
A True Story of Refactoring a Large Oracle PL/SQL
Banking System

Csaba Nagy
University of Szeged

Department of Software
Engineering

ncsaba@inf.u-szeged.hu

Rudolf Ferenc
University of Szeged

Department of Software
Engineering

ferenc@inf.u-szeged.hu

Tibor Bakota
FrontEndART Software Ltd.

Hungary
bakotat@frontendart.com

ABSTRACT
It is common that due to the pressure of business, banking
systems evolve and grow fast and even the slightest wrong
decision may result in losing control over the codebase in
long term. Once it happens, the business will not drive
developments any more, but will be constrained by main-
tenance preoccupations. As easy is to lose control, as hard
is to regain it again. Software comprehension and refactor-
ing are the proper means for reestablishing governance over
the system, but they require sophisticated tools and meth-
ods that help analyzing, understanding and refactoring the
codebase. This paper tells a true story about how control
has been lost and regained again in case of a real banking
system written in PL/SQL programming language.

Keywords
Oracle PL/SQL, Refactoring, Software Quality Assurance

1. INTRODUCTION
Banking systems are critical systems from many different

aspects. A simple rounding error may have a catastrophic
influence on the reputation of the financial company, so
there is a high pressure on developers to work precisely and
test their code as much as possible. However, the business
departments often urge the company to react for changes
and implement new features rapidly. Developers emphasize
reusing already working and tested solutions with fast, mi-
nor modifications, instead of properly designing solutions
keeping in mind the quality and the maintainability of their
code. This usually results in a fast evolution and growth of
the system based on uncertain and ad-hoc decisions, which
may end-up in losing control over the codebase in long term.
In this paper we present a true story of refactoring a large

banking system mostly written in Oracle PL/SQL. The sys-
tem under question is being developed by one of our indus-
trial partners from the financial sector whose name is not
published with regards to confidentiality agreement. After

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

many years of development, they realized that their system’s
development was heading in wrong direction and they asked
for help to take necessary steps against their serious soft-
ware maintainability problems. Here we present both our
analysis of their problems and our assessment.

The main contributions of this paper are:

• a case study – performed in a real industrial environ-
ment – of analyzing quality attributes and reconstruct-
ing the architecture of a large PL/SQL banking sys-
tem;

• working solutions for emerging maintainability prob-
lems during the development of a large PL/SQL sys-
tem.

The paper is organized as follows. First, we introduce the
background story of the analyzed system in Section 2. Then,
in Section 3 we present our first assessment of the system
under question. Afterwards, we present our solutions in Sec-
tion 4. Finally, we elaborate on related work in Section 5
and we conclude our paper in Section 6.

2. THE STORY BEGINS
The story began when our partner bought a boxed finan-

cial software from India. The programming language of the
software was Oracle PL/SQL and it was designed to be easily
extendible with additional functionalities. The only draw-
back of the software was that some parts of the core system
contained wrapped stored procedures and packages, there-
fore it was not possible to modify the core functionality, but
at that time this did not seem to be necessary.

Later the company started to extend their system with
new features. The system evolved rapidly, and soon it be-
came too large, so the small development team of the com-
pany could not maintain it alone anymore. Instead of hiring
new programmers, they decided to outsource the develop-
ment of certain modules to professional companies. The
companies had to take responsibility for their own code so
this decision seemed reasonable. However, vendors started
to work hard and the system started to grow again rapidly.
It’s architecture became very complex soon. The company
realized that maintaining the system and implementing new
features became more and more expensive, so they had to
stop and take serious steps to handle this situation. An
illustration of this status can be seen in Figure 1.

Some of their critical problems were the following:

• the system was too complex,



Figure 1: Outsourcing of the development of larger
components.

• only a few experienced developers were aware of the
full architecture,

• modifications were extremely expensive,

• nobody could estimate the cost of a modification,

• poor code quality,

• maintenance was very expensive,

• testing was very expensive.

This was the point in time when we were involved.

3. ANALYSIS AND ARCHITECTURE
RECONSTRUCTION

Our first look at the system showed us that it was writ-
ten mainly in Oracle PL/SQL with some additional subsys-
tems (e.g. web clients) in Java. Our main attention was on
the PL/SQL code because the full business logic was imple-
mented there together with the data-management tier which
laid in the PL/SQL codebase.
Our first assessment was to create an architecture map

of the system in order to understand the system and show
interrelations among higher level components. Such a map
can be a useful tool to estimate the impact of a change
in one component to the other ones. We created a map
from two main sources of information: first, we performed
a detailed low-level static analysis of the PL/SQL codebase,
and second, we conducted interviews with the developers.

3.1 Low-Level Static Analysis
The static analysis was performed on PL/SQL dumps us-

ing the PL/SQL front-end of Columbus [1]. Our purpose was
to identify low-level database objects (tables, views, triggers,
packages, standalone routines) and relations among them
(call relations, CRUD relations, etc.). The system turned
out to be larger than we first expected. We analyzed 4.1M
lines of PL/SQL and SQL code (full dump w/o data) which
had 8,225 data objects, out of which 2,544 objects were pack-
ages. The total number of stored routines were more than
30,000 with more than 1.8 MLOC (million lines of code) in
total (see Table 1).

