Network Science

Institute of Informatics, University of Szeged
Department of Computational Optimization
Lecturer: András London
Lecture 1

Networks Everywhere!

Figure: Facebook social network

Networks Everywhere!

Figure: $9 / 11$ terrorist network (connections, flow of funds). Any two points are at most 2 distances apart. Source: Paul Sperry, NY Post

Networks Everywhere!

Figure: Dynamic European air transportation network.

Networks Everywhere!

Figure: The electric supply system of the USA. On August 14, 2003, the northeastern power grid completely shut down.

Networks Everywhere!

Figure: Interactions among characters in Game of Thrones (Seasons 1-2). The thickness of the edges is proportional to the number of encounters.

Who is the next victim? - Study by Milán Janosov (CEU)

Why Model Networks?

Among others...

- They play a central role in the flow of information
- They are important in studying the spread of "infections"
- What we buy, what language we speak, how we vote, what education we receive, whether we will succeed professionally, ...

Key to understand:

(1) How does the network structure influence the behavior of actors?
(2) What network structures emerge in society and the economy?

Why Are These Networks Complex?

- Many interacting actors interconnected with each other
- Adaptivity: feedback, cooperation
- Growth, evolution
- Nonlinearity: The whole is more than the sum of its parts!

Brief History of Network Science

- 18th Century: Euler's Seven Bridges of Königsberg problem (1736) is often considered as the origin of graph theory, a foundational concept in network science.
- Mid-20th Century: Graph theory gains momentum with works by Erdős and Rényi on random networks.
- Late 20th Century: Small-world networks and scale-free networks emerge as key concepts, popularized by Watts and Strogatz (1998) and Barabási and Albert (1999) respectively.
- Early 21st Century: Network science becomes an interdisciplinary field, influencing various domains including sociology, biology, computer science, and physics.
- Current Trends: Ongoing research focuses on dynamic networks, multilayer networks, and the application of network science in understanding complex systems.

Graphs

$G:=(V, E)$ - graph, where $V=(1,2, \ldots, N)$ are the vertices of the graph and $E \subseteq V \times V$ are the edges of the graph.

Figure: Graphs, basic concepts. (Source: Aaron Clauset, Network Analysis and Modelling course)

Graph Representations

Adjacency Matrix, $A \in \mathbb{R}^{N \times N}$

$$
a_{i j}= \begin{cases}w_{i j}, & \text { if vertices } i \text { and } j \text { are connected } 0, \\ \text { otherwise }\end{cases}
$$

If G is unweighted, then $w_{i j}=1$.

$$
\begin{gathered}
A=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) \\
\\
\{(1,2),(1,5),(2,3),(2,4),(3,5),(3,6)\},
\end{gathered} \begin{array}{l|llll}
1 & 2 & 5 & \\
2 & 3 & 1 & 4 & \\
3 & 2 & 5 & 4 & 6 \\
4 & 2 & 3 & & \\
5 & 1 & 3 & \\
6 & 3 & &
\end{array}
$$

Figure: Graph Representations: Adjacency Matrix, Neighbor List, Edge List (Source: Aaron Clauset, Network Analysis and Modelling course)

Paths, Reachability, Components

Path $i-n$ (directed path): a sequence of vertices (i, j, k, \ldots, m, n) where there is an edge (directed edge) between consecutive vertices; shortest path between two points: the shortest among all possible paths. (cf. Dijkstra, Ford-Bellman, Floyd-Warshall algorithms)

Component: (Sub)graph in which any two vertices are connected by a path (i.e., connected).

Strongly Connected Component In the directed case, i and j are reachable from each other if there is both an $i \rightarrow j$ and $i \leftarrow j$ path. SCC if any two of its points are reachable from each other. (cf. Depth-First Search)

Degree

For $i \in V$, the degree of a vertex is defined as: $k_{i}=\sum_{j=1}^{n} a_{i j}$ In the directed case, $k_{i}^{i n}=\sum_{j=1}^{n} a_{j i}$ and $k_{i}^{\text {out }}=\sum_{j=1}^{n} a_{i j}$

Figure: In-degree and out-degree
Some observations (number of edges, average degree, density):
$m=\frac{1}{2} \sum_{i=1}^{N} k_{i}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} \quad\langle k\rangle=\frac{1}{n} \sum_{i=1}^{N} k_{i}=\frac{2 m}{n} \quad \rho=\frac{m}{\binom{n}{2}}=\frac{\langle k\rangle}{n-1}$

Further Reading

Review: basics of graph theory, fundamentals of probability theory, algorithms

Recommended reading:

- Chapter 1 of Jackson's book
- Newman's articles I-II.

