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ABSTRACT
In this work we analyze the performance of the Markowitz
portfolio optimization method on the Budapest Stock Ex-
change data set using two different filtering techniques de-
fined for correlation matrices. The results show that the
estimated risk is much closer to the realized risk using filter-
ing methods. Bootstrap analysis shows that ratio between
the realized return and the estimated risk (Sharpe ratio) is
also improved by filtering.

Categories and Subject Descriptors
I.6 [Simulation and Modelling]: Applications
; G.1.6 [Optimization]: Constrained optimization, Nonlin-
ear programming

Keywords
Portfolio optimization, Markowitz model, Correlation ma-
trices, Random matrix theory, Hierarchical clustering

1. INTRODUCTION
The portfolio optimization is one of the most important
problem in asset management aims at reducing the risk of an
investment by diversifying it into independently fluctuating
assets [5]. In his seminal work [14], Markowitz formulated
the problem through the criteria that given the expected re-
turn, the risk - measured by the variability of the return -
has to be minimized. The classical model measures the risk
as the variance of the asset returns resulting in a quadratic
programming problem. Recently, the analysis of the correla-
tion coefficient matrix, that appears through the covariance
matrix in the objective function of the model, has become
the focus of interest [2, 4, 9, 10, 17, 19]. Many attempts
have been made in order to quantify the degree of statisti-
cal uncertainty present in the correlation matrix and filter
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the part of information which is robust against this uncer-
tainty [2, 7, 9, 10, 11]. The filtered correlation matrices have
been successfully used in portfolio optimization in terms of
risk reduction [10, 17, 19]. In these studies, it was often as-
sumed that the investor has perfect knowledge on the future
returns.

In this work we investigate the portfolio selection problem
using different filtering procedures applied to the correla-
tion matrix. We measure the performance of the proce-
dures in terms of both the predicted and realized risk and
return, respectively. The future returns are not known at
the time of the investment. In Section 2 we briefly describe
the Markowitz portfolio optimization problem and two ap-
proaches for the correlation matrix filtering (Random Matrix
Theory, Clustering). In Section 3 we present our results us-
ing standard performance measures on the return and risk,
and finally, in Section 4 we draw some conclusions and indi-
cate future work.

2. PORTFOLIO OPTIMIZATION
In Markowitz’ formulation, the portfolio problem is a single
period model of investment. At the beginning of the pe-
riod (t0), an investor allocates the capital among different
assets. During the investment period ([t0, T ]), the portfolio
produces a random rate of return and results a new value
of the capital. In the original model of Markowitz, the risk
of a single asset is measured by the variance of its returns,
while the risk of the portfolio is measured via the covariance
matrix of the returns of the assets in the portfolio. In this
section we briefly introduce the Markowitz portfolio opti-
mization problem and describe two filtering procedures of
the covariance matrix in order to obtain less noisy matrix to
decrease the statistical uncertainty it contains.

2.1 Markowitz’s model
Given n risky assets, a portfolio composition is determined
by the weights pi (i = 1, . . . , n), such that

∑n
i pi = 1, in-

dicating the fraction of wealth invested in asset i. The ex-
pected return and the variance of the portfolio p = (p1, . . . , pn)
are

rp =

n∑
i=1

piri = prT (1)

and

σ2
p =

n∑
i=1

n∑
j=1

pipjσij = pΣpT , (2)



where ri is the expected return of asset i, σij is the covari-
ance between asset i and j and Σ is the covariance matrix.
Vectors are considered as row vectors int this paper.

In the classical Markowitz model [14] the risk is measured
by the variance providing a quadratic optimization problem
which consists of finding a vector p, assuming

∑n
i=1 pi = 1,

that minimizes σ2
p for a given “minimal expected return”

value of rp. Now, we assume that short selling is allowed and
therefore pi can be negative. The solution of this problem,
found by Markowitz, is

p∗ = λΣ−11T + γΣ−1rT , (3)

where 1 = (1, . . . , 1), while the other parameters are

λ = (C − rpB)/D and γ = (rpA−B)/D,

where

A = 1Σ−11T , B = 1Σ−1rT , C = rΣ−1rT , D = AC −B2.

