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Abstract

It is important to focus on security aspects during the

development cycle to deliver reliable software. However,

locating security faults in complex systems is difficult and

there are only a few effective automatic tools available to

help developers. In this paper we present an approach to

help developers locate vulnerabilities by marking parts of

the source code that involve user input. We focus on input-

related code, since an attacker can usually take advantage

of vulnerabilities by passing malformed input to the appli-

cation. The main contributions of this work are two metrics

to help locate faults during a code review, and algorithms to

locate buffer overflow and format string vulnerabilities in C

source code. We implemented our approach as a plugin to

the Grammatech CodeSurfer tool. We tested and validated

our technique on open source projects and we found faults

in software that includes Pidgin and cyrus-imapd.

1. Introduction

As IT solutions become more common, the security of

software systems becomes an increasingly important con-

sideration. Companies are paying close attention to soft-

ware security, as evidenced by their increased focus on se-

curity aspects during the development cycle. For instance,

Microsoft has published its Security Development Lifecycle

standard, which is a Microsoft-wide initiative and manda-

tory policy since 2004 [25]. One important activity of SDL,

and many other software development process models, is

the use of static code-scanning tools during the implemen-

tation phase [25, 9]. These code-scanning tools perform a

static analysis of the source code, without executing the pro-

grams built from the code, which is the domain of dynamic

analysis. Locating security faults in software is still difficult

to do even with the help of static analyzers. Moreover, there

are only few effective automatic tools available that can help

developers locate security faults. Even if an effective code-

scanning tool is available, it is difficult to locate security

faults during a code review: in general, a good code review

can uncover around 50% of the security problems [9].

This paper presents an approach to helping developers

locate faults that are related to security by identifying parts

of the source code that involve user input. The focus is on

the input-related parts of the source code, since attackers

commonly exploit security vulnerabilities by passing mal-

formed input data to applications. Mishandling input data

can be a source of common security faults in many lan-

guages that support pointer arithmetic such as C and C++.

Examples of security faults are buffer overflows, format

string vulnerabilities, and integer overflows [19]. The best

known and, arguably, the most dangerous security faults are

caused by buffer overflows, which are described in an arti-

cle published in 1996 [1], and appear in the literature as far

back as 1988 [12]. This type of vulnerability is still com-

mon in software systems and is difficult to locate either au-

tomatically or by a manual code review. Recent research

has shown that code defects related to buffer overflows are

still frequent in open source projects [10].

The main contributions of this paper are:

• two metrics (input coverage, input distance), which

can help developers during a code review to locate

functions that likely contain security faults,

• two algorithms, one published previously [26] and a

new algorithm we created, to locate buffer overflow

and format string vulnerabilities in C source code,

• a demonstration of the effectiveness of these metrics

and algorithms as they are applied to open source soft-

ware projects.

Our technique is implemented as a plugin to the

CodeSurfer product of GrammaTech, Inc. The technique

was validated on open source projects and successfully

identified several faults in software including in Pidgin and

Cyrus Imapd.



The remainder of this paper is organized as follows: Sec-

tion 2 is an overview of our analysis technique. Section 3

describes the metrics and algorithms underlying our tech-

nique. The results of applying our technique on security-

critical open source projects are presented in Section 4. Sec-

tion 5 presents related work. Lastly, the paper concludes

and outlines plans for future work in Section 6.

2. Overview

This section presents an overview of the technique em-

ployed for a static security analysis based on input-related

faults.

2.1. Technique

Figure 1. Illustration of input-related security
faults. Faults related to user input are marked with

“bombs” indicating vulnerabilities.

The main idea behind our approach is to focus on the

input-related parts of the source code, since an attacker can

usually take advantage of a security vulnerability by passing

malformed input data to the application. If this data is not

handled correctly it can cause unexpected behavior while

the program is running. The path which the data travels

through can be tracked using dataflow analysis [20] to de-

termine the parts of the source code that involve user input.

