
MAGISTER: Quality Assurance of Magic
Applications for Software Developers and End

Users
Csaba Nagy, László Vidács

Rudolf Ferenc, Tibor Gyimóthy
University of Szeged, Hungary

Department of Software Engineering
Research Group on Artificial Intelligence

{ncsaba,lac,ferenc,gyimi}@inf.u-szeged.hu

Ferenc Kocsis, István Kovács
SZEGED Software Zrt.

Hungary
{kocsis.ferenc,kovacs.istvan}@szegedsw.hu

Abstract—Nowadays there are many tools and methods avail-
able for source code quality assurance based on static analysis,
but most of these tools focus on traditional software development
techniques with 3GL languages. Besides procedural languages,
4GL programming languages such as Magic 4GL and Progress
are widely used for application development. All these languages
lie outside the main scope of analysis techniques.

In this paper we present MAGISTER, which is a quality
assurance framework for applications being developed in Magic,
a 4GL application development solution created by Magic Soft-
ware Enterprises. MAGISTER extracts data using static analysis
methods from applications being developed in different versions
of Magic (v5-9 and uniPaaS). The extracted data (including
metrics, rule violations and dependency relations) is presented to
the user via a GUI so it can be queried and visualized for further
analysis. It helps software developers, architects and managers
through the full development cycle by performing continuous
code scans and measurements.

Index Terms—Magic 4GL, Reverse Engineering, Quality As-
surance, Metrics, Static Analysis

I. INTRODUCTION

Fourth generation languages (4GLs) are also refered to as
Very High Level Languages (VLLs) [1]. A developer who
develops an application in such a language does not need to
write ‘source code’, but he can program his application at a
higher level of abstraction and higher statement level, usually
with the help of an application development environment.
These languages were introduced and widely used in the
mid-1980s. At that time many 4GLs were available (such as
Oracle, FOCUS, RAMIS II and DBASE IV), but today most
of the information systems are developed in third generation
languages. However, large systems developed earlier in a 4GL
are still evolving and there is still a continuous need for
RADD (Rapid Application Development and Deployment)
tools, which are usually based on these higher level languages.

Since the appearance of 4GLs, large software systems have
evolved and the role of quality assurance of these systems is
of increasingly importance. Unfortunately, the main focus of
current QA tools and techniques is on the more popular 3GL
languages.

In the literature few papers are available considering the
software quality of 4GLs languages. When they became
popular, many studies were published in favour of their use.
These studies tried to predict the size of a 4GL project and
its development effort, for instance by calculating function
points [2], [3] or by combining 4GL metrics with metrics
for database systems [4]. Today, some tools are available for
testing purposes and for optimization purposes like Magic
Optimizer [5].

In this paper, with MAGISTER we propose a novel quality
assurance framework for Magic 4GL, namely, an adapted
methodology for the QA of 4GL languages based on the
continuous supervision of product metrics, rule violations and
changes in Magic programs.

At the heart of MAGISTER lies the widely used, multi-
layer, product-oriented Columbus reverse engineering tech-
nology [6], which performs continuous source code analysis
and the tracking of changes. In addition, there are other
components as well. The components of MAGISTER built on
top of one another, may be used separately. A large part of the
components may be run in an automated manner, supported
by various tools, whereas performing manual steps requires
expert knowledge.

II. QUALITY ASSURANCE ON MAGIC

A. Magic specialties

Magic 4GL was introduced by Magic Software Enterprises
(MSE) in the early 80’s. It was an innovative technology to
move from code generation to the use of an underlying meta
model within an application generator. The resulting applica-
tion was run on popular operating systems including DOS and
UNIX. Since then newer versions of Magic have been released
called eDeveloper and uniPaaS. Recent versions support novel
technologies including RIA (Rich Internet Applications), SOA
(Service Oriented Architecture), XML and SAP.

The heart of a Magic application is the Magic Runtime En-
gine (MRE), which allows one to run the same application on
different operating systems. When one develops an application



in Magic, one actually programs the MRE using the unique
meta model language of Magic, which is – at a higher level
of abstraction – closer to business logic. This meta model is
what makes the development in Magic unique and what really
makes Magic a RADD (Rapid Application Development and
Deployment) tool.

