

		Déli napsütés	Telihold és csillagos ég	0.03 hold és csillagos ég
Fotonok szá 30 s mm	ima / 1 ²	3.7*10 ¹³	1.6*10 ⁸	6.9*10 ⁶
]			Diagnózis	7
-	Rön	tgen fotonok száma	3.0*10 ⁵	
-			·	
Máté: Orvosi képalkotás 1. előadás 19				

Szóródás

<u>Koherens</u>: a foton egy atommal történő ütközés után változatlan energiával, de más irányban halad tovább.

<u>Fotoelektromos</u>: a foton egy erősen kötött elektront kilök a pályájáról. Az elektron kinetikus energiája eltűnik az anyagban. Az elektron hiány egy nagyobb energiájú pályáról pótlódik, miközben az energia többlet foton formájában kisugárzódik.

<u>Compton</u>: a foton kevéssé kötött vagy szabad elektronnal ütközve energiájának és impulzusának egy részét átadja az elektronnak, kisebb energiával és a korábbi irányától eltérő irányban halad tovább.

25

Máté: Orvosi képalkotás 2. előadás

9	szóródás	szögétől	függően	:
KeV	30º	60º	90º	1800
25	24.9	24.4	24	23
50	49.6	47.8	46	42
75	74.3	70	66	58
100	98.5	91	84	72
150	146	131	116	95
1000	794	508	341	205
	1	1		

Ha a forrás, a tárgy és a kép egymással párhuzamos síkokban helyezkedik el, akkor a kép konvolúcióval keletkezik:							
kép = < a forrás képe > ⊗ < tárgy képe >							
A tárgy nagyítási faktora: M (hasznos lehet)							
A forrás nagyítási faktora: m (egyértelműen káros)							
A két faktor aránya: M / m = d / (d − z) = 1 + z / (d − z)							
Máté: Orvosi képalkotás	2. előadás 38						

Angiográfia, subtraction (kivonásos) angiográfia Angiográfia Kontraszt (nagy elnyelő képességű) anyagot juttatnak a vérbe, így láthatóvá válik az érpálya. Subtraction (kivonásos) angiográfia Kontraszt anyag nélkül és kontraszt anyaggal is készítenek azonos pozícióban képet, majd a két képet kivonják egymásból. Ahova nem jutott el a kontraszt anyag, ott a két kép megegyezik, a különbségük 0, tehát az érpálya a környezet zavaró hatása nélkül látszik. Súlyozott kivonás: a környezet halványan megmarad.

Lehetőségek az egyértelműség biztosítására

- Követelmények a rekonstruálandó alakzatra (pl. konvexitás)
- Több vetület megadása (kevésbé valószínű megfelelő kapcsoló komponens előfordulása)

Általában: Egy m*n –es rekonstruálandó kép esetén m*n ismeretlent kell meghatározni. Minden vetület egy csomó egyenletet szolgáltat, amelyben csak ezek az ismeretlenek szerepelnek. Ha elegendően sok vetületünk van, az egyenletrendszer megoldható!

Problémák:

 Nagyméretű egyenletrendszer → közelítő megoldás (iteratív rekonstrukció)

2. előadás

 Az egyenletrendszer ellentmondásos → a hiba minimalizálása, lineáris programozási módszerek
 Leállási feltétel

Máté: Orvosi képalkotás

I. Curie és Joliot Mesterséges radioaktivitás (1934). Alumíniumot α részecskékkel bombáztak:

$$^{27}_{13}Al + ^{4}_{2}He \rightarrow ^{30}_{15}P + ^{1}_{0}n$$

Ezen kívül pozitron sugárzás is kimutatható, még az α sugárzó test eltávolítása után is. A magyarázat: a keletkezett foszfor izotóp spontán módon bomlik:

$$^{30}_{15} P \rightarrow ^{30}_{14} Si + ^{0}_{1} e$$

Radioaktív bomlás során α, β, γ, pozitron, … sugárzás keletkezik. Bennünket most a γ sugárzás érdekel.

3. előadás

55

Máté: Orvosi képfeldolgozás

A és B választása akkor megfelelő, ha az F⁺ és F⁻ képen a pajzsmirigy vetületében csak zaj marad, a pajzsmirigy mindkét képen kis (kb. egyforma) intenzitással látszik.

A –nak a szerepe csak az, hogy a halványabb területek is jól látszódjanak.

