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1 The program

This program is user-friendly and available as a Web application at http://www.
inf.u-szeged.hu/~london/Software/graph-mining/. It was created using
JavaScript, HTML and CSS and it relies on a Web browser (front end) to
render the application. JavaScript is an interpreted programming (scripting)
language that is commonly used in so-called Web 2.0 platforms. One of the
main advantages is that many libraries have been developed and distributed
to extend the core functionality of JavaScript. The main operations like the
creation and adaptation of a database using MySQL and running the algorithms
(implemented in PHP) are performed on the server-side (back end).

The graph generators, the ranking algorithms, the SCC and shortest path
finder algorithms were implemented in PHP. For the visualization we used the
Vis.js, browser based visualization library. The library is designed to handle
large amounts of dynamic data, and to enable the manipulation of and inter-
action with the data [20]. For graph clustering, we used the D3.js JavaScript
library, which was developed for manipulating documents based on data by
combining powerful visualization components and a data-driven approach to
DOM manipulation [5]. In particular, we used the well known and widely used
Louvain method [2] to explore the community structure of a graph.
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2 User’s guide — step by step
Here, we give a short guide of the program in a step by step fashion.

1. Download and read the documentation if necessary
2. Generate or upload a graph (Fig.

e If generate, specify
(a) the number of nodes
(b)
(c) the parameters of the model
(d)

the random network model

whether the graph is directed or undirected and weighted or un-
weighted

e If upload, check the format of the input graph (detailed information
is available on the Web page)

3. Visualization

e the generated or uploaded graph is displayed immediately
e the visualized graph can be enlarged and rotated
e the degree distribution of the network is drawn automatically
4. Change the visualization style
(a) Simple (default)
(

b) Cluster structure (show communities)
(c) Hierarchical layout (for directed graphs)
)

(d) Strongly connected components (for directed graphs)
5. Use a ranking algorithm (for directed graphs)

e results will be shown in a table and a diagram

(a) PageRank — specify the damping factor and the iteration number
(b) HITS — specify the root nodes
(¢) SALSA — specify the iteration number

6. Calculate the shortest path between two nodes

7. Download the generated graph in the specified format
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Figure 1: The opening screen of the software and the input file formats for the
different network types.

3 Appendix: Theoretical background

3.1 Basic notions

Formally, an undirected (directed) graph G = (N, L) consists of two sets N and
L, where N # (), while L is a set of unordered (ordered) pairs of elements of N.
The elements of N = {1,2,...,n} are called nodes and the elements of L are
called links. A graph is usually represented by the adjacency matriz A = [ai;l; 5,
which is an n x n matrix with entries a;; = 1 if there is an edge (directed edge)
between ¢ and j and a;; = 0 otherwise. For undirected graphs if the (i, j) edge
exists, then a;; = a;; = 1, i.e. A is symmetric. If a function w : L — R is
given that assigns a real number to each edge, then the graph is weighted. The
degree d; of node i is the number of links that are connected to i. If the graph is
directed, we can differentiate the in — degree and out — degree of a node %, these
being df = 7= a;; (the number of incoming links to i) and d; = 3/~ a;;
(the number of outgoing links from i), respectively.

3.2 Random-graph models of complex networks

From a graph mining perspective, random graphs can be used to investigate
questions on the topological properties of typical graphs that appear in nature,
social systems and technological systems. Practical applications can be found



in areas where complex systems can be modeled by networks.

3.2.1 Erdés-Rényi random graphs

In mathematics, the most commonly studied random graph model was proposed
by Gilbert [7]. This is the so-called G(n,p) model, where n is the number
of nodes, while every possible link is created independently with probability
0 < p < 1. The degree distribution of G(n, p) follows the binomial distribution;
i.e. the probability that any node has degree k is

Pt = 1) = ()0 (3.1)

At the same time, Erdés and Rényi studied a similar model, G(n, M) [6], where
a graph is chosen uniformly at random from all possible graphs with n nodes and
M links. The graph G(n,p) contains p(5) links on average, a rough heuristic
being that G(n,p) behaves like G(n, M), if M = p(}) with increasing n and
also assuming that pn? — oo.