Considering the daily price time series of n assets and de-
noting the closure price of asset i at time t (t = 1, . . . , T ) by
Pi(t), the daily logarithmic return of i is defined as

rit = log
Pi(t)

Pi(t− 1)
= logPi(t)− logPi(t− 1). (4)

In case of stationary independent normal returns, which is
usually assumed for asset prices, the maximum likelihood
estimator is the sample mean of the past observations of ri,
is defined as

r̂i =
1

T

T∑
t=1

rit. (5)

Hence, for the portfolio we define r̂ = (r̂1, . . . , r̂n). The
covariance σij between assets i and j is estimated by

σ̂ij =
1

T − 1

T∑
t=1

(rit − r̂i)(rjt − r̂j) (6)

and for the portfolio Σ̂ = (σ̂ij)i,j . The correlation coefficient
between asset i and j is defined as

ρij = σij/
√
σiiσjj , (7)

where σii is often called the volatility of asset i.

2.2 Random matrix theory and correlation ma-
trices

A simple random matrix is a matrix whose elements are ran-
dom numbers from a given distribution [15]. In context of
asset portfolios random matrix theory (RMT) can be use-
ful to investigate the effect of statistical uncertainty in the
estimation of the correlation matrix [19]. Given the time
series of length T of the returns of n assets and assuming
that the returns are independent Gaussian random variables
with zero mean and variance σ2, then in the limit n → ∞,
T →∞ such that Q = T/n is fixed, the distribution Prm(λ)
of the eigenvalues of the random correlation matrix (Crm)
is given by

Prm(λ) =
Q

2πσ2

√
(λmin − λ)(λmax − λ)

λ
, (8)
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Figure 1: Indexed hierarchical tree - obtained by the
single linkage procedure - and the associated MST of
the correlation matrix of 40 assets of the Budapest
Stock Exchange

where λmin and λmax are the minimum and maximum eigen-
values, respectively [18], given in the form

λmax,min = σ2

(
1 +

1

Q
± 2

√
1

Q

)
. (9)

Previous studies have pointed out that the largest eigen-
value of correlation matrices from returns of financial assets
is completely inconsistent with Eq. 8 and refers to the com-
mon behavior of the stocks in the portfolio [9, 16]. Since
Eq. 8 is strictly valid only for n → ∞, T → ∞, we con-
structed random matrices for certain n and T values of the
data sets that are used and compare the largest eigenval-
ues and the spectrum with C. We found high consistency
with Eq. 8. Since Trace(C) = n the variance of the part
not explained by the largest eigenvalue can be quantified
as σ2 = 1 − λlargest/n. Using this, we can recalculate λmin

and λmax in Eq. 9 and construct a filtered diagonal matrix
CRMT , that we get by setting all eigenvalues of C smaller
than λmax to zero and transform it to the basis of C with set-



ting the diagonal elements to one (and using singular value
decomposition). A possible RMT approach for portfolio op-
timization, following [17], is to use ΣRMT (that can be eas-
ily calculated form CRMT ) instead of Σ in the Markowitz
model.

2.3 Clustering
The correlation matrix C has n(n − 1)/2 ∼ n2 distinct el-
ements therefore it contains a huge amount of information
even for a small number of assets considered in the portfolio
selection problem. As shown by Mantegna and later many
others [3, 8, 12, 19, 20], the single linkage clustering ap-
proach [6] (closely related to minimal spanning trees (MST),
Fig. 1) provides economically meaningful information using
only n − 1 distinct elements of the correlation matrix. To
construct the filtered matrix, the correlation matrix C is
converted into a distance matrix D, for instance following
[12, 13], using dij =

√
2(1− ρij) ultrametric distance1. The

distance matrix D can be seen as a fully connected graph
of the assets with edge weights dij representing similarity
between time series of them. Then the filtered correlation
matrix CMST is constructed with just n − 1 distinct cor-
relation coefficients by converting the filtered ultrametric
distance matrix back. It was proven that the ultrametric
correlation matrix obtained by the single linkage cluster-
ing method is always positive definite if all the elements of
the obtained ultrametric correlation matrix are positive [1].
This condition has been observed for all correlation matrices
we used. Then, for portfolio optimization, we can use the
obtained ΣMST instead of Σ in the Markowitz model.

3. RESULTS
3.1 Data set
To compare the performance of the methods we analyze the
data set of n = 40 stocks traded in the Budapest Stock
Exchange (BSE) in the period 1995-2016, using 5145 records
of daily returns per stock.