Software faults, can appear anywhere in the source code,

but if a fault is somewhere along the path of input data it

can act as a “land mine” of a security vulnerability. (An

illustration can be seen on Figure 1).

The main steps of our approach (Figure 2) are the fol-

lowing:

1. find locations in the source code where data is read

using a system call of an I/O operation. These calls are

marked as input points,

2. get the set of program points involved in user input,

3. get a list of dangerous functions using metrics,

4. perform automatic fault detection to find vulnerabili-

ties.

2.1.1. Locate I/O points. Input data can come from many

different sources, not only from the standard input. It can

come from input character devices, Internet sockets, files

in the file system, et cetera. In general, input points are

statements used to read input data from an external source

by calling a system function to perform an I/O operation.

The input data is often a string that is stored in a buffer that

has been allocated on the stack or the heap.

2.1.2. Extract input-related program points. After lo-

cating the input points in the source code, it is possible to

determine how the input data travels from one statement to

another statement. This can be done using dataflow analy-

sis, a technique for gathering information about the possi-

ble set of values calculated at various points in a program.

Once we have the path for all input points, we can deter-

mine which parts of the source code involve user input by

computing the union of these paths.

To perform dataflow analysis on C/C++ code we use the

CodeSurfer tool of GrammaTech, Inc.

2.1.3. Get the list of dangerous functions. We can obtain

a list of functions that warrant an increased scrutiny by de-

termining which parts of the source code involve user input.

We call the list of such functions dangerous functions.

To give developers more information about a dangerous

function we measure its coverage as the percentage of its

source code statements that are tainted by user input. We

also measure the distance in the dataflow graph between the

entry point of the function and the origin of the input data

(i.e., the statement where input occurs). These metrics are

used to rank the functions in order to identify the functions

that are the most tainted by user input.

2.1.4. Automatic fault detection. Automatic fault de-

tection is performed by our technique to detect security

problems in dangerous functions. These fault detections

are based on algorithms that are applied to the code’s cor-

responding data dependence graph and can point to buffer

overflow or format string vulnerabilities.

2.2. CodeSurfer

Our technique is implemented as a CodeSurfer1 plugin.

CodeSurfer is a powerful static-analysis tool for C/C++ pro-

grams. This tool was chosen because it is able to cre-

ate a wide range of intermediate representations [2] for a

1http://www.grammatech.com



Figure 2. The overview of our system.

given program including: Abstract Syntax Tree (AST), Call

Graph, Interprocedural Control-Flow Graph (CFG), Points-

to Graph, set of variables used and modified for each func-

tion, Control Dependence Graph, and Data Dependence

Graph. The CodeSurfer tool can be extended with plugins

using its internal scripting language or its C/C++ API.

The most important feature of CodeSurfer, for the pur-

poses of this work, is that, after a whole-program analysis

is performed, CodeSurfer can build a precise system depen-

dence graph [18] due to its pointer-analysis [3] capability.

2.3. System dependence graph

Depending on the the application there are different def-

initions for program dependence graph (PDG) [18, 14, 22].

PDG is a directed graph representation (GP ) of a program

(P ), where vertices represent program points (e.g., assign-

ment statements, call-sites, variables, control predicates)

that occur in P and edges represent different kinds of con-

trol or data dependencies. There is a data dependence edge

between two vertices if the first program point may assign

a value to a variable that may be used by the second point.

There is a control dependence edge between two vertices

if the result of executing the first program point controls

whether the second point will be executed or not.

A system dependence graph (SDG) [18] is the inter-

procedural extension of the PDG. It consists of intercon-

nected PDGs (one per procedure in the program) and ex-

tends the control and data dependencies with interprocedu-

ral dependencies. An interprocedural control-dependence

edge connects procedure call sites to the entry points of the

called procedure and an interprocedural data-dependence

edge represents the flow of data between actual parame-

ters and formal parameters (and return values). Globals

and other non-local variables such as file statics, and vari-

ables accessed indirectly through pointers are treated as ad-

ditional parameters to procedures.