Magic was invented to develop business applications for
data manipulating and reporting, so it comes with many
GUI screens and report editors. Hence the most important
elements of its meta model language are the various entity
types of business logic, namely the data tables. A table has its
columns and a number of programs (consisting of subtasks)
that manipulate it. The programs or tasks are linked to forms,
menus, help screens and they may also implement business
logic using logic statements e.g. for selecting variables (virtual
variables or table columns), updating variables, conditional
statements and expressions.

The meta model of a Magic application serves as a ‘source
code’ that can be analyzed for quality assurance purposes.
Using this model we can describe the main characteristics of
an application and we can locate potential coding problems or
structures which may indicate bugs or bad design.

B. Quality supervision

Fact extraction

process

Metamodel

Identification of

dependcies and modules

Document generation,

diagrams

Checking coding

rule violations

Analyzing

fault-proneness

Continuous

monitoring

Re-engineering,

migration
Query

reports

Figure 1. Columbus methodology adapted in the Magic environment.

Elements of the Columbus methodology, successfully ap-
plied on object-oriented languages, are re-used and adapted in
the Magic environment (Figure 1). Quality supervision covers
the most influential areas of the software life cycle with the
following goals [7]:

• Decrease the number of post-release bugs
• Increase maintainability
• Decrease development/test efforts
• Assure sustainability
• Assure continuous measurement and assessment

Goals are targeted with continuous monitoring: scheduled
analysis, data processing, storing and querying, visualization,
evaluation. Regarding these activities, based on the global
solution, quality assessment services may be offered: pro-
gramming rule violations; maintainability, testability reports

based on software product metrics, duplicated code; archi-
tecture reconstruction [8]; concrete suggestions for quality
improvement.

III. OVERVIEW OF MAGISTER

MAGISTER can be easily incorporated into the processes of
a Magic developer company. A typical environment is shown
in Figure 2. The project leader or manager gives orders to
developers and controls their progress. A developer does the
4GL programming in the Magic/uniPaaS environment and
commits stable states to a configuration management system.
To take control of the process, the program under development
is checked out by the BuildEngine on a regular basis, and
given to the analyzers. The final results are uploaded to the
database, and the first checks are performed to produce reports
and notify the leaders about any new programming problems.
Notification can be customized to report bad tendencies in
complexity or other properties of the program as well.

SourceInventory

Database
SourceInventory

Client

Developer

CMS

Project leader,

Manager

SourceInventory

Admin

BuildEngine
Analyzers

MAGISTER in use

Figure 2. MAGISTER in a typical development environment.

Analysis results can be investigated using the SourceInven-
tory Web client. The developer may look for programming
problems like invalid references, missing clauses; he may
check for changed program elements since the last measure-
ment; he may use references to reveal dependencies among
programs, tasks and logic units; he may check metric data
to find hot spots in the program. The project leader/manager
receives the email report about problematic points and may get
further information on the programs in question; he may check
the overview of changed elements or analyze the summarized
views of program-related metrics. The reported data serves as
a guideline for decisions and provides objective reasons for
taking action against bad developer habits if needed.

As can be seen, MAGISTER is divided into several layers.
At the lowest level there are modules called Magic analyzers to
extract all the necessary data from an application in question.
These analyzers are able to parse control files or XML
exports of Magic versions from 5 to 9, and uniPaaS, which
is the most recent version. Analyzers calculate metrics, rule
violations, dependency relations. The results of analyzers are



uploaded to a database and visualized by SourceInventory,
which has several other modules such as the Uploader to
upload the results into a database, the BuildEngine to control
regular analysis, the AdminPages for configuration purposes
and the SourceInventory applet for the GUI. The results of
Magic analyzers can be queried via another module called
MagiQuery. This module was implemented as a utility package
to help developers during their work. It has evolved over
years to fulfill the technical requirements of developers. For
instance it supports parameterizable cross-reference queries,
the automatic generation of program documentations and
migration (e.g. converting control files from Magic versions
5 to 9).

IV. USAGE EXAMPLES

Here we present example usage scenarios that demonstrate
some of the main features of MAGISTER. The scenarios,
among many other features (except for the email warnings),
can be reproduced and we kindly invite the reader to try
them at home using our demo applet, reachable through the
homepage http://www.szegedsw.hu/magister.

In the first scenario we learn how to query sample metrics of
the tasks with top LLOC metric values. In addition to querying
metric values, it shows how we can locate the longest tasks or
programs of the system in question. These tasks usually play
a central role in the application as they implement a relatively
big part of the business logic. They usually have a relatively
high complexity as well and they are coupled to many other
tasks, as can be seen in Figure 3.