We consider t = t0 as the time when the optimization is
performed. Since the covariance matrix has ∼ n2 elements
while the number of records used in the estimation is nT , the
length of the time series need to be T >> n in order to get
small errors on the covariance. On the other hand, for large
T the non-stationarity of the time series likely appears. This
problem is known as the curse of dimensionality. Because
of this, we compute the covariance matrix and expected re-
turns using the [−T, 0] interval, i.e. using T = 50 ≈ n,
T = 100 > n and T = 500 >> n days preceding t = 0.
Furthermore, filtering techniques are able the filter the part
of the covariance matrix which is less affected by statistical
uncertainty. To quantify and compare the different methods
are considered, we use the measures described below.

3.2 Performance evaluation
To measure the performance of the portfolios determined by
the different models, we use the following quantities for the
estimated return and risk at the time of investment and the
realized risk and returns after the investment period. For

1Ultrametric distances are such distances that satisfy the in-
equality dij ≤ max{dik, dkj}, which is a stronger assumption
that the standard triangular inequality.
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Figure 2: The ratio of the realized risk σ2
r and

the predicted risk σ̂2
p as the function of expected

portfolio return rp for the different procedures as
T = 50, 100, 500 (top-down). The data set contains 40
BSE stocks in the period

portfolio p, the ex-ante Sharpe ratio measures the excess
return per unit of risk:

Sp =
r̂p − rf
σp

, (10)

while the ex-post Sharpe ratio uses the same equation but
with the realized return rp. Here, rf is the risk-free rate
of return. The portfolio risk, due to the estimation of the
correlation matrix is calculated as

Rp =
|σ2

r − σ̂2
p|

σ̂2
p

(11)

where σ̂2
p is the predicted risk, while σ2

r is the realized risk
of the portfolio.



Table 1: Bootstrap experiments using 50 random
samples for each value of T in case of 120% expected
return
rp = 1.2 Original RMT MST

Return 0.145 (0.330) 0.180 (0.425) 0.186 (0.348)
T=50 Sp 0.009 0.180 0.186

Rp 16.66 0.99 0.99
Return 0.319 (0.332) 0.315 (0.541) 0.362 (0.418)

T=100 Sp 0.036 0.315 0.364
Rp 8.954 0.99 0.99
Return -0.185 (0.928) -0.313 (1.234) 0.264 (0.724)

T=500 Sp -0.077 -0.313 0.264
Rp 2.415 0.99 0.99

3.3 Experiments
Fig. 2 shows the ratio of the ratio of the realized risk σ2

r and
the predicted risk σ̂2

p as the function of the estimated return
rp obtained by the different procedures. For each T , the
investment time t0 and the set of stocks were the same. The
ratio is significantly smaller in case of the portfolios that
obtained by using filtering. Interestingly, for T = 100 the
MST method gave better results than the RMT.

To check the robustness of the methods, we performed a
bootstrap experiment as follows. We considered 50 random
initial times to solve the optimization problem using the
time series on the intervals [−T, t0] (T = 50, 100, 500). For
each portfolio, we computed the predicted risk using Eq. 2
for expected returns rp = 1, 1.1, . . . , 2 (0− 100% gain). We
further constrained pi to the interval [−1, 1] and used the La-
grange multiplier method for the optimization. In all cases,
the portfolios with realized returns in the top and bottom
10% were neglected. We computed the realized risk using
the calculated stock weights at t0 and the realized covariance
matrix on [t0, T ]. We also computed the realized returns by
comparing the value of the portfolio at t0 and T . The aver-
age Sp, Rp values and returns with standard deviations for
rp = 1.2 are shown in Tab. 1. It can be seen, the Rp values
are significantly smaller in case of the RMT and MST than
in case of the original method for each T confirming the reli-
ability of the filtering methods. The post-ante Sharpe ratio,
however it is much smaller than 1 in every case, also shows
the that the RMT and MST methods outperforms the origi-
nal method. We note, interestingly, that the highest average
return was obtained for T = 100 (and not for T = 500) using
the BSE data set.

4. CONCLUSIONS
In this study, we performed portfolio optimization using fil-
tered correlation matrices obtained by two different proce-
dures, namely a random matrix theory approach and the
single linkage clustering. A large set of experiments have
shown that using filtered covariance matrices the original
Markowitz solution is outperformed in terms of standard
portfolio performance measures.

In the future, it would be interesting to analyze portfolio
optimization using various estimators of expected returns
together with different filtering procedures and check the
methods using various stock exchange data sets and also
varying the number of stocks considered.
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