A system dependence graph can be used for many pur-

poses such as code optimization [14], reverse engineering,

program testing [6], program slicing [18], software quality

assurance [17], and software safety analysis [29].

This work employs SDG, and the extracted dataflow in-

formation stored in this representation, to determine the

paths on which user-related input travels from its input

point.

3. Technique

This section describes our technique and presents details

about how metrics and algorithms are used to locate buffer

overflow and format string vulnerabilities.

3.1. Locating input points

Input points are statements in the source code that per-

form I/O operations to read data from standard input, net-

work sockets, or files. To locate these statements we look

for invocations of I/O functions that are declared in the

header files of the C standard library. Examples of these

function calls are: fscanf, scanf, getc, gets, and

read. We handle 28 function calls as input functions

declared in header files such as: stdio.h, stdlib.h,

unistd.h, and pwd.h.

The argc and argv parameters of a program’s main

function are also considered input points, since these pa-

rameters relate to user input.

If an input point is a function call, its call-site vertex

usually does not have any forward data dependencies in the

SDG, since the returned value of the function has a separate

node because of interprocedural dependencies. To handle

this, in our representation, each input point has a generate



i n t add ( i n t a , i n t b ) {
re turn a + b ;

}

void main ( ) {
i n t sum , i ;

sum = 0 ;

i = 1 ;

whi l e ( i <11) {
sum = add ( sum , i ) ;

i = add ( i , 1 ) ;

}
p r i n t f ( ”%d\n” , sum ) ;

p r i n t f ( ”%d\n” , i ) ;

}

Figure 3. CodeSurfer’s System Dependence Graph of an example source code [4]. The SDG represents

the source code on the right side. Nodes are program points such as call-sites, assignments, return statements, etc. and

edges are inter/intra procedural data/control dependencies.

set containing the nodes that are not connected to the in-

put call-site with data dependence edges, but are directly

affected by the I/O operation. For instance, a generate set

of a scanf call contains the parameter variables of the call

site. Generate sets can be used to track the points in the

SDG where the content of an input-related buffer is copied

into another buffer with standard library functions such as

strcpy or strcat. Since standard library functions are

not defined in the user’s program code, these functions re-

quire special attention for static analyzers. CodeSurfer of-

fers a sophisticated library model to handle common used

library functions, however to keep our algorithms general

we follow these operations manually.

3.2. Metrics

3.2.1. Input coverage. Input coverage is used to describe

the percentage of statements in a function that are tainted

by user input. The formal definition is the following:

Coverage(fj) =

|
n
⋃

i=1

LIO(pi, fj)|

|L(fj)|

where pi as a node of the SDG is one of the n input points,

fj is a function of total m functions, LIO(pi, fj) is the set
of statements in fj along the forward data dependence chain

of pi input point and L(fj) is the set of all statements in fj .

The definition can be extended to cover the full source

code of a program:

Coverage =

m
∑

j=1

(

|
n
⋃

i=1

LIO(pi, fj)|

)

m
∑

j=1

|L(fj)|

It is important to notice that CodeSurfer’s SDG contains

many additional nodes (like pseudo variables because of

global variables, or splitted statements because of AST nor-

malization). Additional nodes may be particularly relevant

in case of global variables as described in [7] where the au-

thors state that number of nodes per line of code may vary

dramatically because of pseudo variables. Therefore, using

the conventional definition of statement coverage would re-

sult in false measurements, so instead of calculating state-

ment coverage, we measure line coverage. The definition

of line coverage is the same as that for statement coverage

except that LIO(pi, fj) stands for the set of lines containing
statements in fj along the path of pi input point and L(fj)
stands for the lines of fj .

3.2.2. Input distance. While input data travels from state-

ment to statement in the control or data flow graphs, the data

might be modified and reassigned to new variables. If input

data or a variable is modified many times after reading it,

developers may handle it less carefully or they may even

forget the origin of the actual data. Using dataflow anal-

ysis it is possible to tell how many times the input data is

modified or gets re-assigned to another variable. Thus, it

is possible to compute the distance between an input point



and the entry point of a function along the data dependence

chains of the input in the SDG. The formal definition is:

Distance(pi, fj): number of SDG nodes on the shortest

path (for only data dependence edges) from pi input point

to the entry point of fj function.

