
Session F4E 

0-7803-6424-4/00/$10.00 © 2000 IEEE  October 18 - 21, 2000 Kansas City, MO 
30th ASEE/IEEE Frontiers in Education Conference 

F4E-11 

UVI51: A SIMULATION TOOL FOR TEACHING/LEARNING THE 8051 
MICROCONTROLLER 

 

Alfredo del Río1 and Juan José Rodríguez Andina2 

 
 

                                                                 
1 Alfredo del Río, University of Vigo, Dpto. Tecnología Electrónica, Vigo, Spain, ario@uvigo.es 
2 Juan José Rodríguez Andina, University of Vigo, Dpto. Tecnología Electrónica, Spain, juanjo@dte.uvigo.es 

Abstract  Teaching/learning microcontrollers in the 
laboratory has been traditionally carried out using general 
purpose simulators and/or evaluation boards. In-circuit 
emulators are not widely used because their high cost. This 
paper presents UVI51, a software tool developed for 
teaching/learning the 8051 microcontroller in the laboratory 
and/or the classroom. UVI51 includes an assembler, a 
multimicro simulator, a logic analyzer, and an assistant. The 
tool allows to simulate systems consisting of up to 4 
microcontrollers plus a set of external peripherals. Both the 
CPU core and the embedded peripherals of each 
microcontroller are simulated. Everything in UVI51 has 
been designed with the educational perspective in mind. A 
set of windows depict the configuration and behaviour of 
every embedded peripheral. UVI51 is currently being used 
in several courses on microcontrolllers at University of Vigo 
(Spain) and also at the college level. The tool is suitable for 
learning nearly everything about the 8051, ranging from the 
CPU and instruction set basics to complex use of timers, 
interrupts and the serial port. This paper shows the benefits 
of using UVI51 as an alternative to traditional instruction 
tools. 
 
Index Terms  Education, MCS51, microcontrollers, 
simulation. 

INTRODUCTION 

8-bit microcontrollers are widely used for introductory 
courses on this topic mainly because they are simpler and 
easier to describe than 16-bit or 32-bit microcontrollers, and 
also due to their low cost. Among them, Motorola 68HC11, 
Microchip PIC family, and the industry standard 8051 are 
prevalent [1]. 

Even though many simulators are available for the 8051 
family [2][3][4], most of them do not support multimicro 
operation, nor simulate all the embedded peripherals, and 
only a few can simulate external peripherals. In our opinion 
none of them is a CAI-oriented simulator, since they do not 
include features as 8051-specific graphical help windows. 
Furthermore, the most complete one [4] is too expensive for 
many educational environments. These limitations 
recommended the development of a new simulator within 
the universitary scene, providing a free tool to the education 
community. 

 

This paper presents a software tool, called UVI51, 
specifically designed for teaching and learning the 8051 
microcontroller. The current version (5.0) is the result of 
succesive enhancements carried out on early versions [5]. It 
allows to simulate systems consisting of up to 4 
microcontrollers operating concurrently, plus a set of 
interconnected external peripherals. 

UVI51 consists of an assembler, a multimicro simulator 
(the core of the tool), a logic analyzer, and an assistant that 
guides the user through the development process. UVI51 
provides its own assembler, but standard assemblers as [6] 
can also be used. The C language is also supported, but in 
this case a standard compiler, as [7], must be used. 

The structure of the paper derives from our aim of 
highlighting the educational worth of UVI51. Therefore, the 
main components of the tool (assistant, assembler, simulator 
and logic analyzer) are described in the following sections. 
Furthermore, a section is devoted to an application example. 
Finally, the conclusions of the work are presented. 

THE ASSISTANT 

The assistant guides the user through the development 
process which basically consists of the following steps: i) 
System definition; ii) Source code writing; iii) Code 
assembly; iv) Simulation. 

The system to be simulated is first specified by editing a 
system configuration file. This is an ASCII file where the 
user defines every microcontroller indicating their respective 
source file names, clock frequencies, and memory sizes. 
Furthermore, the user can include external peripherals from 
a predefined set. Finally, the user indicates the 
interconnections between the microcontrollers and the 
external peripherals. An example of a system and its 
corresponding configuration file is shown in Figure 1. 

