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ABSTRACT
In this paper we present a null model based clustering method
for asset graphs constructed of correlation matrices of finan-
cial asset time series. Firstly, we utilize a standard config-
uration model of the correlation matrix that provides the
null model for comparison with the original one. Based on
this comparison we define a distance matrix – called asset
graph – on which we perform hierarchical clustering proce-
dures. We apply this method to find clusters of similar as-
sets in correlation based graphs obtained form various stock
market data sets. We evaluate the performance of the pro-
cedure through the Markowitz portfolio selection problem
by providing a simple asset allocation strategy based on the
obtained cluster structure.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Applications
; G.1.6 [Optimization]: Nonlinear programming
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Correlation matrix, Complex networks, Clustering, Portfolio
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1. INTRODUCTION
Correlation matrices are of central importance in financial
economics, especially in portfolio theory. Correlations among
various assets’ returns is used to determine the relative amo-
unt of capital should be invested in different assets in order
to minimize the investor’s risk [4]. Graphs can be easily con-
structed from correlation matrices in different ways. In asset
graphs a node represents a company and a weighted edge
between two nodes indicates, for instance, the equal-time
Pearson correlation coefficient between their corresponding
stock prices [3, 9, 11]. Considering correlation matrices as
graphs, a wide range of tools in network analysis, like cen-
trality measures, frequent sub-graph search or community
detection, becomes available [1]. Nevertheless, the direct

conversion to graphs is not evident, since the problem of in-
formation content of correlation matrices plays a key role in
applications, especially in risk management. The estimation
of the correlation matrix is associated with a significant level
of a statistical uncertainty (sometimes called noise) due to
the finite length of the asset return time series [15]. Re-
cently, several approaches, that appeared especially in the
‘Econophysics’ and ‘Complex Networks Analysis’ literature,
have been developed to handle this issue, e.g. [2, 6, 13, 14].
The idea is to filter the ‘information core’ of the correlation
matrix that is robust against statistical uncertainty. One
approach is based on random matrix theory and the idea
is to compare the empirical correlation matrix with a null
model matrix. The null model matrix is defined as the cor-
relation matrix of the same number of random time series
of the same length as the empirical one. A barely different
approach, preferably used in the finance literature, is the
principal component analysis [5]. Other filtering methods
perform hierarchical clustering procedures such as single-
linkage clustering [9] or average-linage clustering [13].

In this work we follow a standard null model approach for
correlation matrices, but consider the information filtering
problem as a graph based data mining task. We should
emphasize, that in [8] the authors showed that treating the
original correlation matrix as a weighted graph directly and
apply modularity maximization for clustering using a stan-
dard null model approach may lead to biased results. This is
due to the fact that the configuration null model doesn’t nec-
essarily give enough importance to node pairs with stronger
correlations, however this is often desired in clustering al-
gorithms. They also provided several versions of the modu-
larity function for correlation matrices. We choose a much
simpler way: we filter the original correlation matrix using a
null model matrix and transform the filtered matrix to a dis-
tance matrix in a proper way. Then a hierarchical clustering
procedure on the distance matrix is performed, regarded as
a heuristic to maximize a modularity-like function.

The paper is organized as follows. In Section 2 we briefly de-
scribe some ways to construct asset graphs from correlation
matrices, and present a heuristic for community detection
(i.e. clustering) for these graphs. In Section 3 we present
our experiments in various stock market data sets through
the Markowitz portfolio selection problem by providing an
asset allocation strategy based on the obtained cluster struc-
ture. Finally, we summarize in Section 4.



2. METHODS
Let Xi ≡ {xi(t) : t = 0, 1, . . . , T} be a time series repre-
sents the value of some unit i (i = 1, 2, . . . n) at time t.
Particularly, in financial markets i is an asset and xi(t) is
the logarithmic return of it, i.e. xi(t) = logPi(t)/Pi(t− 1),
where Pi(t) is the price of asset i at time t. The system of n
assets is often investigated via the correlation matrix C that
statistically measures the pairwise dependencies, where Cij

is the Pearson correlation coefficient of assets i and j. It is
calculated as

Cij =
Cov(Xi, Xj)√

Var(Xi) ·Var(Xj)
,

where

Cov(Xi, Xj) = Xi ·Xj −Xi ·Xj

is the covariance of Xi and Xj , Var(Xi) = Cov(Xi, Xi) = σ2
i

is the auto-covariance of Xi and Xi denotes the temporal
average of the observations of Xi, i.e.

Xi =
1

T

T∑
t=0

xi(t),

XiXj =
1

T

T∑
t=0

xi(t)xj(t).

We assume that Xi is standardized as (Xi −Xi)/σi.