Input data may travel on different paths from its input

point to a destination point. Selection statements and loops

may cause branches along the path of the input data un-

dergoing scrutiny. Inside a loop statement the variable that

stores the input data may be modified several times and

static analyzers cannot determine how many times the loop

body will be executed at runtime. To eliminate the effect

of loops and branches, we measure the length only for the

shortest path in the SDG. An illustration can be seen in Fig-

ure 4.

Figure 4. Illustration of the distance metric.
The graph is a portion of an SDG showing only data

dependence edges. p1 is an input point in function f1

and p2 is an input point in f2. Distance(p1, f3) = 3,
Distance(p2, f3) = 2. Inside function f2 there is a

loop, but for calculating distance we count nodes only

along the shortest path

This metric can be used to answer two questions:

⇒ How far has a datum travelled from its original input

point?

⇐ From how far does an input-related function get its in-

put?

3.3. Fault detection

Using our metrics we can determine a software system’s

critical (dangerous) functions. These functions, which must

be handled more carefully during code inspection and test-

ing, are more likely to contain faults that threaten a system’s

reliability or security. Once these functions are determined,

we apply automatic fault detection algorithms to them.

3.3.1. Buffer overflow detection with path sensitivity

and pattern matching. Livshits et al. [26] published a

technique to locate buffer overflow and format string vul-

nerabilities in C programs by tracking pointers with path

and context sensitivity. The novel approach in their method

was their precise and fast pointer analysis, which made it

possible to analyze large projects (the largest project they

analyzed was pcre with about 13,000 LOC) quickly. With

this technique they could track the path of input data and

warn when the data was written into a buffer with a stati-

cally declared size.

Our technique implements a similar fault detection

method that uses the SDG extracted from the source code to

track the path of input data and, by simple pattern matching,

locatesstrcpy-kind functions along the paths that allocate

buffers on the stack. These functions, such as strcpy,

strcat and sprintf write the contents of the input data

into a buffer without first performing bounds checking.

3.3.2. Format string vulnerability detection. The

recognition of format string vulnerabilities can be similar

to buffer overflow faults even if the two different types

of vulnerabilities have different technical backgrounds. In

case of format string fault a mishandled buffer (related to

user input) is used as format string of a function from the

printf family. If an attacker can insert special format

characters into the format string of a vulnerable function,

he may even execute malicious code during program exe-

cution. The same technique used to locate buffer overrun

errors can be used to locate format string faults. As op-

posed to looking for function calls of the strcpy family,

our technique looks for call-sites with system functions of

the printf family. If the format argument of such a func-

tion is related to the user input, it is a potential format string

fault, unless the content of the variable was checked.

3.3.3. Buffer overflow detection with taintedness check-

ing. After implementing our version of the buffer overflow

detection technique, which was based on the algorithm de-

scribed in [26] (Section 3.3.1), we realized that many of the

reported faults were false positives. The most common rea-

son for these false positives was that, before the problematic

statement there were conditions that checked the size of the

buffer.

To eliminate these false positives from set of reported

warnings, we extended the algorithm with a technique usu-

ally referred as taint checking [21] or taintedness detec-

tion [32]. The main idea of this technique is to mark the

data that may cause errors as tainted and follow its state

during execution or in the program flow.

For instance, suppose that we mark the variables or

buffers that store data from a user’s input as ‘tainted’.

Whenever the value of the variables or buffers are assigned



to a new variable or copied to a new buffer, the new variable

or buffer is also marked tainted. Writing the data from a

tainted buffer to another buffer without bounds checking is a

dangerous operation, which generates a warning. However,

if there is a selection statement (e.g. an if statement) which

checks the size of the tainted buffer before it is copied to a

new buffer, this selection statement untaints the copy opera-

tion and the new buffer. Tracking these selection statements

which untaint further variables and string operations can be

realised using control dependcies of the SDG in addition to

data depencies.

