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ABSTRACT
Measuring nodes’ importance in a network and ranking them
accordingly is a relevant task regarding many applications.
Generally, this measurement is done by a real-valued func-
tion that evaluates the nodes, called node centrality mea-
sure. Nodes with the largest values by a centrality mea-
sure usually give the highest contribution in explaining some
structural and functional behavior of the network. The sta-
bility of centrality measures against perturbations in the net-
work is of high practical importance, especially in the anal-
ysis of real network data that often contains some amount
of noise. In this paper, by utilizing a simulator we imple-
mented in R, a formal definition of stability introduced in
[13] and various perturbation methods are used to experi-
mentally analyze the stability of some commonly used node
centrality measures.
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1. INTRODUCTION
In a complex network, being social (e.g. Facebook friend-
ship), economical (e.g. international trade), biological (e.g.
protein-protein interaction) or technological (e.g. transporta-
tion) network, the position of the nodes in the topology of
the underlying graph is of central importance. Central nodes
in this graph topology often have major impact, whereas pe-
ripheral nodes usually have limited effect on the structure
and functioning of the network. Thus, identifying the central
and most important nodes helps in better understanding the
networks from many different perspectives. Node centrality
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measures are metrics designed to identify these important
nodes. However, the importance of a node can be interpreted
in many different ways, therefore, depending on the appli-
cations, many centrality measures have been developed and
effectively applied in various domains [7]. The most com-
monly used centrality measures are degree [11, 14], close-
ness [1, 12], eigenvector [2], betweenness [8], PageRank [4]
and HITS [10]. Degree centrality measures the importance
of a node simply by the number of its neighbors. Close-
ness centrality shows the average shortest path length from
the node to every other node in the network. Eigenvector
centrality, and similarly PageRank, of a node is computed
(iteratively) as a function of the importance of its neigh-
bors. Betweenness centrality measures the relative number
of shortest paths in the network that go through a node.

The stability of centrality measures has often been investi-
gated in an empirical way by comparing the network with
one obtained by modifying the original one according to
some randomisation procedure [3, 6, 15]. Recently Segarra
and Ribeiro gave a formal definition for the stability of cen-
trality measures and proved that degree, closeness and eigen-
vector centrality are stable whereas betweenness centrality
is not [13]. In this work we experimentally investigate the
stability of degree and eigenvector centrality measures on
various data sets, and under two different perturbation pro-
cesses. By doing so we introduce our simulation environ-
ment which is implemented in R and available online as an
interactive tool.

This paper is organized as follows. In Section 2 we will
briefly discuss the definition of stability for centrality mea-
sures and introduce the main notations used in the paper.
In Section 3 we will present a simulation environment writ-
ten in R and describe the data sets used in our experiments.
In Section 4 we will describe the two perturbation processes,
discuss our results and draw some succinct conclusions.

2. NODE CENTRALITY AND STABILITY
Let us consider a network represented by a graph G =
(V,E), where V is the set of nodes and E is the set of edges
(i.e. pairs of nodes) of the network. Centrality measure is
a real-valued function CG : VG → R≥0, that assigns a non-
negative number to each node of network G. Here we will



not give the formal definitions of the investigated centrality
measures that can be found e.g. in [7]. We use the definition
of stability introduced in [13] as follows. A node centrality
measure C is said to be stable if

|CG(x)− CH(x)| ≤ KG · d(G,H) (1)

holds for every node x ∈ V , where G and H are two graphs
over the same node set V , KG is a constant, and d(·, ·) is a
distance function between two graphs.

The definition says that a centrality measure is stable if
the maximum change in node centrality is bounded by a
constant times the distance of the two graphs. This con-
stant value must be universal to any perturbed version of
the initial graph. Furthermore, the constant value does not
depend on the presence of normalization of centrality val-
ues. Note that the definition is similar to the definition of
Lipschitz-continuity, applied in a discrete space. In order
to make the above inequality meaningful a graph distance
d : G×H → R≥0 should be specified. Here, the distance of
two graphs with identical node set V is defined as

d(G,H) =
∑
i,j

|AG
ij −AH

ij |,

where A denotes the (weighted) adjacency matrix of the
network.

It is of empirical interest to study how graphH occurs from a
given graph G and how it affects the constant KG in formula
(1). In Section 3 different graph perturbation methods using
various input graphs and data sets in order to examine the
ranges of KG are discussed.