2.1 Asset graphs
Since the correlation matrix C is a symmetric n × n ma-
trix, it can be viewed as the adjacency matrix of a weighted
graph. In this graph, nodes represent the assets and edges
represent correlation coefficient of asset pairs. In the lit-
erature, C is often transformed into a distance matrix D
with entries Dij =

√
2(1− Cij). This is motivated by the

hypothesis that ultrametric spaces1 are meaningful in eco-
nomic perspective [10].

A simple filtering technique is to threshold the values of C
(or D), leaving only those edges that are greater than an ar-
bitrarily chosen value. Although the method effectively dis-
cards the weakest correlations, that are likely to caused by
random fluctuations in the time series, using an inappropri-
ate threshold value may hide important structural features
of the asset graph.

A different technique, that does not require to choose a
global threshold value is the minimal spanning tree approach.
It reduces the number of edges of the graph from n·(n−1)/2
to n− 1. The procedure is closely related to agglomerative
hierarchical clustering performed with the single-linkage dis-
tance definition [9]. The approach assumes that the origi-
nal correlations are approximated well by the filtered ones,
and similarly to the threshold based filtering it discards all
the weaker correlations. To discard less information, one
can use the planar maximally filtered graph approach [14].
The method retains both the correlations used to create the
minimal spanning tree and additional information as well,
provided that the result is a planar graph.

1Ultrametric spaces are defined by an ultrametric distance
that satisfy the axioms (i) Dij = 0 ⇔ i = j, (ii) Dij = Dji

and (iii) Dij ≤ max{Dik, Dkj}, ∀(i, j, k).

An important technique, based on fundamental results of
random matrix theory, decomposes the correlation matrix
C into a ‘structured’ and a ‘random’ part [7]. This is done
by comparing eigenvalues of the empirical correlation matrix
with the correlation matrix of the same number of random
time series of the same length. The latter is known to be
given by the Marchenko-Pastur distribution [12]. We use
a similar technique in this work, but we choose a so-called
configuration model to construct the null model matrix that
will be compared with the original one.

2.2 Configuration model and community de-
tection in graphs

A null model correlation matrix C0 is an n×n matrix, where
C0

ij is the mean value of the correlation between assets i
and j under some null model benchmark. For example, un-
der the assumption that every asset is uncorrelated then C0

would be the n × n identity matrix. Here, we use a con-
figuration model as null model to generate C0

ij by replacing
edges (of the correlation graph) independently at random.
The assumption is that the generated C0 correlation matrix
preserves the strength of each asset i, i.e. Ci =

∑
j Cij is

fixed as much as possible, while randomizing the ‘correlation
structure’.

We consider C′ = |C − C0| as the filtered (i.e. ‘cleaned’)
correlation matrix. Then we define the re-scaled Dc =
−C′ + |min C′|+ |max C′| distance matrix, that may be in-
terpreted as a weighted graph related to the correlation ma-
trix. Here smaller distance between two nodes refers larger
correlation between the corresponding assets. We then apply
hierarchical clustering to Dc. This method can be regarded
as a heuristic to maximize a modularity-type function, used
for clustering, given as

∑
i,j [Cij − C0

ij ]δij , where δij = 1 if
i and j assigned to the same cluster, and δij = 0 otherwise.
Hierarchical clustering results in a dendrogram that can we
cut at an arbitrary level h from the root to get h clusters of
stocks.

3. EXPERIMENTS
Correlation (covariance) matrices often used in portfolio op-
timization (a widely-used model will be described). The per-
formance of the different noise filtering procedures is gener-
ally measured via various performance metrics of composed
portfolios using filtered correlation matrices.

3.1 Data sets
For our experiments we have relied on the daily closure price
time series of three different stock data sets available at Ya-
hoo! Finance. The selection of the stocks was based on
global indices in two cases (FTSE100 and DOW30), and
we also chose the 30 stocks that were active for the longest
period among the available time series data. For the sake
of simplicity, we refer to these data sets as “FTSE” (n = 32
stocks, 1183 records from 16-05-2011 to 27-01-2016), “DOW”
(n = 29 stocks, 2849 records from 19-03-2008 to 12-07-2019)
and“Active30”(n = 30 stocks, 5398 records from 19-01-1995
to 27-06-2016).