Algorithm 1 Buffer overflow detection with taintedness

checking. (Described in Section 3.3.3)

procedure DetectBufferOverflow(IP, V )
Input: IP set of input points

Output: V set of potential buffer overflow statements

1: V ← ∅
2: InputRelated ← GetDataDeps(IP ) {Get the set of input

related vertices}
3: StrLens ← StrLenCalls(IP ) {Get the set of strlen calls

along the SDG paths starting from points in IP and following

forward data dependencies}
4: StrLenVars ← GetDirectDataDeps (StrLens) {Get the

variables directly depending on the return expressions of calls

in StrLens }
5: NextNodes ← IP {Ordered list of next nodes to visit}
6: AlreadyVisited ← ∅ {Start a preorder traversal on SDG fol-

lowing forward control dependencies}
7: while not Empty(NextNodes) do
8: n← First(NextNodes)
9: Remove(NextNodes , n)
10: if n ∈ AlreadyVisited then

11: {this node was already visited, simply remove it from

NextNodes}
12: else

13: if IsControlStatement (n) AND
UsesVarIn(StrLenVars) AND
n ∈ InputRelated then

14: {this node dissolves tainted state of data, skip its sub-
tree}

15: else

16: if IsStrcpyCall (n) AND n ∈ InputRelated then

17: V ← V
S

n {This is a potential Buffer Over-

flow!}
18: end if

19: PutFirst(NextNodes , GetDirectControlDeps(n)
{Get the next nodes in SDG following forward

control dependencies}
20: end if

21: AlreadyVisited ← AlreadyVisited
S

n

22: end if

23: end while

Algorithm 1 gives a formal description of our algorithm,

which works as follows: We first get the set of input-related

vertices from the SDG and then traverse over the data de-

pendence edges to locate strlen calls after the input state-

ments. A strlen call is usually not used directly in a con-

dition but its return value is stored in a variable that is used

later. To handle these cases, we get the list of variables that

depend on the return value of the strlen calls and use

this set of vertices for taintedness checking. After calcu-

lating these sets, we start a pre-order traversal to walk over

the control dependencies of the input statements. When we

visit a control statement (this is usually an if statement,

but it can be any kind of selection statement) and the condi-

tion of the control statement uses a variable that depends

on a strlen call, we skip walking over the subtree of

this control statement. However, when we visit a call site

of a strcpy-kind function, and this function was already

marked as input-related, then we mark this node as a place

of potential buffer overflow.

4. Results

In this section we present results of our metrics and algo-

rithms on open source software. We analyzed 12 security-

critical products and we scanned a total 811,072 lines of C

source code. The largest project we analyzed was pidgin

with 229,825 lines of code. The full list of projects can be

seen in Table 1.

The analyzed projects are security critical in the sense

that they are common targets of attackers, since most of the

projects are ftp, imap or irc daemons. These daemons usu-

ally have a user management and sometimes even anony-

mous users can log in and send input data remotely to the

daemon running on a server. If the daemon has a security

vulnerability, a malicious user may easily get access to the

server.

Our buffer overflow detection algorithm extended with

taintedness checking produced 10 warnings for the analyzed

systems (8 times for Cyrus Imapd, 1 for Eggdrop and 1

for Pidgin) and 6 of these warnings belonged to the same

statement in a function along different input paths of Cyrus

Imapd. We have manually evaluated all of these warnings

and we have found 3 warnings representing real buffer over-

flow faults: 2 faults in the code of Cyrus Imapd and another

one in Pidgin. These faults were not critical security threats

as they were not exploitable by malicious remote users, but

they could cause unexpected behaviour during program ex-

ecution. In addition to the warnings of deployed algorithms

we used our metrics for further inspections as we describe

it later in a case study (Section 4.1).