The present version of UVI51 supports the following 
types of external peripherals: i) Pushbuttons; ii) Switches 
(either manually-operated or node-controlled); iii) Light-
Emitting Diodes (LEDs); iv) 7 segment displays; v) LCD 
screens (either serial or standard types as Trident MDLS 
16265). Complex peripherals can usually be simulated using 
an additional microcontroller with a suitable program. 

Both assembler and C language are supported as source 
code, but a standard compiler is needed for the latter. 



Session F4E 

0-7803-6424-4/00/$10.00 © 2000 IEEE  October 18 - 21, 2000 Kansas City, MO 
30th ASEE/IEEE Frontiers in Education Conference 

F4E-12 

Micro 0
myprog

start

1

Vdd

flash

P1.0

P1.1

 
 
 
 
 
 
 

FIGURE. 1 
 SYSTEM BLOCK DIAGRAM AND ITS CORRESPONDING CONFIGURATION 

FILE. 

THE ASSEMBLER 

UVI51 includes an assembler that eliminates the need for a 
third-party assembler. The assembler generates executable 
code directly, in Intel-Hex format; therefore no relocatable 

expressions are accepted. It does not support 
macroinstructions. If some of these features are needed, a 
commercial asembler compatible with Intel´s asm51 can be 
used. 

UVI51 assembler makes use of the same syntax as 
Intel's asm51, with a few exceptions. In addition, conditional 
assembly is supported. Computable expressions can be used 
wherever a numeric value is allowed. 

THE SIMULATOR 

The simulator is the core of UVI51. Its main features are: i) 
Multimicro capability; ii) Embedded and external 
peripherals simulation; iii) Trace into, step over and 
continuous simulation; iv) Unlimited breakpoints; v) 
Additional breakpoint by value; vi) Chronograms 
generation; vii) Graphic user interface; viii) Help windows 
for every embedded peripheral; ix) External peripherals 
window. 

The simulator main window is shown in Figure 2. The 
upper part, called the system window, includes a bar of 
pusbuttons used to control system operation. For example, 
the RESET button is used to reset all the microcontrollers in 
the system. The external peripherals are also shown in this 
area, each type with its own picture. Their connections are 
depicted using node numbers or labels. 

 
FIGURE. 2 

SIMULATOR MAIN WINDOW. 

Umyprog.src 12 256 1024 
P10=2 
P11=3 
Kstart 2 0 1 
Lflash 1 3 2 



Session F4E 

0-7803-6424-4/00/$10.00 © 2000 IEEE  October 18 - 21, 2000 Kansas City, MO 
30th ASEE/IEEE Frontiers in Education Conference 

F4E-13 

The lower part of the main window is called the 
microcontroller window. Even though the tool can simulate 
up to 4 microcontrollers concurrently, only one can be 
displayed at a time. A bar of buttons is used to control the 
simulation of the displayed microcontroller. For example, 
the RESET button is used to reset only the displayed 
microcontroller and the STEP button is used to execute one 
instruction of the displayed microcontroller. The other 
microcontrollers in the system will execute the number of 
instructions needed to keep synchronism. 

All the embedded peripherals are simulated. The 
microcontroller window includes a set of subwindows that 
show the current state of a part of the microcontroller: the 
CPU core, internal and external RAM, timers/counters, etc. 
In addition, a program window is used to show the code that 
is being executed. 

Additional windows depicting further details of each 
embedded peripheral are available. These windows can be 
opened by clicking the corresponding Info buttons. The state 
of the peripherals is shown using a graphical style similar to 
that used in manufacturers' handbooks. This ensures a fast 
recognition by the students. When in single step mode, these 
windows are interactive, so that the user can change control 
bits and see the effects of such changes on the peripheral 
configuration. As an example, the timers/counters graphic 
window is shown in Figure 3. 

 

 
 

FIGURE. 3 
T IMERS/COUNTERS GRAPHIC WINDOW. 

 
Special attention has been paid to achieve a very 

realistic simulation of the serial port operation, but only 
modes 1 and 3 can be simulated in the current version of the 
tool. Serial port simulation is performed at logic level in the 
TxD and RxD signals, with the real timing given by the baud 
rate that the timer 1 provides. In this way, a simulation of a 
serial port connected to a software UART can be performed. 
The 8051 serial port multiprocessor mode can also be 
simulated. The serial port graphic window, shown in Figure 
4, indicates the current mode, baud rate, and the transmitting 
and receiving state. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE. 4 
SERIAL PORT GRAPHIC WINDOW. 