The model can be easily extended to generate weighted and/or directed
graphs. For historical reasons, both models are usually referred to as the Erdos-
Rényi random graph model. Although it has been pointed out recently that the
G(n,p) model may be inappropriate for modeling real-world networks because
in most real networks the average degree varies and the number of triangles
is not small as in G(n,p), the model is still useful for theoretical studies and
making comparisons between fully random networks and real-world networks.

3.2.2 Barabasi-Albert graphs

A scale-free network is a graph whose degree distribution follows the power law.
That is,
Pr(d; = k) =ck™7, (3.2)

where c is a constant and v > 1.

Barabdsi and Albert proposed an algorithm for creating scale-free networks
[1]. The model is based on a so-called preferential attachment mechanism. It
means that nodes with more connections have a stronger capability of grabbing
links added to the network. More precisely, the algorithm is the following:
initially, there is an undirected and connected network with mg < 2 nodes,the
network being connected. For each step, a new node is added to the network
that connects with m new links to the nodes already present, such that the
probability of attachment is proportional to their instantaneous degree. The
model produces a continuously growing network, in contrast with the Erdd&s-
Rényi random graphs, where all nodes exist initially. During the process, nodes
with a higher degree get links with a higher probability, so there should be a
few nodes with a lot of connections (hub nodes), but most of the nodes should
have only a few connections. The extension of the model to directed graphs is
straightforward.



Skewed distributions, such as power laws, occur very often and many real-
world networks are scale-free. Some examples for networks that are scale-free
include social networks [21], the number of sexual partners of humans [13], dif-
ferent kinds of computer networks including the Internet [18] and the Web-graph
of the WWW [4], and airline networks [19]. In biology, important examples are
the protein-protein interaction networks [8] and metabolic networks [9].

3.2.3 Watts-Strogatz graphs

A small-world network is a type of graph in which most of the nodes do not have
many neighbors, but most nodes can be reached by only a few steps from each
other node; moreover, especially in social networks, if links (¢, j) and (i, k) exist,
then the probability that (j, k) exists is high in general. These two properties
can be formulated mathematically with the following notions. First, in small-
world networks, the average path lengths are short (meaning that any node can
be reached in just a few steps through a series of links and points from any other
node), and the clustering is high, which can be measured using

3 x #{triangles}

C =
#{connected triples of nodes}

(3.3)

Watts and Strogatz introduced an algorithm ([22]) that produces a small-world
graph starting from a regular graph of n nodes (where the degree of each node
is the same) and rewired the edges with a certain probability.

3.3 Basic graph algorithms

First of all, two simple, but important algorithms were included in the pro-
gram. These are Dijkstra’s shortest paths finder algorithm ([I6]) and Tarjan’s
algorithm that computes the strongly connected components (SCC) in a graph
[17].

In the shortest path problem we have to find a path between two nodes in
a graph such that the sum of the weights of the links on the path is a minimum
(Fig. [2} Left). A directed graph is strongly connected if every node is reachable
from every other node in a directed path. The strongly connected components
of an arbitrary directed graph is a partition into subgraphs that are strongly
connected (Fig. [2] Right).

3.4 Ranking actors in networks

The problem of assigning scores to a set of individuals based on their pairwise
comparisons appears in many areas and activities. For example, in sports players
or teams are ranked according to the outcomes of games that were played; the
impact of scientific publications can be measured using the relations among their
citations. Web search engines rank websites based on their hyperlink structure.
The centrality of individuals in social systems can also be evaluated according
to their social relations. The ranking of individuals based on the underlying



Figure 2: Left: shortest path between two nodes in a network. Right: Strongly
connected components of a network.

graph that models their bilateral relations has become the central ingredient of
Google’s search engine and later it appeared in many areas from social network
analysis to optimization in technical networks (e.g. road and electric networks)
[11].

Here, we will give a brief overview on the ranking algorithms that are
available in our teaching application. We should add here that all the methods
can be readily extended to weighted networks and we have implemented all the
algorithms in this way.

