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ABSTRACT

In Maker-Breaker positional games two players, Maker and
Breaker, are playing on a finite or infinite board with the
goal of claiming or preventing to reach a finite winning set,
respectively. For different games there are several winning
strategies either for Maker or Breaker. One class of winning
strategies are the so-called pairing strategies. Generally, a
pairing strategy means that the possible moves of a game are
paired up; if one player plays one, the other player plays its
pair. In this study we describe all possible pairing strategies
for the 9-in-a-row game. Furthermore, as a concept, we
define a graph of these pairings in order to find a structure
for them. The characterization of that graph will be also
given.

Categories and Subject Descriptors

F.2 [Analysis of algorithms and problem complexity]:
Nonnumerical Algorithms and Problems; G.2 [Discrete
mathematics]: Graph Theory, Combinatorics
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1. INTRODUCTION

In this work, we study the pairing strategies of the 9-in-
a-row Maker-Breaker game. Hales and Jewett [7] gave the
first pairing strategy to this game showing Breaker’s win.
However, the uniqueness of the Hales-Jewett pairing or other
examples had not been provided since then, until Gyérify et
al. [6] showed the following. There exist only 8- and 16-toric
pairings (i.e. they are simply the repetitions of a pairing on
the 8 x 8 and 16 x 16 square grids, respectively) where all
16-toric ones can be derived from some 8-toric ones.
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Figure 1: Hales-Jewett pairing blocks the 9-in-a-row

After recalling positional games and pairing strategies in
general, we focus on the 9-in-a-row game and its pairings.
We provide a computer program which generates and dis-
tinguish all (194543) different 8-toric pairings. Finally, we
create and analyze a graph of these pairings to have a struc-
ture of them.

1.1 Positional games

A positional game can be defined as a game on a hypergraph
H = (V,E), where V = V(H) and E = E(H) C P(H) =
{S : S C V} are the set of vertices and edges, respectively.
Usually, V' can be finite or infinite, but an A € E edge is
always finite. The first and second players take elements of V'
in turns. In the Maker-Maker (M-M) version of the game,
the player who first takes all elements of some edge A € E
wins the game. In contrary, in the Maker-Breaker (M-B)
version, Maker wins by taking every element of some A € E,
while the other (usually the second) player, Breaker, wins
by taking at least one vertex of every edge in E. Clearly,
there is no draw in this game. The M-M and M-B games
are closely related, since if Breaker wins as a second player,
then the M-M game is a draw. On the other hand, if the
first player has a winning strategy for the M-M game, then
Maker also wins the M-B version. For more on these, see
Berlekamp, Conway and Guy [3] or Beck [2].



In this work we deal with the hypergraph of the k-in-a-row
game, which is defined as follows.

Definiton 1. The vertices of the k-in-a-row hypergraph
Hy are the squares of the infinite (chess)board, i.e. the in-
finite square grid. The edges of the hypergraph Hj are the
k-element sets of consecutive squares in a row horizontally,
vertically or diagonally. We refer to the whole infinite rows
as lines.

For k-in-a-row M-B games Maker wins if £ < 5, see Allis
et al. [1] and Breaker wins if k > 8, see Zetters [5]. There
is a Breaker winning pairing strategy only if k > 9, see
Csernenszky et al. [4]. For the case of k = 9 the first pairing
strategy found by Hales and Jewett can be seen on Fig. 1.
For k = 6,7 the problem is open.

1.2 Pairing strategies

Given a hypergraph H = (V, E) and a bijection p : X —
Y, where X,Y C V(H), X NY = 0, is a pairing on the
hypergraph H. An (z, p(z)) pair blocks an A € E(H) edge,
if A contains both elements of the pair. If the pairs of p
block all edges, we say that p is a good pairing of H.

Pairings are one way to show that Breaker has a winning
strategy in positional games. A good pairing p for a hyper-
graph H can be turned to a winning strategy for Breaker in
the M-B game on H. Following p on H in a M-B game, for
every z € X chosen by Maker, Breaker chooses p(x) or vice
versa in case of € Y (if z ¢ X UY then Breaker can choose
an arbitrary vertex). Hence Breaker can block all edges and
wins the game. Hereafter we focus on the 9-in-a-row game
and its pairings.