Máté: Orvosi képalkotás

	Clearance (tisztulás, ürülés, klírensz)					
A te	A mérések kamerán és üreges méről történnek.					
	kamera		üreges mérőhe	ly		
	Teli fecskendő	C ₀				
	Teli – Standard	C ₁				
			Standard D ml -re hígítása után 1 ml	Stand		
	Beadás, renográfia, …					
	Üres fecskendő	C ₂				
	Máté: Orvosi képalkotás			107		


```
A kamerán mérve Teli: C₀, Teli-Standard: C₁, Üres: C₂
Üreges mérőhelyen:
                                 Standard aktivitása: St = D * Stand
Ba: (C_1 - C_2) = St : (C_0 - C_1)

\rightarrow Ba = D * Stand * (C_1 - C_2) / (C_0 - C_1)
Clearance görbe: aktivitás = A e - k t
                                                     (A = ?, k = ?)
t<sub>1</sub> és t<sub>2</sub> időpontban vérvétel,
        a levett vér 1 ml –ének az aktivitása:
                                                               P<sub>1</sub>, P<sub>2</sub>.
Ezeket behelyettesítve, logaritmálva:
\ln(P_1) = \ln(A) - k t_1
\ln(P_2) = \ln(A) - k t_2
véve a két egyenlet különbségét, átrendezve:
\mathbf{k} = (\ln(P_1) - \ln(P_2)) / (t_2 - t_1)
k ismeretében A meghatározható: A = P1 e + k ti
      Máté: Orvosi képalkotás
                                                                     109
```


Példák parametrikus képekre:	
PMax: pixelenkénti maximális érték	
TMax: pixelenként a maximum elérésének ideje (esetleg a kép indexe)	
T1/2: T fél érték (exponenciális/lineáris függvény illesztés alapjá Ha egy pixelben nincs ürülés, ott 0 vagy nagyon nagy lehet T1/2	n).
MTT: (Mean Transit Time) átlagos átfolyási idő	
Fázis és amplitúdó kép	
Máté: Orvosi képalkotás	119

Nem fiziológiás faktorok (negatív elemeket is tartalmaznak)! Faktor transzformáció: ha T invertálható, akkor legyen

$$\begin{split} \Phi &= \Omega \ \mathsf{T}, \quad \phi = \mathsf{T}^{-1} \ \omega, \\ \Phi \ \phi \ &= (\Omega \ \mathsf{T}) \ (\mathsf{T}^{-1} \ \omega) = \Omega \ (\mathsf{T} \ \mathsf{T}^{-1} \) \ \omega = \Omega \ \omega \end{split}$$

Ha Φ és ϕ nem tartalmaz negatív elemeket, fiziológiásnak tekinthető.

 A transzformáció megkereséséhez használható kritériumok:
 pozitivitás (Φ_i minden pixele és φ_i minden pontja ≥ 0),
 bizonyos területeken bizonyos szerv nincs jelen (a ROI fölött Φ_i = 0).

125

A zaj miatt a kritériumok általában csak közelítőleg teljesíthetők. Máté: Orvosi kénalkotás

```
Kérdések:
• a faktorok száma,
• a fiziológiás faktorok egyértelműsége,
• a fiziológiás faktorok stabilitása.
```

Máté: Orvosi képalkotás

Voxel transzformác	ció (forward):					
a V voxel értéke a TV voxelbe kerül.						
eltolás	M –szeres nagyítás	nyírás				
(Δx, Δy, Δz)-vel:	az origóból: pl. x	-től függő y irányú				
[1 0 0 ∆x]	[мооо]	[1000]				
0 1 0 ∆y	0 M 0 0	n 1 0 0				
001∆z	0 0 M 0	0 0 1 0				
[0001]	[0 0 0 1]	[0 0 0 1]				
forgatás ω szöggel (C = cos ω. S = sin ω)						
Z körül:	Y körül:	X körül:				
[C S O O]	[C O -S O]	[1000]				
-S C 0 0	0 1 0 0	0 C S 0				
0 0 1 0	SOCO	0 -S C 0				
	[0001]	[0 0 0 1]				
Máté: Orvosi képalkotás		142				

	F = F(t) (flow)	C _A (t)		Két kompartn	nentes model	I
	1. sejt köz tér	zötti	k ₂₁ k ₁₂	2. sejten belüli tér		
	F	C _v (t)			-	
Q Q	1'(t) = F C _A 2'(t) =	(t) – F C	C _v (t) –	k ₂₁ Q ₁ (t) + k ₁₂ Q ₂ k ₂₁ Q ₁ (t) - k ₁₂ Q ₂	(t) (t)	
A	nehézsége	t az ok	ozza,	hogy csak		
C	₄(t) és	C _T (t) =	= Q ₁ (t)	+ Q ₂ (t) mérhe	tő.	
Á	ltalában F -	-re, k ₁₂	, k ₂₁ -ı	re vagyunk kíván	csiak.	
	Máté: Orvosi ké	palkotás			163	3