2.1 Theoretical values in stability concepts
Segarra and Ribeiro showed that using the stability concept
(1) the degree, closeness and eigenvector centrality measures
are stable, whereas betweenness centrality is not [13]. The
theoretical KG values for the three stable measures were de-
termined. Given a directed and weighted graph G, KG = 1
for degree centrality. This is because the distance of the two
adjacency matrices will be at least the maximum difference
of the degree centrality value. Furthermore this theoretical
value for undirected weighted graphs can be reduced to 1/2
due to the symmetry of the adjacency matrices. For close-
ness centrality it was proved that the theoretical bound KG

is equal to the number of nodes, hence it is not a universal
constant. The eigenvector centrality is stable and the con-
stant KG can be computed as 4/(λ1 − λ2), where λ1 and
λ2 are the greatest and second greatest eigenvalue of the
adjacency matrix of graph G, respectively.

Although there exist some theoretical results for the con-
stant KG, it could still be interesting to analyze its actual
value in real networks under natural perturbation scenarios.
In the next section we describe our simulation environment
and data sets used for experimental analysis.

3. SIMULATION ENVIRONMENT
R is an open-source programming language developed by the
R Foundation and can be widely used for statistical compu-
tations and representations. The functions which are mainly

used in our project for graph manipulation and related com-
putations, generating synthetic graphs and graph visualiza-
tion are part of the igraph package. We also use the plotly

library which is an online analytical and data visualization
tool. It can be easily integrated in various developer envi-
ronments, thus combined with R can be widely used for data
visualization.

With the help of these tools we designed and implemented
a versatile simulation environment that we use to perform
our experiments. The simulator can handle various network
data structures, while the output of a simulation can be
various plots, data tables, statistics depending on the user
defined parameters. A version of the simulator with limited
functionality that uses the data as input as discussed below
is available online at:

https://kardosorsi.shinyapps.io/stability

The interested readers are cordially invited to visit our web-
site and try out different experiments. The full version of
the simulator is available upon request.

3.1 Data sets
We have performed a wide-range of experiments on various
synthetic and real data sets using different types of pertur-
bations. In the following two experiments are elaborated in
more detail.

S&P 500
Firstly, a correlation based financial graph was used. The
main motivation behind using stock data was to obtain the
perturbation method directly from real-life processes. The
experiments were performed using the daily closing prices
of stocks of the S&P 500 in the period of 01/01/1995 –
31/12/2018, including the assets of 330 leading U.S. com-
panies1. We used a time-window of 200 days to construct
correlation matrices from stock return time series on that in-
terval with starting points T0 = 01/01/1995, Tk = T0+k∆T
with ∆T = 50, k = 1, 2, . . . . This way we obtained 116
consecutive networks, with the fixed set of 330 nodes and
weighted edges represent the correlation coefficient of each
pair of assets on the corresponding time interval. Here, the
changes in edge weights between each consecutive network
pairs simulates the perturbation process.

Cooper-Frieze graph process
Secondly, we implemented the Cooper-Frieze graph evolu-
tion process based on a general model of web graphs pro-
posed in [5]. That is a general model of a random graph
process to generate a graph of power-law degree distribution
as follows. Starting from an initial graph G0 at time t = 0,
the process evolves randomly by the addition of new nodes
and/or edges at each time step t = 1, 2, . . . . The following
six parameters of the process provide a high-level of freedom
in graph generation. With probability α ∈ [0, 1] and 1 − α
a new node is created or an existing node generates edges,
respectively. With probability p = (pi : i ≥ 1) a new node
generates i edges. For new nodes, with probability β ∈ [0, 1]
the terminal node of a new edge is made uniformly at ran-
dom and with 1− β according to degree (i.e. new edges are

1We selected those assets from the S&P 500 list that were
complete in the considered time period.
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Figure 1: KG constant values for degree centrality
measure during the perturbation simulation.

preferentially attached). If an already existing node gener-
ates an edge, where the number of edges given by probability
q = (qi : i ≥ 1), the initial node is selected uniformly with
probability δ and according to the degree with 1 − δ. The
parameter γ has similar role for existing nodes as β had in
the case of new nodes. Using this process we are able to
simulate a graph perturbation process. The initial graph
(at time t = 0) can be set as an input parameter and then
in every time step t = 1, 2, . . . a new (perturbed) graph is
created by the evolutionary graph process.

4. RESULTS AND DISCUSSION
Two main perturbation categories are examined. The first
category is the graph structure perturbation that can be
raised from real-life data (like stock correlations) or syn-
thetic perturbation obtained by rewiring edges selected uni-
formly at random. The other group is raised from graph
evolution. Here we will present our experiments on the S&P
500 data set for the structure perturbation and on Cooper-
Frieze networks for the graph evolution. Results are shown
on consecutive graphs as discussed in Section 3. During our
experiments reported here the degree and eigenvector cen-
trality measures were considered2.