We note that because these open source projects are com-

mon targets of attacks they are also often the subjects of

security research and analyses. As a result, common mis-

takes and errors are discovered as soon as a new version is



project description LOC

pidgin-2.4.1 chat client 229825

cyrus-imapd-2.3.12p2 imap daemon 170875

irssi-0.8.12 irc client 71253

openssh-5.0p1 ssh daemon/cl. 62251

Unreal3.2.7 irc daemon 59196

eggdrop1.6.19 irc robot 58468

ircd-hybrid-7.2.3 irc daemon 53427

proftpd-1.3.2rc1 ftp daemon 39122

wzdftp-0.8.3 ftp daemon 34897

pure-ftpd-1.0.21 ftp daemon 14798

vsftpd-2.0.6 ftp daemon 12378

bftpd ftp daemon 4582

Table 1. List of analyzed open source
projects.

released. Widely used tools such as hybrid ircd or proftpd

are also well tested. These projects are good subjects to

locate vulnerabilities that are hard to find for static analyz-

ers because the new vulnerabilities detected in this software

are faults that were probably not reported by other analysis

tools.

4.1. Pidgin Case Study

In this case study we detail the steps of our analysis (met-

rics, and fault detection) and demonstrate the effectiveness

of our approach by applying our technique to a selected

open source software, Pidgin.

4.1.1. Overview of Pidgin and the analyzer system.

From the projects listed in Table 1 we have chosen Pidgin

as the subject of a case study because of its size and popu-

larity. Pidgin is the largest project we analyzed with 7,173

functions and 229,825 lines of C source code. CodeSurfer

requires that it compiles the full source code before it an-

alyzes it so it can build a proper ASG of the full project.

We compiled Pidgin with the default configure parameters

and it took CodeSurfer and GCC 31 minutes to compile and

analyze the source code of Pidgin. In addition to this time,

our plugin required another 1 minute to compute the met-

rics and perform fault detections. Compiling Pidgin simply

with GCC using the same configuration options took around

8 minutes for the same system. Our analysis was conducted

on an Intel Dual Xeon 2.8Ghz system with 3G memory and

Ubuntu 8.04 (Hardy Heron) installed on it. CodeSurfer’s

settings for the analysis were the default settings, but we

used -cfg-edges both and -basic-blocks yes

to have additional detailed control flow information for fur-

ther manual inspection.

4.1.2. Input points. In Pidgin we have found 99 in-

put points in total (Table 2). Most of these are read calls

used to read a buffer from a file descriptor, but there are

many fread and fgets functions as well. We did not find

dangerous input functions like gets or scanf(‘‘%s’’,

str).

name occurrences

read() 55

fread() 12

fgets() 10

gg read() 9

gethostname() 6

getpwuid() 2

fscanf() 1

getenv() 1

getpass() 1

char *argv[] 1

int argc 1

Table 2. Input points in Pidgin. First column is

the name of input statement and the second column

shows the number of occurrences of the actual state-

ment. (gg read() is an internal function to read

data from SSL sockets.)

4.1.3. Metrics. The total input coverage of the source code

is 10.56%while the mean value of the input coverage for all

functions is 9.67%. The function with the highest coverage

has 84.62% input coverage while 2,728 functions involve

user input. The list of functions with top 10 coverage values

are shown in Table 3.

After manual inspection we noticed that most of these

functions were used to clean up memory after using the

input related buffers (their naming conventions show this:

* free, * destroy) and we did not find faults in these

functions. However, we note that besides the top functions

there are 379 functions with at least 50% coverage and only

65 of them have more than 20 lines of code. We did not

inspected all of these functions, but we noticed that with

our technique we could lower the number of functions that

required inspection during a code review to a small value.

The longest distance an input travels from its input point

through the dataflow is 100 vertices, which is high com-

pared to the other analyzed projects (the average value of

longest distances for all analyzed projects was 44.08 and 9

projects of 12 were below 50). In this particular case, the

input statement was a fgets system call that read a buffer

with a limited size from an input file. Along the path of

the same input there is a total of 365 functions involved.