Figure 3. Bar chart showing the metrics of tasks with top LLOC metric
values.

The full scenario is described in a step-by-step way in Table
I. In Figure 3 the NOI (Number of Outgoing Invocations), TNT
(Total Number of Tasks), WLUT (Weighted Logic Unit per
Task) and the LLOC metrics can be seen. WLUT is a special
complexity metric to measure the complexity of a task and is
similar to WMC (Weighted Methods per Class), which mea-
sures the complexity of a class in object oriented languages.
LLOC has a special meaning in magic too: it measures the
number of non-remark (non-comment) logic lines (statements)
in a task. Besides the sample metrics, we defined about 50
metrics and grouped them into size, complexity or coupling
categories.

In the second example scenario we learn how to examine
coding rule violations in the system being analyzed (see Table

II). First we query a report called ‘Problems report’ to see all
the rule violations in the system, and then we examine specific
coding problems using the source view of SourceInventory.
There are 22 rules implemented in MAGISTER based on
experiences of developers who have been developing in Magic
over 10 years. Figure 6 shows one example rule violation
(MAGIC1001) where a task calls another subtask with more
parameters than the callee can handle.

Figure 5. Problems report.

Figure 6. Source view for Magic.

In the third scenario we learn how the notification emails are
sent automatically when a new rule violation appears or when
an important metric (e.g. complexity) increases in the system
(see Table III). First we set up baselines as thresholds for
certain metrics and then we configure SourceInventory (where
and how to send the notification emails). A sample notification
email can be seen in Figure 7.

V. EXPERIENCES AND LESSONS LEARNED

We got the first real-life experiences with MAGISTER from
SZEGED Software, a Magic developer company, which is
an active user of the system; in addition to the continuous
monitoring of the development process, they use it to support



Figure 4. Histogram showing the frequency distribution of LLOC metric values of tasks.

Table I
EXAMPLE SCENARIO HOW TO QUERY SAMPLE METRICS OF THE TASKS WITH TOP LLOC METRIC VALUES

Steps Expected Outcome Comments

Step 1: First select the root node in the item
tree (on the left hand side of the applet). Then
in the wizard of ‘Charts/Create histogram’
menu, select the LLOC metric, and the Task
as ‘selected item’.

A histogram showing the
frequency distribution of
LLOC metric values of
tasks (see Figure 4).

Besides the frequency distribution of the
LLOC values, other information can be seen
in the diagram: average LLOC value, number
of items, variance, etc. The critical tasks im-
plementing most statements for business logic
can also be easily identified on the right hand
side of the diagram.

Step 2: Double click on a bar on the right hand
side of the histogram, on the left hand side of
the screen the list of the items related to the
selected bar will appear. In the ‘Charts/Bar
chart’ menu select McCC, NL, NOI and any
other metrics you are interested in.

A bar chart showing the
metrics of tasks with top
LLOC metric values. Fig-
ure 3 shows a screenshot
of this.

migration tasks. The company has over 15 years of Magic
application development experience and has excellent profes-
sional knowledge. Their complex logistics system specialized
for medicine wholesalers has attained outstanding references
and the system’s market share is over 60% in Hungary. Since
we first deployed MAGISTER at the company, we have had
to deal with many technical issues and we have received a lot
of positive feedback and helpful advice from the developers.
Here we will try to sum up the lessons learned from all of
this.

Developers were open-minded and showed special interest
in using the tools. Despite scepticism at first, product metrics
revealed interesting attributes of their system. There are also
recommendations on how to add new Magic-specific metrics
to better fit developers views of Magic programs. Surprisingly,
the well-known McCabe complexity metric seems to be less
useful than with object-oriented languages.

Checking rule violations is without doubt helpful to them.
As they admitted, there were more violations than they had
expected, and the majority of the problems found had to



Table II
EXAMPLE SCENARIO OF HOW TO QUERY THE CODING RULE VIOLATIONS OF TASKS

Steps Expected Outcome Comments

Step 1: First select the root node in the item
tree, and then select the ‘Reports/Problems’
menu.

A list of coding rule vio-
lations in the system be-
ing analyzed (Figure 5).

In the problems report wizard you can specify
the coding rules you are interested in and
you can narrow down your search to specific
elements. The maximum number of results
can be also specified.