2. PAIRINGS FOR 9-IN-A-ROW

Definiton 2. A pairing is a domino pairing on the grid,
if all pairs consist of only neighboring cells (horizontally,
vertically or diagonally).

Note that the pairing on Fig. 1 is a domino pairing. From
Gy6rfly et al. [6] it follows that if there is a good pairing
for Hg then this pairing is a domino pairing in which the
dominoes are following each other by 8-periodicity in each
line and all squares are covered by a pair. To handle the
periodicity we define the concept of k-toric pairings.

Definiton 3. A pairing of the infinite board is k-toric if
it is an extension of a k X k square, where k is the smallest
possible.

In [6] it was proved that a good pairing of Hy is either 8-toric
or 16-toric. Furthermore, all 16-toric pairings can derive
from two (or more) 8-toric pairings. Fig. 2 shows a 16-
toric (but not 8-toric) good pairing. The four 8 x 8 squares
differs from each other only in the colored squares, where
the bold pairs show the actual pairs and what the thin line
shows is the pairing of the other 8 x 8 square. From now
we only deal with the 8-toric pairings of Hg. A good 8-toric
pairing is uniquely determined by an 8 x 8 section of it, by
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Figure 3: Other 8-toric examples

definition. Furthermore, that 8 x 8 section contains exactly
one pair in each 32 (eight vertical, eight horizontal and 16
diagonal) torus lines. Three examples, other then the Hales-
Jewett pairing, can be seen on Fig. 3. A diagonal torus line
is colored on the middle one.

2.1 Generate pairings

To find all possible 8-toric pairing strategies of Hg on the
infinite board we wrote a computer program that will be
introduced in this section. The main challenge here is not
only finding all pairings, but deciding whether two pairings
are the same.

We store a pairing in the 8 x 8 table such that each cell rep-
resents the actual pair of the cell according to the 8 possible
pairs: 0 means East, 1 South-East, and so on, 7 North-East.
Naturally, if a cell’s pair is on the East, then its pair has
its own pair on the West, i.e. we fill the table two cells at
a time. The algorithm itself is the usual backtracking algo-
rithm: we find possible pairs for the next cell in the table
having no pair so far, try all those by recursively calling the
table filling function. While checking whether a pair is pos-
sible, we also make sure that there can be no overblocking,
so we keep track of the blocked edges. A detailed example
can be found in webpage [8].

From previous experiences we know, that the running time



is crucial, since there are too many such pairings. We try to
reduce the number of cases to be considered. We consider
two pairing strategies on the infinite board to be the same,
if they can be transformed into each other by translation,
mirroring and rotation. Thus, in order not to find the same
pairing several times, we apply all transformations for any
pairing found on the 8 x 8 table. From these transformed
pairings we select the smallest one with respect to the lexi-
cographical order. That also means that such a pairing must
start with 0 and 4 in the first row of the 8 x 8 table, so we can
also reduce the number of searched cases by starting fill the
table with these two numbers. Naturally, we keep in mind
that the 8 x 8 table is expanded in (say) an 8-toric way to the
whole infinite board while applying these transformations.
More precisely:

1. We either mirror or not (2 possible cases) the table to
the vertical line between columns 4 and 5.

2. We rotate the table by 0, 90, 180, and 270 degrees (4
possible cases).

3. We try all toric (that is, modulo 8) translation that
results in a table starting with 0 and 4.

We select the lexicographically smallest table as a repre-
sentative for the actual pairing. This method reduce the
number of all pairing checked to 6210560, and the program
found the 194543 different pairings in about 4 minutes on a
desktop computer with a 3.2 GHz Core i7 processor using 12
Mb of memory. The pairings themselves can be downloaded
at the page [8]. Interestingly, the number of the different
pairings turns out to be a prime number.