This distance is high even inside the project itself, as the



function lines coverage

yahoo roomlist destroy 12 83.33

aim info free 13 84.62

s5 sendconnect 22 77.27

purple ntlm gen type1 35 77.14

gtk imhtml is tag 91 76.92

jabber buddy resource free 25 72.00

peer oft checksum destroy 8 75.00

qq get conn info 12 75.00

copy field 8 75.00

qq group free 8 75.00

Table 3. List of top 10 input coverage values
of functions in Pidgin.

average of longest distances for different input points (aver-

age of max{Distance(pi, f1), . . . ,Distance(pi, fn)} val-

ues for all pi) is only 12.98 in Pidgin.

There is another interesting top value in Pidgin related

to the function that is involved in input data of the most in-

put points (it can be calculated by counting pi points with

Distance(pi, fj) > 0 values for all fj functions and tak-

ing the maximum of these values). In Pidgin we found a

function that works with input data coming from 31 differ-

ent input points in the source code. This function is called

gg debug and is used for internal debugging purposes,

which explains the high number of related input points since

the function is called with string parameters in many differ-

ent contexts.

4.1.4. Fault detection. We analyzed Pid-

gin with the format string detection (Section 3.3.2)

and the buffer overflow detection with taintedness

checking algorithms (Section 3.3.3). The evalu-

ated algorithms produced only one warning on file

libpurple/protocols/zephyr/ZVariables.c

for a strcpy function call. After a manual inspection

we found that this call is a fault that is related to a buffer

overflow. The fault is detailed in Figure 5.

In the source code snippet in Figure 5 our fault detection

produced a warning for the strcpy call in line 136 of func-

tion get localvarfile. This function copies the con-

tent of the buffer pwd->pw dir into the destination buffer

pointed by bfr without performing bounds checking. bfr

is a pointer parameter of this function, but when the function

is called from ZGetVariable, bfr points to varfile

which is a statically allocated string buffer with maximum

of 128 characters (line 28). The content of pwd->pw dir

is set in line 132, and it contains the name of the home di-

rectory of the current user. If the length of this directory

name exceeds 128 characters, the strcpy call produces a

25 : char ∗ZGe tVa r i a b l e ( v a r )

26 : char ∗va r ;
27 : {
28 : char v a r f i l e [ 1 2 8 ] , ∗ r e t ;

2 9 :

30 : i f ( g e t l o c a l v a r f i l e ( v a r f i l e ) )

31 : re turn ( ( char ∗ ) 0 ) ;
. . .

4 2 : }
. . .

114 : s t a t i c i n t g e t l o c a l v a r f i l e ( b f r )

115 : char ∗ b f r ;

116 : {
117 : cons t char ∗ e n v p t r ;
118 : # i f n d e f WIN32

119 : s t r u c t passwd ∗pwd ;
120 : e n v p t r = p u r p l e h ome d i r ( ) ;

121 : # e l s e

. . .

127 : # e n d i f

128 : i f ( e n v p t r )

129 : ( vo id ) s t r c p y ( b f r , e n v p t r ) ;

130 : e l s e {
131 : # i f n d e f WIN32

132 : i f ( ! ( pwd = ge tpwuid ( ( i n t ) g e t u i d ( ) ) ) ) {
133 : f p r i n t f ( s t d e r r , ” Zephyr . . . . ” ) ;

134 : re turn ( 1 ) ;

135 : }
136 : ( vo id ) s t r c p y ( b f r , pwd−>pw d i r ) ;

137 : # e n d i f

138 : }
. . .

143 : }

Figure 5. A buffer overflow fault in Pidgin.

Vulnerable strcpy is in line 136 of file libpur-

ple/protocols/zephyr/ZVariables.c

segmentation fault.

