data)
- \bullet We can consider the expected value $\mathbb{E}[G(x,D)]$ and corresponding optimization problem

 $\min_{x\geq 0}\mathbb{E}[G(x,D)].$

• it means optimizing (minimizing) the total cost on average

The portfolio selection problem	Markowitz-modell	MAD model	Newspaper vendor / Inventory model
	0000	000	0000●
Inventory model			

- Suppose that D has a finitely supported distribution, i.e., it takes values d_1, \ldots, d_K (called scenarios) with respective probabilities p_1, \ldots, p_K .
- Then the expected value can be written as

$$\mathbb{E}[G(x,D)] = \sum_{k=1}^{K} p_k G(x,d_k)$$

• The expected value problem can be written as the linear programming problem:

$$\min_{\substack{x,t_1,...,t_K \\ \text{s.t.}}} \sum_{k=1}^K p_k t_k \\ t_k \ge (c-b)x + bd_k, \ k = 1, ..., K, \\ t_k \ge (c+h)x - hd_k, \ k = 1, ..., K, \\ x \ge 0.$$

• We stop here the discussion!