Vérk21Sejtk32Sejtenk43F(t), CA(t)k12térk23szabadSabadQ2(t)Q3(t)Q3(t)Q3(t)Sabad	Sejten belüli kötött B₄, Q₄(t)					
Olyan differenciál egyenlet rendszerhez vezet, am	lelyben					
F(t), C _A (t), Q _i (t) függvények, k _{ij} , B _i konstansok,						
$C_A(t), \sum Q_i(t)$ mérhető.						
Pl. a fenti modell differenciál egyenlet rendszere:						
$Q_{2}'(t) = k_{21} F(t) C_{A}(t) - (k_{12} + k_{32}) Q_{2}(t) + k_{23} Q_{3}(t)$						
$Q_3'(t) = k_{32} Q_2(t) - (k_{23} + (B_4 - Q_4(t)) k_{43}) Q_3(t)$						
$Q_4'(t) = (B_4 - Q_4(t)) k_{43} Q_3(t)$						
Máté: Orvosi képalkotás	166					

 $\frac{\text{M mode:}}{\text{reflexivitás megjelenítése. T időközönként végzett A scan értékeit színkódoltan ábrázoljuk egy-egy oszlopban. T > 2z_max / c, pl. T = 1 ms z_{parax} / c, pl. T = 1 ms g_{paratorized for the structure of the st$

Invorzióa	(Inversion Ree		ozoku	analar		
Inverzios	(Inversion Reco	jvery)	SZEKV	encia.		
RF180		RF90				I
0 inverzio	ó	T _I	jel			TR
RF180 ut	án hosszabb sz	ünet va	an, eza	alatt rész	ben	
bekövetk	ezik a longitudi	nális re	elaxác	ió		
Μ,	$= M_0 (1 - 2e^{-T_1/2})$	^T 1),				
ahol T _i az	z RF90-ig eltelt i	dő. Ezt	taz M,	-t fogja	forgatni	RF90.
Ha T _R İdő	ónként ismételjü	k a sze	ekvend	iát, akko	r	
$S = k \rho (1 - 2e^{-T_1/T_1} + e^{-T_R/T_1}).$						
A kapott jel kisebb, mint amekkoráť 90-FID szekvencia esetén						
kaphatur	nk, de T _I megfele	lő vála	sztás	ával eléri	nető, hog	у
bizonyos	szövetek (pl. al	nol foly	/adék	van) egy	általán ne	Ð
adjanak jelet. Ehhez T _i -t úgy kell választani, hogy						
$T_1 = T_{11} \ln 2$,						
ahol T _{1t}	az eltüntetendő	szöve	tre jel	lemző T ₁	érték.	
Máté: O	rvosi képalkotás		-			199

A hely meghatározás elve

Gradiens mágneses mező:

Olyan G_x, G_y, G_z inhomogén mágneses mező, amelyben a térerő a megfelelő koordináta értékével arányos. Egy ilyen mágneses mezőt hozzáadva a B mágneses mezőhöz a Larmor frekvencia értéke a helytől függően megváltozik, pl.:

 $v_x = \gamma (B + x G_x).$

Ezt többszörösen kihasználhatjuk.

Máté: Orvosi képalkotás

Metszet kiválasztás (szelekció):

Alkalmazzuk pl. G_z –t a γ (B + z₀ G_z) frekvenciájú pulzus idején. Erre a pulzusra csak a z = z₀ síkban lévő spin-ek fognak reagálni (rezonancia), tehát felvételkor csak ebből a síkból kapunk majd jelet.

Felvétel közben alkalmazzuk pl. G_x –t, ekkor csak az x = x₀ síkban lévő spin-ek adnak γ (B + x₀ G_x) frekvenciájú jelet.

Ezt és a metszet kiválasztását figyelembe véve a jel a z = z_0 és az x = x_0 által meghatározott egyenesen lévő spin-ekből származik (vetület).

Fourier transzformációval szét tudjuk választani a különböző frekvenciájú (különböző x koordinátájú egyenesekről érkező) jeleket, tehát a z = z_0 metszet 0 szögű vetülete megkapható.

Máté: Orvosi képalkotás

Visszavetítéses leképezés:

 G_x helyett $G_x\cos(\vartheta) + G_y\sin(\vartheta) - t$ alkalmazva a ϑ szögű vetülethez juthatunk. A vetületek ismeretében a rekonstrukciós eljárások segítségével határozható meg maga a metszet.

A három gradiens mágneses mező megfelelő súlyozásával tetszőleges irányú gradiens hozható létre, tehát tetszőleges sík metszet szelektálható, és rekonstruálható, nem csak transzverzális.

Máté: Orvosi képalkotás

207

205

Fázis kódolás (phase encoding):

n-szer ismételjük a szekvenciát (n általában 128 vagy 256). A k. ismétlésnél a metszet kiválasztása után k*G_y/n fázis kódoló gradienst alkalmazunk: ahol nagyobb a térerő, ott nagyobb a Larmor frekvencia, ott a precesszió fázisa sietni fog.

Minden ismétléskor más jelet kapunk. Az így nyert jelekből meghatározható, hogy melyik pont milyen mértékben járul hozzá a vetület értékéhez, tehát meghatározható maga a voxel érték.

Máté: Orvosi képalkotás

