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ABSTRACT
We present a new model for probabilistic forecasting using
graph-based rating method. We provide a “forward-looking”
type graph-based approach and apply it to predict football
game outcomes by simply using the historical game results
data of the investigated competition. The assumption of our
model is that the rating of the teams after a game day cor-
rectly reflects the actual relative performance of them. We
consider that the smaller the changing of the rating vector –
contains the ratings of each team – after a certain outcome
in an upcoming single game, the higher the probability of
that outcome. Performing experiments on European foot-
ball championships data, we can observe that the model per-
forms well in general and outperforms some of the advanced
versions of the widely-used Bradley-Terry model in many
cases in terms of predictive accuracy. Although the appli-
cation we present here is special, we note that our method
can be applied to forecast general graph processes.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Applications; I.2 [Artificial
Intelligence]: Learning

1. INTRODUCTION
The problem of assigning scores to a set of individuals based
on their pairwise comparisons appears in many areas and ac-
tivities. For example in sports, players or teams are ranked
according to the outcomes of games that they played; the
impact of scientific publications can be measured using the
relations among their citations. Web search engines rank
websites based on their hyperlink structure. The centrality
of individuals in social systems can also be evaluated accord-
ing to their social relations. Ranking of individuals based
on the underlying graph that models their bilateral relations
has become the central ingredient of Google’s search engine
and later it appeared in many areas from social network
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analysis to optimization in technical networks (e.g. road
and electric networks) [16].

Making predictions in general, and especially in sports as
well, is a difficult task. The predictions generally appear in
the form of betting odds, that, in the case of “fixed odds”,
provide a fairly acceptable source of expert’s predictions re-
garding sport games outcomes [21]. Thanks to the increasing
quantity of available data the statistical ranking, rating and
prediction methods have become more dominant in sports
in the last decade. A key question is that how accurate
these evaluations are, more concretely, the outcomes of the
upcoming games how accurately can be predicted based on
the statistics, ratings and forecasting models in hand.

Statistics-based forecasting models are used to predict the
outcome of games based on some relevant information of the
competing teams and/or players of the teams. A detailed
survey of the scientific literature of rating and forecasting
methods in sports is beyond the scope of this paper, we
refer only some important and recent results in the topic.
For some papers with detailed literature overview and sport
applications of the the celebrated Bradley-Terry model [3],
see e.g. [5, 7, 24]). Other popular approach is the Poisson
goal-distribution based analysis. For some references, see
for instance [10, 15, 20]. In these models the goals scored
by the playing teams follow a Poisson distribution with pa-
rameter that is a function of attack and defense “rate” of
the respective teams. A large family of prediction models
only consider the game results win, loss (and tie) and usu-
ally uses some probit regression model, for instance [11] and
[13]. More recently, well-known data mining techniques, like
artificial neural networks, decision trees and support vector
machines have also become very popular; some references -
without being exhaustive - see e.g [8, 9, 14, 18].Based on
the huge literature it can be concluded that the prediction
accuracy strongly depends on the investigated sport and the
feature set of the machine learning algorithms used. A no-
table part of prediction models based on the historical data
of game results use the methodology of ranking and rat-
ing. Some recent articles in the topic are e.g. [2, 6, 12, 17,
23]. Specifically highlighting [2] the authors analyzed the he
predictive power of eight sports ranking methods using only
win-loss and score difference data of American major sports.
They found that the least squares and random walker meth-
ods have significantly better predictive accuracy than other
methods. Moreover, utilizing score-differential data are usu-
ally more predictive than those using only win-loss data.



In contrast to those techniques that use the actual respective
strength of the two competing teams, we provide a graph-
based and forward-looking type approach. The assumption
of our model is that if a rating of the teams after a game day
correctly reflects the actual relative performance, then the
smaller the change in that rating after a certain result occurs
(in an upcoming single game) the higher the probability of
that event occur.

The structure of this paper is follows. After presenting
the classical approaches (“Betting Odds” and “The Bradley-
Terry Model”), our new model is introduced. Then in Sec. 3
we present our preliminary experimental results, and finally
in Sec. 4 we conclude and discuss some possible research
directions.