Since we have such many different pairings, an obvious way
to find a structure can be to store the pairings in a graph.
In the next section we will show a natural method to find
connections between pairings.

2.2 Graph of pairings

While trying to find pairings by hand one can observe, that
we can move a pair along the blocked edge by one step to
create a new pairing using the following method.

1. Move the first pair on the table. This move creates a
cell (say A) without a pair, and another cell (say B)
with two pairs.

2. Move the pair containing cell B which was not the just
moved pair so that cell B has one pair after the move.
But then another cell may have two pairs.

3. Repeat step 2 as long as it creates a cell with two pairs.

4. This method will end when the last move creates a new
pair for cell A, which had no pair before the move.

Naturally, we should keep in mind that we are on an 8-toric
pairing and move the pairs accordingly. Since we are on a
finite table, this method will either end at step 4, or create
a repeating cycle. But the later one is not possible. Note
that cell A cannot be part of the cycle, as it has no pair, and

Figure 4: Two examples of connections between
pairings

it would break the repetition. The first move that entered
the cycle creates a hole “behind” (outside the cycle), and
when the cycle comes to the same cell, the pair will move
backwards, and the cycle is not entered again. Also, it is
easy to see that we get an optimal pairing by this method.
Since the original pairing was optimal, moving a pair (an 8-
toric way) along the blocked edge keeps that direction (i.e.
8 edges) blocked. Since the method ends in step 4, there are
no cells without a pair. We also move the pairs on a torus,
so no overblocking is possible. We say that two pairings
are connected, if one can obtain the second pairing from the
first one by the method described above (of course, we con-
sider only different pairings as it was defined in the previous
section). This relation is symmetric: moving back the last
pair of the above method gives back the first pairing from
the second one. This creates a graph, where the vertices
are the pairings and the edges are defined by the moving
transition. Fig. 4 shows two examples for this moving tran-
sition. In both cases, the first pairing contains only the blue
pairs, and the red dominoes show the transition to the other
pairing. After computing all possible different pairings our
program can easily find this graph. It tries to move all pair-
ings (by trying to free up each cell in the 8 x 8 board), and
use the method described in the previous section to find the
lexicographically smallest representative for the new pair-
ing. It takes about 1 minute to finish this task on the same
hardware as in the previous section.

In the next section we will investigate the properties of the
obtained graph.

2.3 Analyzing the graph

The basic parameters of the obtained graph can be seen
in Tab. 1. The graph is not connected, which means that
repeating the moving transition described in the previous
section we cannot reach an arbitrary pairing from another.
One of the 14 components of the graph is a giant component
containing almost all (194333) vertices. The diameter of this
component is 34, which shows us that even this giant com-
ponent does not seem to be a “small-world” network. There
are 5-5 smaller components of 10 and 16 vertices and 1-1
components of size 6, 26, 48. Note that every graph com-
ponent containing 16 vertices is the net of a 4-dimensional
cube. Fig. 5 shows some small components.

The graph is triangle-free, moreover, the length of all in-
duced cycles is four. The degree distribution of the graph
can be seen in Tab. 2.



Table 1: Basic parameters of the constructed graph
vertices | edges | #components | max degree | min degree | avg. degree
194543 | 532107 14 11 1 5.47

Table 2: Degree distribution of the graph
1 2 3 4 5 6 7 8 9 10 | 11
17 | 392 | 395 | 39811 | 66185 | 53222 | 25309 | 7547 | 1472 | 183 | 10

Figure 5: Some components of the obtained graph
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positional game focusing on its pairing strategies which guar- (1963) 222-229; M.R. # 1265.

antee Breaker’s win. We found all different 8-toric pairing [8] G. Makay. Personal homepage

strategies using a computer program. The main concepts http://wuw.math.u-szeged.hu/ makay/amoba/
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structure of the 194543 pairings, we arranged them into a
graph where the vertices are the pairings itself and the edges
are some moving transitions of pairs. Analyzing the graph
and calculating standard parameters may help in a better
understanding of pairing strategies in general.
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