

















| Vér<br>F(t), C <sub>A</sub> (t)                                                                                                                                                                                                                                                                                                         | k <sub>21</sub> kč<br>k <sub>12</sub> ( | Sejt<br>özötti<br>tér<br>Q <sub>2</sub> (t) | k <sub>32</sub>                                | Sejten<br>belüli<br>szabad<br>Q <sub>3</sub> (t) | k <sub>43</sub> | Sejten<br>belüli<br>kötött<br>B <sub>4</sub> , Q <sub>4</sub> (t) |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------------------|--------------------------------------------------|-----------------|-------------------------------------------------------------------|--|
| <u>Bilineáris tagok</u> . Pl. B <sub>4</sub> , k <sub>43</sub> jelentése: csak korlátos<br>mennyiségű (B <sub>4</sub> ) tracer kerülhet kötött állapotba. Minél<br>nagyobb a kínálat, annál több, de minél jobban közelíti a<br>kötött anyag mennyisége az elérhető maximumot, annál<br>kevesebb tracer jut a 4. kompartmentbe a 3-ból. |                                         |                                             |                                                |                                                  |                 |                                                                   |  |
| Matematikail                                                                                                                                                                                                                                                                                                                            | ag:                                     |                                             |                                                |                                                  |                 |                                                                   |  |
| (B <sub>4</sub> – Q <sub>4</sub> (t)) k                                                                                                                                                                                                                                                                                                 | <sub>43</sub> Q <sub>3</sub> (t)        | vagy                                        | gy: $B_4 k_{43} Q_3(t) - Q_4(t) k_{43} Q_3(t)$ |                                                  |                 |                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                         |                                         |                                             | lir                                            | eáris                                            | bilineá         | ris                                                               |  |
| (Q₃ -ban és Q₄ –ben is lineáris)                                                                                                                                                                                                                                                                                                        |                                         |                                             |                                                |                                                  |                 |                                                                   |  |
| Máté: Orvosi ké                                                                                                                                                                                                                                                                                                                         | pfeldolgozás                            |                                             | 7. előadás                                     |                                                  |                 | 12                                                                |  |

|                                                                                                                                             | Kész rendszerek, pl.: RFIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vár k <sub>21</sub> Sejt k <sub>32</sub> Sejten k <sub>43</sub> Sejten                                                                      | A Program for Fitting Compartmental Models to Region-of-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| F(t) C <sub>k</sub> (t) k <sub>k</sub> tér k <sub>m</sub> szabad kötött                                                                     | Interest Dynamic Emission Tomography Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\mathbf{Q}_{1}(t)$ $\mathbf{Q}_{2}(t)$ $\mathbf{Q}_{2}(t)$ $\mathbf{Q}_{2}(t)$ $\mathbf{Q}_{2}(t)$ $\mathbf{Q}_{2}(t)$ $\mathbf{Q}_{2}(t)$ | Lourence Parkelou Laboratory, University of California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                             | Lawrence Berkeley Laboratory, University of Camornia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Olvan difforonciál ogyonlot rondszorboz vozot, amolybon                                                                                     | Soitan Soitan Soitan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Olyan unterencial egyennet renuszernez vezet, anteryben                                                                                     | Vér $k_{21}$ sejt $k_{32}$ sejten $k_{43}$ sejten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| F(t), C <sub>A</sub> (t), Q <sub>i</sub> (t) függvények, k <sub>ij</sub> , B <sub>i</sub> konstansok,                                       | F(t) C <sub>i</sub> (t) k <sub>i</sub> tér k <sub>i</sub> szabad kötött                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $C_A(t), \sum Q_i(t)$ mérhető.                                                                                                              | (1, 1, 1) $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ |
|                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pl. a fenti modell differenciál egyenlet rendszere:                                                                                         | A fenti modell az                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                             | upmod 12 21 23 32 r43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $Q_2'(t) = k_{21} F(t) C_A(t) - (k_{12} + k_{32}) Q_2(t) + k_{23} Q_3(t)$                                                                   | naramátor sorral adható mog r (saturable recentor) korlátos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $Q_3'(t) = k_{32} Q_2(t) - (k_{23} + (B_4 - Q_4(t)) k_{43}) Q_3(t)$                                                                         | parameter solrar adnato meg. 1 (saturable receptor) konatos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $Q_{1}'(t) = (B_{1} - Q_{1}(t)) k_{1} Q_{2}(t)$                                                                                             | mennyisegu tracer befogadasara kepes kompartment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $a_4(t) = (b_4 - a_4(t)) + a_3 - a_3(t)$                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Máte: Orvosi képfeldolgozás 7. előadás 13                                                                                                   | Máté: Orvosi képteldolgozás 7. előadás 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Ha a plazma koncentráció C<sub>P</sub>(t) = C<sub>P</sub> konstans, akkor elég hosszú idő után az i-ik kompartment tracer felvétele (uptake):