2. MODELS
Let V = (1, . . . , n) be the set of n teams (or players) and
let R be the number of game days in a competition among
the teams in V . A rating is a function φr : V → Rn that
assigns a score to each team after each game day r (r =
1, . . . , R). This is considered as the quantitative “strength”
of the teams. A ranking σr : V → V , after game day r, is
an ordering of the teams that is simply obtained by sorting
the teams according to the rating φr. Using the game re-
sults data set, one can define a directed multigraph (i.e. a
graph where multiple links are allowed), where nodes repre-
sent teams, while links between them represent outcomes of
games they played. The links are directed and each of them
is going from the loser team to the winning team. If ties are
also considered they can be represented by two directed links
with opposite directions and half weight. An edge weighting
can be naturally considered if the final scores of the games
are given

2.1 Betting Odds
Bookmakers determine betting odds for the games accord-
ing to their expectations of outcome probabilities. Here we
deal with fixed odds, means that they do not vary over time
depending on the betting volumes. These “fixed-odds” rep-
resent the predictions of bookmakers [21]. The meaning of
the betting odds for an upcoming game is the following: As-
sume that the betting odds between team i and team j are
odds(i) and odds(j), respectively. It means that if one bets
$1 to i’s win and it comes out, he wins odds(i) dollars, while
if j wins, then the bettor loses his $1. We can calculate the
probabilities of the respective events as

Pr(i beats j) =
1/odds(i)

1/odds(i) + 1/odds(j)

and

Pr(j beats i) =
1/odds(j)

1/odds(i) + 1/odds(j)
.

We should note here that odds provided by betting agen-
cies do not represent the true chances (as imagined by the
bookmaker) that the event will or will not occur, but are the
amount that the bookmaker will pay out on a winning bet.
The odds include a profit margin meaning that the payout
to a successful bettor is less than that represented by the
true chance of the event occurring. This means mathemat-
ically that 1/odds(i) + 1/odds(j) is more than one. This

profit expected by the agency is known as the “over-round
on the book”.

2.2 The Bradley-Terry Model
The Bradley-Terry model [3] is a widely-used method to as-
sign probabilities to the possible outcomes when a set of
n individuals are repeatedly compared with each other in
pairs. For two elements i and j, the probability that i beats
j defined as

Pr(i beats j) =
πi

πi + πj
,

where πi > 0 is a parameter associated to each individual i =
1, . . . , n, representing the overall skill, or “intrinsic strength”
of it. Equivalently, πi/πj represents the odds in favor i beats
j, therefore this is a “proportional-odds model”. Suppose
that i and j played Nij games against each other with i
winning Wij of them, and all games are considered to be
independent. The likelihood is given by

L(πi, . . . , πn) =
∏
i<j

[
πi

πi + πj

]Wij
[

πj
πi + πj

]Nij−Wij

.

Then the log-likelihood is

`(πi, . . . , πn) =
∑

1≤i6=j≤n

[
Wij log πi −Wij log(πi − πj)

]
=

n∑
i=1

Wij log πi −
∑

1≤i<j≤n

Nij log(πi + πj)

which need to be maximized.

One possible derivation of the model assumes team i pro-
duces an unobserved score Si, no matter which is the op-
posing team, with the cumulative distribution function

Si ∼ Fi(s) = exp[−e−(s−log πi)].

It follows that distribution of the difference Si − Sj follows
a logistic distribution function

Si − Sj ∼ Fij(s) =
1

1 + e−(s−(log πi−log πj)
,

which implies that

Pr(Si > Sj) = Pr(Si − Sj > 0) = 1− 1

1 + elog πi−log πj

=
πi

πi + πj
.

Extension with Home advantage and Tie. A natu-
ral extension of the Bradley-Terry model with “home-field
advantage”, according to [1], say, is to calculate the proba-
bilities as

Pr(i beats j) =

{
θπi

θπi+πj
, if i is at home

πi
πi+θπj

, if j is at home

where θ > 0 measures the strength of the home-field advan-
tage (or disadvantage). Considering also a tie as a possible
final result of a game, the following calculations, proposed
in [22], can be used :

Pr(i beats j) =
πi

πi + απj
,



Pr(i ties j) =
(α2 − 1)πiπj

(πi + απj)(απi + πj)

where α > 1. Combining them is straightforward. In our
experiments, we used the Matlab implementations found at
http://www.stats.ox.ac.uk/~caron/code/bayesbt/ using
the expectation maximization algorithm, described in detail
in [7].