3.2 Interviews
We interviewed the developers to identify higher level log-

ical components of the system. PL/SQL was not designed

Table 1: Overview of the system.
total size of the full dump (w/o data) 4.1 MLOC
total size of stored procedures 1.8 MLOC
number of PL/SQL objects
(tables, views, triggers, packages, routines)

8,225

number of packages 2,544
number of stored routines
(including routines in packages)

>30,000

to support higher level modularization so it was necessary to
obtain this information from the developers instead of the
codebase itself. We identified 26 logical components (e.g.
Accounting, Security, . . . ). Developers also told us that
they kept strict naming conventions, hence the correspond-
ing component of a data object could be identified from its
name easily (e.g. PKAC_* is a package of the Accounting
component). Unfortunately, later we found that their nam-
ing convention was not that much strict, so many objects
remained uncategorized.

3.3 The Architecture Map
Based on the naming conventions we grouped low-level

data objects into components and we lifted up relations
among them to the higher, component level. The final result
was a dependency graph where nodes were the components
(identified via interviews) and directed edges showed the de-
pendencies among them (identified via static analysis). The
graph showed more than 200 dependency edges among the
26 components meaning that every object depended on al-
most every other (see Figure 2).

Figure 2: Relations between components (names
distorted).

The results of the architecture reconstruction task showed
that the system design was very complex. Even a simple
change in a component may have an impact on almost all
other components.

3.4 Code Quality
We investigated the quality of the source code as well. We

identified many extremely large (more than 3,000 LOC) and
complex (McCabe’s complexity larger than 1,000) stored



routines in the system. Besides, we measured more than
20% clone coverage (copy&paste source code fragments) and
we found 5 almost identical copies of a package with more
than 5,000 LOC.
Apart from the most critical outlier objects of the system,

the overall source code quality also showed a great negative
influence on the maintainability of the system. We found
thousands of coding rule violations and dangerous error-
prone constructs in the codebase.

4. SOLUTIONS FOR MAINTAINABILITY
PROBLEMS

The first assessment showed us that the company had a
good reason to ask for help. We suggested them three pri-
mary solutions which we discuss in detail in this section.

4.1 Stop Deterioration of Code Quality
Complex system architecture and bad code quality im-

plied that the first and most important step that they should
take was to stop the deterioration of their software. The
huge amount of incoming source code from different ven-
dors resulted in different coding styles at different quality
standards.
The company realized in time that they need to set up a

system to continuously monitor their code. The SourceIn-
ventory framework provides solutions for them to analyze
their codebase. It periodically measures metrics, checks and
reports on potential errors and on procedures where impor-
tant metrics increased above a specified baseline.

Figure 3: SourceInventory as a delivery-acceptance
certificating system.

The framework serves as a delivery-acceptance certificat-
ing system. If an incoming code from a vendor does not
conform to the quality requirements of the company, it will
not be committed into the codebase (see Figure 3).

4.2 Enhance Test Coverage
Enhancing test coverage is another solution to improve

the quality of the code. A test procedure is more effective if
it has a better coverage, but first of all, we need to measure
it. The company had a qualified testing team, they built up
a regression testing framework with automated tests, they
created and ran series of test cases for different usage scenar-
ios, but they did not have a ready solution to measure the
coverage. The testing team had no information on the set
of covered stored procedures for different test cases. With-
out this information, after a change in the source code they
always needed to re-run all the test cases and they were still
not certain whether they tested the changed part of the code
or not.

Oracle provides support for profiling (DBMS_PROFILER).
Using Oracle’s profiler, executed stored procedures can be
easily obtained by querying virtual tables of the database
manager. By using a toolset, we connected the profiler’s
data with the test cases and prepared coverage reports for
test runs. The gathered information showed us that the test
cases covered only about 20% of the stored procedures.

4.3 Elimination of Unused Objects
We followed the life-cycle of the system during a half-

year period. It turned out that during this period the total
number of database objects increased by about 25% (see
Table 2). Developers told us that during this period they
added some new features into the code which may explain
the huge number of new objects, especially the number of
new tables (see Table 3). Another reason is that they usually
use working (temporary) tables which often remain in the
database even after the final phases of the development.

Table 2: Growth of the total number of database
objects in the system during a half year period.

Date Total number of objects
2010.04 8,255
2010.09 9,582
2010.11 10,681

Table 3: Detailed growth of the system during a half
year period.
Date Table View Trigger Routine Package
2010.04 3,943 1,350 337 51 2,544
2010.09 4,868 1,459 346 102 2,807
2010.11 5,865 1,462 355 143 2,856

They also informed us that they re-implemented the largest
component of their system in Java and they functionally cut-
off this component from the rest of the PL/SQL codebase.
Hence, a huge number of data objects remained in the code
unused. Additionally, large data tables also remained in
the database, but became useless after the reorganization.
All the unused stored procedures and packages increase the
complexity of the system. Furthermore, large and useless
data tables affect hardware maintenance costs too. Note,
that the required table space could be measured in TBytes
for these data tables.