Step 2: Select one rule violation and double
click on its location.

Source view (Figure 6). The source view presents the selected element
(usually a task) in a similar way to the appli-
cation development environment. Hence the
developer sees the full context of the coding
rule violation and he can easily examine it
using MAGISTER and later fix it within the
development environment.

Step 3: Click the ‘Show all’ checkbox at the
bottom of the screen and select those rules
which you are interested in. On the right
hand side of the screen the list of selected
rule violations appear. By clicking on one of
them, the source view will move to the exact
location of the selected coding violation.

Context of the coding vi-
olation. (Highlighted red
line in Figure 6.)

Table III
EMAIL WARNING ABOUT NEW RULE VIOLATIONS AND ABOUT METRICS THAT INCREASED SINCE LAST ANALYSIS (e.g. COMPLEXITY)

Steps Expected Outcome Comments

Step 1: Log in into the admin pages and set
up the baselines of selected metrics.

Configured baselines. Baselines serve as the limits of maximum
allowed metric values. They can be specified
based on developers experiences, on literature
or on previous measurements.

Step 2: Set up notification SMTP and email
address settings.

Configured notifications. Notification email will be sent from now on
every time the system is analyzed by the
BuildEngine.

Step 3: Commit a complex task or a rule
violation then wait for next analysis and check
your mailbox.

Notification email (Fig-
ure 7).

Figure 7. Example notification email which shows how the NII metric of
some tasks increased.

be corrected. They offered several suggestions for easing the
handling of rule violations and for improving the quality of the
checker. A critical issue is how the exceptions marked by the
developers should be handled. The changes report was found
very useful, for example in locating a newly appearing error
by comparing the previous and the current versions; and in
helping to keep track of changes.

When compared to current tools available for Magic de-
velopers, a significant advantage is its ability to calculate a
wide range of metrics, to query changes and report any rule
violations.

VI. CONCLUDING REMARKS

MAGISTER represents a full-fledged framework system
that provides useful services for the developers and also users
of Magic products. In addition to performing conventional



quality assurance tasks (software code measurements using the
product metric, coding conventions, violations control, etc.),
the system also has a user interface (SourceInventory) that
allows developers and project managers to readily evaluate
the data obtained from reports, diagrams and so on.

The MagiQuery module assists in compiling queries con-
cerning system objects and the relationship that holds among
them, and also in automatically generating program documen-
tation.

The results of MAGISTER are useful to companies involved
in the development or use of Magic/uniPaaS applications; a
quality assessment of the various applications may be ordered
as a service if necessary.

AVAILABILITY

MAGISTER is a proprietary software. Further information,
including an online demo where the above usage scenarios
can be reproduced, is available at http://www.szegedsw.hu/
magister/.

ACKNOWLEDGEMENTS

This research was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences and
the Hungarian national grants GOP-1.1.1-07/1-2008-0081 and
OTKA K-73688.

REFERENCES

[1] J. Martin, Application Development without Programmers. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1982.

[2] J. Verner and G. Tate, “Estimating size and effort in fourth-generation
development,” IEEE Software, vol. 5, pp. 15–22, 1988.

[3] G. Witting and G. Finnie, “Using artificial neural networks and func-
tion points to estimate 4GL software development effort,” Australasian
Journal of Information Systems, vol. 1, no. 2, 1994.

[4] S. MacDonell, “Metrics for database systems: An empirical study,”
Software Metrics, IEEE International Symposium on, vol. 0, p. 99, 1997.

[5] “Homepage of Magic Optimizer,” http://www.magic-optimizer.com, last
visited 2010.

[6] A. Beszédes, R. Ferenc, and T. Gyimóthy, “Columbus: A reverse engi-
neering approach,” in Pre-Proceedings of IEEE Workshop on Software
Technology and Engineering Practice (STEP 2005), 2005, pp. 93–96.

[7] T. Bakota, Á. Beszédes, R. Ferenc, and T. Gyimóthy, “Continuous
software quality supervision using SourceInventory and Columbus,” in
ICSE Companion, 2008, pp. 931–932.

[8] L. Schrettner, P. Hegedűs, R. Ferenc, L. Fülöp, and T. Bakota, “Devel-
opment of a methodology, software-suite and service for supporting soft-
ware architecture reconstruction,” in CSMR ’10: Procs. of the European
Conference on Software Maintenance and Reengineering, 2010.