2.3 Rating-based Model with Learning
Our new model is designed as follows. We will use the term
“game day” in each case when at least one match is played
on the given day. For any game day in which we make
a forecast, we consider the results matrix that contains all
the results of the previous T = 40 game days. For the 40
game days time window, the entries of the results matrix S
are defined as Sij = #{scores team home-i achieved against
team away-j}. To take into account the home-field effect, for
each team i we distinguish team home-i and team away-i.
Thus, we define a 2n × 2n results matrix, which, in fact,
describes a bipartite graph where each team appears both
in the home team side and the away team side of the graph.
For rating the teams, a time-dependent PageRank method
is used. The PageRank scores are calculated according the
time-dependent PageRank equation

φ = Π =
λ

N
[I − (1− λ)Stmod(l1

t)−1]−1
1, (1)

defined in [19]. The damping factor is λ = 0.1, while we may
multiply each entry of S with the exponential function 0.98α

to consider time-dependency and obtaining Smod, where α
denotes the number of game days elapsed since a given result
occurred (and stored in S). Note, that a home team and an
away team PageRank values are calculated for each team.
We would like to establish a connection between team home-
i and team away-i using the assumption that home-i is not
weaker than away-i. In our implementation we assumed that
home-i had a win 2 : 1 against away-i to give a positive bias
for home-i at the beginning. In our experiments this setup
performed well, but it was not optimized precisely.

Using the above-defined results matrix S and the PageR-
ank rating vector φ, we assign probabilities to the outcomes
{home team win, tie, away team win} of an upcoming game
in game day r between home-i and away-j as follows. Be-
fore the game day in which we make the forecast, let the
calculated PageRank rating vector be φr−1

40 (V ). We use δrxy
to measure how the rating vector of the teams changes if
the result of an upcoming game between teams i and j
is x : y, where x, y = 0, 1, . . . are the scores achieved by
team i and team j, respectively1. We define δrxy as the Eu-

clidean distance between φr−1
40 (V ) and φr40(V ) that is the

rating vector for the new results matrix obtained by adding
x to Sij and y to Sn+j,i. In the results graph interpreta-
tion this simply means that an edge from node away-j to
node home-i with weight x and an edge from node home-
i to node away-j with weight y are added to the graph,
respectively. Our assumption is that if an outcome x : y
has a high probability and it occurs, then it causes a small
change in the PageRank vector; hence δxy will be small. To
simplify the notations let {δ1, . . . , δm} be the distance val-
ues obtained by considering different results {E1, . . . , Em}
1We should note here that if the result is 0 : 0, then x =
y = 1/2 is used.

of the upcoming game between i and j. The goal now is
to calculate the probability that a certain result occurs if
{δ1, . . . , δm} is given. To do this, we use the following sim-
ple statistics-based machine learning method. Let f+() be
the probability density function of δi random variable where
the event (game result) Ei occurred. In our implementa-
tion Ei ∈ {0 : 0, 1 : 0, 1 : 1, . . . , 5 : 5}, assuming that the
probability of other results equals 0. Similarly, let f−() be
the probability density function of δi random variable in
which case the event (game result) Ei did not occur. To
approximate the f+() and f−() functions, for each game
we use the training data set contains all results and related
δi (i = 1, . . . ,m) values of the preceding T = 40 game days
of the considered game. In our experiments, the gamma dis-
tribution (and its density function) turned out to be a fairly
good approximate for f+(δ) and f−(δ).

Assuming that δ1, . . . , δm are independent, using the Bayes
theorem and the law of total probability, we can calculate
that

Pr(Ei|{δ1, . . . , δm}) =
f+(δi)

∏
k 6=i f

−(δk)∑
` f

+(δ`)
∏
k 6=l f

−(δ`)
.

We should note here that in this way we assign probabilities
to concrete game final results, which is another novelty of
our model. Then, for the upcoming game between i and j,
the outcome probability of the event“i beats j” is calculated
as

Pr(i beats j) =
∑

k: Ek encodes a result
of team-i win

Pr(Ek|{δ1, . . . , δm}),

where we sum over those Ek results for which i beats j (i.e.
1:0, 2:0, 2:1, 3:0, 3:1, etc.). The probabilities Pr(i ties j)
and Pr(j beats i) can be calculated in a similar way.