 $U_i(t) = K_i C_p t + konstans.$ 

Ha C<sub>P</sub>(t) nem konstans (Patlak):

 $U_{i}(t) = K_{i} \int_{0}^{t} C_{P}(\tau) d\tau + (V_{O} + V_{P}) C_{P}(t)$ (ahol V<sub>o</sub> = eloszlási térfogat, V<sub>P</sub> = plazma térfogat), innen ∫ C<sub>P</sub>(τ) dτ U<sub>i</sub> (t) 0 + (V<sub>0</sub> + V<sub>P</sub>) C<sub>P</sub>(t) C<sub>P</sub>(t)  $Y(t) = K_i$ X (t) b alakú. Máté: Orvosi képfeldolgozás 7. előadás 16









| $e(t) = \left  \iiint (e^{-2\alpha z} / z^2) R(x, y, z) S^2(x, y) \rho(t - 2z/c) dx dy dz \right $                                       |                                                      |    |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----|--|--|--|--|
| $S^2(x, y) \approx S(x, y)$                                                                                                              |                                                      |    |  |  |  |  |
| Ha p(t) "rövid" (csak kis t esetén ≠ 0), akkor <i>p</i> (t) is rövid, azaz<br>csak t – 2z/c ≈ 0 esetén ≠ 0. Ebben a rövid intervallumban |                                                      |    |  |  |  |  |
| z≈ct/2 és e                                                                                                                              | $-2\alpha z / z^2 \approx e^{-\alpha ct} / (ct/2)^2$ |    |  |  |  |  |
| Attenuation korrekció:                                                                                                                   |                                                      |    |  |  |  |  |
| $e_{c}(t) = g(t) e(t) = (ct/2)^{2} e^{\alpha ct} e(t) =$                                                                                 |                                                      |    |  |  |  |  |
| $e_{c}(t) =   \iiint R(x, y, z) S(x, y) p(t - 2z/c) dx dy dz  $                                                                          |                                                      |    |  |  |  |  |
| Máté: Orvosi képfeldolgozás 7. e                                                                                                         | előadás                                              | 21 |  |  |  |  |















## 3 dimenziós ultrahang vizsgálat

Egy metszeti kép elkészítése után a transducer kibocsátó felülete a metszetre merőleges irányban elmozdul, vagy elfordul. Az így mért adatokat 3 dimenziós tömbbe elhelyezve tetszés szerinti további földolgozást vagy megjelenítést végezhetünk.

A két mechanikus mozgás megvalósítása nehézségekbe ütközik, ezért legalább az egyik mozgást több kristály elektronikus vezérlésével szokták helyettesíteni.

Gyorsan mozgó szervek 3D leképezésénél további probléma az egy kép elkészítéséhez szükséges viszonylag hosszú idő:

> n\*2z<sub>max</sub>/c. n = 200 és z<sub>max</sub> = 15 cm esetén 40 ms. 7. előadás



29



A legújabb ultrahang készülékek már nem hagyományos A scan alapján dolgoznak, hanem egyidejűleg több kristályból több vonalat magába foglaló zónában bocsátanak ki ultrahangot, és a visszavert jelet is több kristállyal veszik fel. A hullámelmélet alapján matematikai módszerek segítségével dolgozzák fel az adatokat, és állapítják meg a zóna minden pontjában a reflexivitás mértékét (zóna szonográfia).

A zónák méretének növelésével, és a párhuzamos feldolgozási lehetőség kihasználásával radikálisan csökkenthető az egy metszet előállításához szükséges idő, ezáltal lehetővé válik olyan gyors mozgást végző szervek 3D vizsgálata, mint a szív.

Máté: Orvosi képfeldolgozás 7. előadás

Máté: Orvosi képfeldolgozás