5. Related Work

Security analysis is an important area in research. Many

static analysis tools appeared recently to help companies

develop more reliable and safe systems by automating test-

ing, code review, and source code auditing processes dur-

ing the development cycle. There are different solutions

for different languages like CodeSonar tool of GrammaT-

ech and PCLint2 for C/C++, CheckStyle3 or PMD4 for Java

or FXCop developed by Microsoft for C# and there are

multi front-end solutions like Columbus developed by Fron-

tEndART Ltd. Many of these tools are able to find certain

rule violations and they can show potential faults to devel-

opers, but only some of them are able to locate security

errors. Chess et al. published a brief overview of secu-

rity analysis tools comparing their benefits in a paper [8]

and Tevis et al. published a similar comparison of security

tools [30].

2http://www.gimpel.com/
3http://checkstyle.sourceforge.net/
4http://pmd.sourceforge.net/



Since Aleph1 published his exploiting technique [1]

against buffer overflow vulnerabilities, researchers pub-

lished many methods to detect these kind of vulnerabili-

ties. Most of these approaches work with dynamic bounds

checking techniques [27, 23, 33, 11]. Static techniques

were also published based on integer-range analysis [31],

annotation-assisted static analysis technique [13] or on

pointer analysis techniques [26, 5]. However tests and com-

parisons of these techniques and their related tools show

that it is still hard to locate these kind of errors and usu-

ally these techniques still have many false positive warn-

ings [33]. A comparison of available exploiting, defend-

ing and detecting techniques was published by Lhee et al.

in [24].

Focusing on user-related input is usually an important

idea behind static security analyzers and it is also common

to work with a graph representation that can be used to

track control and data dependcies. Scholz et al. describe

an approach in [28] to identify security vulnerabilities via

user-input dependence analysis. In their technique theymap

user-input dependency test to a graph reachability problem

which can be solved with simple graph traversal algorithms.

Hammer et al. presents another notable technique in [15]

that is closely related to our work since they perform se-

curity analysis based on PDGs. Their work is about infor-

mation flow control, which is a technique for discovering

security leaks in software. This technique is closely related

to tainted variable analysis.

Our approach uses an input coverage metric to show de-

velopers which functions involve user input. Using cover-

age metrics is common in testing and there are tools that can

measure this value at run time. However our approach com-

putes this metric statically from the SDG of the program.

Our coverage metric can be also described as a coupling

metric, which measures the coupling of functions to the in-

put variables in the source code. A similar idea has been

presented by Harman et al. [16], where the authors pro-

pose a coupling metric to measure how information flows

between functions.

6. Conclusions and Future Work

Locating security faults in complex systems is difficult

and there are only few effective automatic tools available

to help developers. In this paper we presented an approach

to automatically locate input-related security faults (buffer

overflow and format string vulnerabilities) and help devel-

opers locate security vulnerabilities by marking parts of the

source code that involve user input. Our technique has three

main steps: (1) locate input points, (2) calculate metrics to

determine a set of dangerous functions, (3) perform auto-

matic fault detection to identify security faults.

We presented the results of applying our technique on

open source software and presented a case study on Pid-

gin as the largest and most popular software we analyzed.

We found security faults in Pidgin and in other analyzed

software. Our fault detection techniques focused on buffer

overflows and format string vulnerabilities, which are the

most common input-related faults in C source code. Our ap-

proach is novel as it uses input coverage and distance met-

rics to show developers the list of functions that are the most

likely to contain potential security faults. The Pidgin case

study demonstrates the effectiveness of our metrics. Pidgin

has a total number of 7,173 functions and 229,825 LOCs.

According to our measurements, only 10.56% of the code

is related directly to user input and 2,728 functions work

with input data. Limiting the number of dangerous func-

tions and code that is affected by user input is important in

reducing the effort of a code review.

As future work we plan to improve our current fault de-

tection methods and implement new ones to find more vul-

nerabilities in the source code automatically. In addition to

the improvement of fault detections, another important way

to continue our work is to implement a ranking technique

that operates on the list of dangerous functions so develop-

ers can focus on the top ranked functions during a manual

code inspection.

Further possibilities are to extend our technique to ad-

ditional languages where input-related security faults are

common reasons of security vulnerabilities (e.g., C++,

Java).
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