3. EXPERIMENTAL RESULTS
To measure the accuracy of the forecasting we calculate the
mean squared error, which is often called Brier scoring rule
in the forecasting literature [4]. The Brier score measures the
mean squared difference between the predicted probability
assigned to the possible outcomes for event E and the actual
outcome oE . Suppose that for a single game g, between i and
j, the forecast is pg = (pgw, p

g
t , p

g
l ) contains the probabilities

of i wins, the game is a tie and i loses, respectively. Let
the actual outcome of the game be og = (ogw, o

g
t , o

g
l ), where

exactly one element is 1, the other two are 0. Noting that
the number of games played (and predicted) is N , BS is
defined as

BS =
1

N

N∑
g=1

||pg − og||22

=
1

N

N∑
g=1

[(pgw − ogw)2 + (pgt − o
g
t )

2 + (pgl − o
g
l )

2].

The best score achievable is 0. In the case of three pos-
sible outcomes (win, lost, tie) we can easily see that the
forecast pg = (1/3, 1/3, 1/3) (for each game g and any N)
gives accuracy BS = 2/3 = 0.666. We consider this value
as a worst-case benchmark. One question of our investiga-
tion is that how better BS values can be achieved using our
method, and how close we can get to the betting agencies’
fairly good predictions.



Table 1: Accuracy results on football data sets. The values where the difference between the Bradley-Terry
method and the PageRank method was higher than 0.01 are shown in bold.

League Season Betting odds error Bradley-Terry error PageRank method error
2011/12 0.58934 0.60864 0.59653

Premier League 2012/13 0.56461 0.59744 0.58166
2013/14 0.54191 0.55572 0.59406
2014/15 0.55740 0.60126 0.60966
2011/12 0.58945 0.59994 0.59097

Bundesliga 2012/13 0.57448 0.59794 0.58622
2013/14 0.55724 0.57803 0.60125
2014/15 0.57268 0.60349 0.60604
2011/12 0.54598 0.57837 0.58736

La Liga 2012/13 0.56417 0.58916 0.60205
2013/14 0.57908 0.58016 0.60473
2014/15 0.52317 0.55888 0.56172

The data set we used contained all final results of given
seasons of some football leagues, listed in the first two col-
umn of Table 1. We tested our method as it was described
in Sec. 2.3. We start predicting games starting from the
41th game day; for each single game predictions are made
using the results of the previous 40 game day before that
game. The Brier scores were calculated using all predic-
tions we made. Our initial results are summarized in Ta-
ble 1. To calculate the betting odds probabilities we used
the betting odds provided by bet365 bookmaker available
at http://www.football-data.co.uk/. We could see that
these predictions gave the best accuracy score (BS) in each
case. We highlighted the values where the difference between
the Bradley-Terry method and the PageRank method was
higher than 0.01. Although we can see that slightly more
than half of the cases the Bradley-Terry model gives a better
accuracy, the results are still promising considering the fact
that the parameters of our method and the implementation
are far from being optimized.

4. CONCLUSIONS
We presented a new model for probabilistic forecasting in
sports, based on rating methods, that simply use the histor-
ical game results data of the given sport competition. We
provided a forward-looking type graph based approach. The
assumption of our model is that the rating of the teams after
a game day is correctly reflects their current relative perfor-
mance. We consider that the smaller the changing in the
rating vector after a certain result occurs in an upcoming
single game, the higher the probability that this event will
occur. Performing experiments on results data sets of Eu-
ropean football championships, we observed that this model
performed well in general in terms of predictive accuracy.
However, we should note here, that parameter fine tuning
and optimizing certain parts of our implementation are tasks
of future work.

We emphasize, that our methodology can be also useful to
compare different rating methods by measuring that which
one reflects better the actual strength (rating) of the teams
according to our interpretation. Finally we should add that
the model is general and may be used to investigate such
graph processes where the number of nodes is fixed and edges
are changing over time; moreover it also has a potential to
link prediction.
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