Graph structure perturbation. At the global level, an
interesting result is provided by the behavior of the KG con-
stant value regarding both degree and eigenvector centrality
measures over time, see Figure 1 and Figure 2, respectively.
The mean values for centrality C are calculated as

1

|V |
∑
x∈V

|CG(x)− CH(x)|. (2)

We can observe that for both centrality measures are very
stable, only very slight changes in their values are observed.
Interestingly, these changes happen in periods of crisis. The
increases around 2004, 2007-2008 and 2010-2011 can be no-
ticed. The 2007-2008 period can be associated with the
Lehman Brothers failure, whereas the 2010-2011 may reflect
the Sovereign debt crisis. It is a well-known stylized fact in
finance that assets correlation increases in times of financial
distress. Note that these actual KG values are way lower
than their theoretical bounds.

2Note that a more detailed presentation of our results will
be part of a paper planned to be published later.
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Figure 2: KG constant values for eigenvector cen-
trality measure during the perturbation simulation.

1995-12-27
1996-05-20
1996-10-10
1997-03-05
1997-07-28
1997-12-17
1998-05-13
1998-10-05
1999-03-01
1999-07-22
1999-12-13
2000-05-05
2000-09-27
2001-02-21
2001-07-16
2001-12-11
2002-05-07
2002-09-27
2003-02-21
2003-07-16
2003-12-05
2004-04-30
2004-09-23
2005-02-15
2005-07-11
2005-11-30
2006-04-26
2006-09-18
2007-02-12
2007-07-06
2007-11-27
2008-04-22
2008-09-12
2009-02-05
2009-06-30
2009-11-19
2010-04-16
2010-09-08
2011-01-31
2011-06-23
2011-11-14
2012-04-10
2012-08-30
2013-01-28
2013-06-20
2013-11-11
2014-04-07
2014-08-28
2015-01-22
2015-06-16
2015-11-05
2016-04-01
2016-08-23
2017-01-17
2017-06-09
2017-10-31
2018-03-27
2018-08-17

−0.4

−0.2

0

0.2

0.4

0.6

0.8

DegreeDegree
EigenvectorEigenvector

Date

Ke
nd

all'
s ta

u

Figure 3: Kendall’s tau coefficient between rank by
different centrality measures during perturbation

The other interesting aspect in analyzing the stability of the
different network centrality measures is the order or rank-
ing provided by the metrics. The Kendall rank correlation
coefficient [9] is used to measure the ordinal association be-
tween two measured quantities. The coefficient results in
high value when observations have a similar rank (i.e. rel-
ative position label of the observations within the variable:
1st, 2nd, 3rd, etc.) between the two variables. The simula-
tor can be parametrized in order to visualize the correlation
between the order by centrality measures for the different
measures respectively. Therefore it is possible to analyze the
correlation between the two rank vectors during the graph
perturbation procedure. On Figure 3 the Kendall correla-
tion coefficients are reported. The degree centrality stays
quite stable in the range of 0.35 − 0.7, whereas the eigen-
vector centrality shows some seemingly radical changes over
time. We can observe that these extreme changes in rank-
ing shown on Figure 3 are related to the higher KG constant
values regarding the average change in centrality measures
presented on Figure 2.

Graph evolution. The other aspect that we wanted to
study in our experiments was the graph perturbation caused
by some evolutionary process. The concept behind this was
that studying the maximum of the difference in centrality
measures during graph evolution can be an interesting ap-
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Figure 4: KG constant values for degree centrality
measure during the graph evolution process
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Figure 5: KG constant values for eigenvector cen-
trality measure during the graph evolution process

proach regarding many real-life applications. The perturba-
tion behind evolution relies on the fact that in these net-
works new vertices can connect to the initial graph with one
or more edges, also new edges can appear between existing
nodes in the network.

For these experiments the perturbed versions of the initial
graph were provided by the Cooper–Frieze graph process. In
the reported results a graph of two nodes connected with an
edge as initial input graph was used. We started to measure
the centrality stability values after the 100th iteration by
blocks of ten iterations. Thus, at the end of an iteration
block consisting of 10 time steps t, a perturbed graph is
produced with new nodes and edges compared to the graph
from the previous block.

As it can be seen on Figures 4 and 5 the empirical values
of KG bound are about one order magnitude higher than
those for the S&P dataset. Note that they are still much
lower than their theoretical values and they show only slight
fluctuation. Moreover, the mean values (calculated as (2)
converges to zero by the growth of the size of the network.
Similar convergence can be noticed on Figure 6 regarding
the Kendall’s correlation which shows the evidence that even
the nodes ranking remain practically unchanged during the
graph evolution process.
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Figure 6: Kendall’s tau coefficient between rank by
different centrality measures during the graph evo-
lution process
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