3.4.1 In—degree ranking

The simplest heuristic for ranking actors in a network is to rank them based
on the number of links that point to them. Returning to the above-mentioned
examples, this means that the player or team with the highest number of wins,
or the scientific article with the highest number of citations will be ranked
highest. However, there are at least two notable problems associated with this
approach. Firstly, it can not distinguish between nodes with the same in-degree;
and secondly in the evaluation of the rank of a certain node, it does not take
into account how important (or the rank of) these nodes are, where the in-links
come from.

3.4.2 PageRank

The key idea of Brin and Page [3] to extend the concept of in-degrees arose
from the observation that not all links have the same importance. For example,
a win against a highly ranked, strong opponent is more important than a win
against a much weaker opponent; a hyperlink from a particular webpage does
not have the same impact as a direct link from Google or Yahoo. Generally
speaking, in the evaluation of the ranking of the nodes, in-links coming from
highly linked nodes are more important than from nodes with just a few links
(Fig 3] Left). Based on this notion, the ranking scores (PR) of the nodes are
calculated iteratively as

PR(i) = (1= X)~+A > (3.4)
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Figure 3: Left: PageRank score of the black node is calculated recursively by
using the scores of the white nodes. Right: Hubs and authorities in a network.

Here, A\ € [0,1] is a free parameter with a value usually lying between 0.6 and
0.8. The second term simply expresses the fact that the rank of each node ¢ is
calculated according to the rank of the nodes that have a link to 7, while the
first term guarantees that the PR scores will converge.

3.4.3 HITS

Independent of Brin and Page, Kleinberg [I0] proposed a different approach
to measure the importance of a Web page. While PageRank computes the
pagerank scores on the entire graph, the Kleinberg’s HITS algorithm (Hyperlink
Induced Topic Search)tries to distinguish between hubs and authorities within a
subgraph of relevant pages, where hub scores and authority scores of the nodes
are recursively calculated from each other. A good hub is a node that links
to many authorities, while a good authority is a node that has in-coming links
from good hubs (Fig. [3| Right). Mathematically, the hub and authority scores
can be calculated recursively as

H(i)= Y A(j) and A(i) = > H(j) (3.5)
jri—g Jij—i
respectively, and the scores will converge starting from any initial scores of
the nodes.

3.4.4 SALSA

Lempel and Moran proposed an alternative algorithm [12] which combines the
ideas of both PageRank and HITS and called it SALSA (The Stochastic Ap-
proach for Link-Structure Analysis). Like HITS, it works on a focused subgraph
and calculates both hub and authority scores of the nodes. In addition, SALSA
computes the different scores in a PageRank recursive manner, like so:

1) = Y - AG) (3.6)
A= Y HG). (3.7)



Figure 4: Network with community structure.

3.5 Communities in networks

Besides the power-low degree distribution and small-world properties (like short
path lengths and high clustering), another important and common feature of
complex networks is the community structure [I5]. In practice, community
detection in a graph is a partition of the nodes into sets, such that nodes in the
same community are more densely connected to each other than to the rest of
the graph (Fig. . In general, the communities in networks reflect the similarity
and common features of the nodes that they contain.

Newman and Girvan introduced the modularity optimization method [14)
based on the idea that a random graph is not expected to have a cluster structure
like the original one. Hence, the existence of clusters is revealed by comparisons
of the edge densities in certain subgraphs with the densities that would be
expected if the links of the graph were randomly wired, which depend on the
null model chosen. One of the most popular null models keeps the degree
sequence of the original graph, but has the edges rewired at random, assuming
that the expected degree of each node is the same as in the original graph. The
modularity function that has to be optimized is defined as

Q= ﬁ ;(aij = pij)8(Ci, Cj). (3.8)

Here, §(C;,C;) =1 if and only if C; = C; and 0 otherwise. For an unweighted
graph, p;; = % is the probability whose nodes i and j are connected in a
random graph with the same degree sequence (null model) as the original one.
An extension of the model to weighted and/or directed graphs can be easily
performed.
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