THE LOGIC ANALYZER 

If an external peripheral of type logic analyzer has been 
defined in the system configuration file, the simulator writes, 
when running, the chronograms of every node in the system 
to a file. Once the simulation is terminated, the user can 
inspect the chronograms by invoking the logic analyzer from 
the assistant. 

All the nodes in the system are available for inspection. 
Chronograms can also be shown in the form of buses. Time 
scales and a time cursor are included to allow time 
measurements. The cursor can also be used as a reference to 
align chronograms. Zoom in / zoom out and find pattern  
utilities are also available. Figure 5 shows the logic analyzer 
window. 

FIGURE. 5 
LOGIC ANALYZER WINDOW. 

AN APPLICATION EXAMPLE 

This section describes an intermediate level example to be 
developed by the students. This example is specified in the 
following terms. 



Session F4E 

0-7803-6424-4/00/$10.00 © 2000 IEEE  October 18 - 21, 2000 Kansas City, MO 
30th ASEE/IEEE Frontiers in Education Conference 

F4E-14 

“Design a system consisting of two 8051 
microcontrollers interconnected via an asynchronous serial 
link, intended to generate pulse bursts. The first 
microcontroller, called terminal must be connected to a 12 
key matrix keyboard and to a standard 2 lines by 16 
characters LCD screen. When terminal starts from reset, it 
has to show in the LCD screen the message “Pulses?” and to 
wait for the user to introduce from the keyboard a number 
between 1 and 127. Then, terminal has to show the message 
“Period?” so that the user can introduce pulse duration in 
tenths of miliseconds in the range 1 to 127. When both 
parameters have been introduced, terminal has to send their 
values to the second microcontroller, called pulse generator. 

Pulse generator must generate a pulse burst in response 
to each message received via the serial link. The numb er of 
pulses and their duration must agree with the received 
parameters. The idle level of the output pulses must be high. 
The time between consecutive pulses of a same burst must 
be equal to pulse duration. Moreover, pulse generator must 
answer either with an acknowledge (ACK) or not 
acknowledge (NAK) message to terminal before the burst 
starts. The NAK message indicates a bad format or a number 
out of range. 

Both microcontrollers must operate at 12 MHz. The 
serial link must operate at 10417 bits per second with an 8-
bit data format and without a parity bit. Messages are to be 
sent as ascii codes.” 

The block diagram in Figure 6 shows the system 
hardware structure. The matrix keyboard is connected to the 

terminal P1 port. The LCD screen is connected using a 4-bit 
data bus and the 3 standard control signals RS, RW and E. 

The terminal TxD and RxD pins are connected to the 
pulse generator RxD and TxD pins. In a real application 
these connections could be made through RS232C buffers, 
an ASK radio link or any other suitable channel. In order to 
test system response to an eventual link fail, the simulation 
must provide a way to open the link between the terminal 
TxD pin and the pulse generator RxD pin. This is the reason 
why the BRK switch is included. 

The students begin their work writing the suitable 
configuration file. 

The system configuration file asigns a program called 
terminal.src to the first microcontroller. The second one is 
assigned a program called pulsegen.src. All the external 
peripherals are defined: Twelve pushbuttons (keyboard), one 
LCD screen, three LEDs, and a switch. The external 
peripherals are shown by the simulator as depicted in Figure 
7. 

The next step is to write the source code file for each 
microcontroller. The best option is to start writing the code 
for terminal, and debug it until the right signals are obtained 
in its TxD pin. The students can verify all the signals using 
the logic analyzer, as shown in Figure 8. These include 
keyboard scan signals and the LCD screen interface. 

Once terminal is operating properly, the students write 
the source code file called pulsegen.src. This program can be 
easily debugged using the keyboard conected to terminal to 
send the convenient requests. 
 