3.2 Markowitz portfolio selection
The Markowitz portfolio selection problem is an optimiza-
tion problem where the investor would like to create an opti-
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Figure 1: Risk ratios on the ‘FTSE’ dataset. The
lower, the better.

mal portfolio of assets with minimum risk, given an expected
return in advance. The portfolio is represented as a vector p
that consists of the fraction of wealth to be invested in each
asset. We also assume that

∑
i pi = 1, i.e. 100% of wealth is

invested. For example p = (0.2, 0.8) means investing 20% of
our wealth in stock #1 and 80% in stock #2. To reach the
optimum, the portfolio has to satisfy two conditions. Firstly,
it has to achieve an expected return rp =

∑
i piXi, where

Xi is the mean log-return of stock i, greater than a speci-
fied value R (this is an arbitrary choice). Secondly, it has
to provide minimal risk, measured as σ2

p = pΣpT , where Σ
is the covariance (i.e. not normalized correlation) matrix of
the assets considered. Negative pi weights, also referred to
as short-selling, are allowed.

3.3 Methodology
We used the following rolling window approach to calcu-
late the correlation (and covariance) matrices from the time
series data and perform the optimizations described previ-
ously. In each dataset we calculated the correlation ma-
trix on the time range [t0, t0 + ∆T ], performed a filtering
procedure, in a similar way as in [13], and the optimiza-
tion which gave us a portfolio p. This meant four main
optimizations per each t0 starting day: optimization with-
out filtering (“Classic”), filtering using hierarchical clustering
on (i) asset graph D (“C Single”, “C Average”) and (ii) on
configuration model based asset graph Dc (“Conf Single”,
“Conf Average”). In case of clustering procedures, our port-
folio selection strategy was choosing only one asset from each
cluster at random and performed portfolio optimization con-
sidering only the pre-selected assets. We then evaluated the
performance of the portfolios on the interval [t0 + ∆T, t0 +
2 ·∆T ], where t0 ∈ {0, 30, 60, . . .} and ∆T = 100.

For each portfolio p = (p1, p2, . . . ) we calculated the realized
return as

n∑
i=1

pi
Pi(t0 + 2∆T )− Pi(t0 + ∆T )

Pi(t0 + ∆T )
,

the Pre-Sharpe ratio (rp/σ̂
2
p), and the risk ratio (σ2

p/σ̂
2
p),

that is the fraction of the ‘realized’ and estimated risk. We
calculated the mean of each metric but trimmed the data
by 20% (10% on the lower and 10% on the upper end) to
remove possible outlier values.
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Figure 2: Sharpe ratios on the ‘FTSE’ dataset. The
greater, the better.
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Figure 3: Realized returns on the ‘FTSE’ dataset.
The greater, the better.

3.4 Results
Our experiments show that the resulting portfolios in gen-
eral had significant improvements in all metrics when filter-
ing methods were applied to the correlation (and hence co-
variance) matrix. The configuration model based approach
provided lower realized risk and lower difference between es-
timated and realized risks than the other filtering methods
(Fig. 1). The risk estimation was even better when we only
used one stock per cluster (using 3 or 4 clusters provided
the best risk ratios), but the estimated risk increased (the
increase of the estimated risk brought it closer to the real-
ized one). In these cases we chose a random element of the
cluster, hence it was not guaranteed that we chose the assets
with the lowest risk overall. Regarding Sharpe ratios (Fig.
2), it can be noted that the single-linkage clustering was the
closest one to the original Markowitz-model, although when
using only one stock per cluster, the value significantly de-
creased (due to the fact that the estimated return did not
grow, but the risk increased). The configuration model per-
formed similarly, albeit a bit worse than the other methods.

Regarding realized returns, as Fig. 3 shows, the cluster-
based asset selection improved performance. When looking
at the results of all the clustering-based approaches, the con-
figuration model provided the highest realized returns with
3 clusters (and thus 3 stocks). The worst performer was
the single-linkage clustering. Filtering procedures show a
similar shape over time and outperform the classic method
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Figure 4: Realized returns of three filters on the
‘Active30’ dataset from 19-01-1995 to 31-08-2015.
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Figure 5: Realized returns of three filters on the
‘DOW’ dataset from 19-03-2008 to 12-09-2018.
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Figure 6: Realized returns of three filters on the
‘FTSE’ dataset from 16-05-2011 to 01-04-2015.

in certain intervals (Figs. 4-6). However, understanding the
shape of the curves and the underlying causes are worth
further investigation.

4. SUMMARY
In this work, by combining techniques used to investigate
correlation matrices and used in graph based data mining,
we performed clustering procedures for asset graphs con-
structed of filtered correlation matrices of financial asset
time series. We provided an asset allocation strategy based
on the obtained cluster structure and using Markowitz’ port-
folio optimization. The above discussion of our findings
shows that the utilized methodology is able to provide reli-
able portfolios in terms of risk estimation and is competitive
with classical methods in terms of return realization as well.
Defining asset graphs based on different filtering procedures
and cluster based asset selection strategies leave open many

questions for further investigations.
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