 
 

1 2 3
4 5 6
7 8 9
<- 0 Ent

Vdd

LCD SCREEN

BRK

terminal pulsegen

P3.1
P3.0 P3.1

P3.0

P1.0
P1.1
P1.2
P1.3
P1.6
P1.5
P1.4

P1.0

P3.4
P3.5
P3.6

RS
RW
E

P2.7
P2.6
P2.5
P2.4

DB7
DB6
DB5
DB4
TX0
RX0

RX1

1
Vdd

1
VddTX0

RX1

1
Vdd

PULSE

Micro 0 Micro 1

KEYBOARD

 
 

FIGURE. 6 
BLOCK DIAGRAM FOR THE PROPOSED EXAMPLE. 

 
 



Session F4E 

0-7803-6424-4/00/$10.00 © 2000 IEEE  October 18 - 21, 2000 Kansas City, MO 
30th ASEE/IEEE Frontiers in Education Conference 

F4E-15 

 
FIGURE. 7 

SIMULATOR PERIPHERALS WINDOW  FOR THE PROPOSED EXAMPLE. 

 
Finally, the switch placed between terminal’s TxD and 

pulse generator’s RxD can be left open before a request is 
sent by terminal. Since pulse generator does not receive any 
request, it does not generate any pulse and does not answer 
to terminal. Terminal must detect this situation as a time-out 
and show a suitable message in the LCD screen. 

Once the whole system is operative, students can 
introduce new specifications or refinements in order to learn 
more about keyborad scanning, LCD screen control, serial 
links, use of timers, serial ports, interrupts, etc. 

CONCLUSION 

A software tool for teaching/learning the 8051 
microcontroller, called UVI51, has been presented. It can be 

used in the classroom when describing the microcontroller 
architecture, the instruction set or the embedded peripherals 
operation, and also in the laboratory to write and test 
application programs. A copy of UVI51 can be delivered to 
the students, so they can make some home-work before they 
enter the laboratory. 

UVI51 is being used in introductory courses on 
microcontrollers. Students instruction is complemented with 
the use of a low-cost in-circuit emulator, based on the 
downloadable flash versions of the 8051 family [8]. The user 
can request the download process from the UVI51 assistant. 
The results of the application of our approach to education 
have been excellent both in terms of student motivation and 
scores. 

 

 
 

FIGURE. 8 
LOGIC ANALYZER CHRONOGRAMS. 



Session F4E 

0-7803-6424-4/00/$10.00 © 2000 IEEE  October 18 - 21, 2000 Kansas City, MO 
30th ASEE/IEEE Frontiers in Education Conference 

F4E-16 

The simulator operates at instruction level, but our work 
is being oriented to develope a new version operating at 
machine-cycle or clock-cycle level. This will aid in two 
aditional improvements, at the expense of decreasing 
performance: i) Timer 2 and new serial port modes 
simulation for the 8052 microcontroller; ii) External bus 
detailed simulation. Other possible improvements include 
undo and save/load state capabilities. 

The current version of UVI51 runs under MSDOS and 
is available, free, in the web site http://www.dte.uvigo.es. In 
the near future, versions running under Microsoft Windows 
and LINUX will be developed. 

REFERENCES 

[1] Nunnally, C.E. , "Teaching Microcontrollers," Proc. of the 26th  
Frontiers in Education Annual Conference, Vol 1, Nov. 1996, pp. 
434-436.  

[2] Avocet Systems, AVS High-Level Simulator/Debugger, 
http://www.avocetsystems.com/. 

[3] Keil Software, dScope Simulator/Debugger, http://www.keil.com/. 

[4] Virtual Micro Design, Universal Microprocessor Program Simulator 
(UMPS), http://www.vmdesign.com/. 

[5] Rodriguez Andina, J.J., del Río, A., "Aplicación de un simulador al 

desarrollo de prácticas con microcontroladores," Proc. of the 2nd 
Conference on Tecnologías Aplicadas a la Enseñanza de la 
Electrónica, Vol. III, Sept. 1996, pp. 42-46 (in Spanish).  

[6] Intel Corp., MCS-51 Macro Assembler Manual (V2.2). 1986. 

[7] IAR Systems, Micro Series 8051 C-Compiler Manual (V4.10A/DOS). 
1991. 

[8] Atmel Corporation, 8051 Flash Microcontroller Data Book, Dec. 
1997. http://www.atmel.com/atmel/products/prod20.htm. 

 