Elimination of the obsolete component and unused data
objects became important particularly because of hardware
maintenance costs.

Removing unused data objects requires careful work for
such a complex system. If an unhandled reference remains in
the code, its consequences may be undetermined. Although
it would be a catastrophic error, it would still be a better
case when the system fails with an ‘object does not exist’
error, compared to miscalculating the account balance of
a customer without any signs of error. Direct references
to objects can be identified via the database manager or
by static analysis, but dynamic references may still remain
hidden.

All in all, we identified a number of challenges in elimi-
nating a single unused component from the system:

• identifying tables/procedures of the component that
became obsolete,



• identifying references to tables/procedures of the ob-
solete component,

• validating the correct removal of the elements (e.g.
make sure that no dead code remained after remov-
ing them).

4.3.1 Identification of Objects of Obsolete
Components

We could identify data objects of the obsolete component
by using our previous categorization based on the naming
conventions of the company. However, it was not enough as
some of the developers did not keep the naming conventions
and many objects remained uncategorized.
We defined five elimination sets and calculated them via

static impact analysis:

SET1 : elements of the obsolete components that match the
naming conventions;

SET2 : uncategorized elements in (direct or transitive) re-
lation only and only with objects from SET1 or SET2;

SET3 : uncategorized elements in (direct or transitive) re-
lation with objects from SET1 and SET4;

SET4 : categorized elements in (direct or transitive) rela-
tion with objects from SET1;

SET5 : elements that have no (direct or transitive) relation
with SET1.

SET1

SET2

SET3
SET4

SET5

Figure 4: Elimination sets showing many un-cut re-
lations between the obsolete component and others.

The connections between SET1 and SET3 or SET4 (see
Figure 4) showed us that the component had not been func-
tionally cut from other components even though developers
told us that they had done this before.

4.3.2 Identifying References to Objects of the Com-
ponent and Validating their Correct Removal

We identified references to objects via the database man-
ager’s internal functions (DBA_DEPENDENCIES) and via static
analysis extended with algorithms to analyze embedded dy-
namic SQLs (e.g. EXECUTE IMMEDIATE statements) where it
was possible.

Our partner asked us to focus on the removal of large, un-
used data tables. After identifying these tables, developers
cut off identified references and we recommended to rerun
the automatic test cases with auditing the usage of these
tables both in the test databases and in the live system. If
the table has no more accesses after a certain period, it can
be dropped safely, but it is still needed to check its triggers
whether triggers use additional stored procedures that could
be dropped too.

This technique can be extended to other data objects too.

5. USEFUL ADDITIONAL TOOLS
In this section we introduce some additional useful tools

for analyzing Oracle PL/SQL code that may help companies
in similar situations. Quest’s TOAD1 is a tool to perform
complex analysis of a PL/SQL system. It is able to mea-
sure metrics, coding errors and performance issues in the
database. Oracle SQL Developer2 is also able to prepare
Quality Assurance reports that identify conditions that are
technically not errors, but that usually indicate flaws in the
database design. SD CloneDR3 has also a PL/SQL front-
end as a tool to find exact or near-miss duplicated code.

6. CONCLUSIONS
As an industrial paper, we briefly introduced our tech-

niques that we used during the preparation of our case study.
Instead of technical details and research questions we kept
our focus on the industrial context and highlighted the prac-
tical benefits. We note that for PL/SQL systems such a com-
plex methodology against software deterioration is novel, to
our best knowledge. However, most of the applied tech-
niques has a huge amount of related work for other languages
(e.g. dead code elimination, test coverage measurement and
test selection, software quality analysis, etc.).

Our story began with serious maintainability problems at
our industrial partner from the financial sector. We have
analyzed their problems, set up a delivery-acceptance cer-
tification system, a test coverage measurement toolset and
we assisted them in eliminating unused data objects in or-
der to simplify their system’s architecture. We believe that
our complex methodology to stop software deterioration and
solve maintenance issues helped them in their daily prob-
lems. Some of the previously mentioned techniques are so
novel to the company that we cannot report on objective
measures comparing maintenance costs or quality attributes
before or after our suggestions. However, it is obvious that
the company had a great need for ready solutions and they
were eager to have them as soon as possible. After all, we
are certain that nowadays they pay a lot more attention on
the code quality and overall complexity of their system.

7. REFERENCES
[1] R. Ferenc, Á. Beszédes, M. Tarkiainen, and

T. Gyimóthy. Columbus – Reverse Engineering Tool
and Schema for C++. In Proceedings of the 18th
International Conference on Software Maintenance
(ICSM 2002), pages 172–181. IEEE Computer Society,
Oct. 2002.

1http://www.quest.com/toad/
2http://www.oracle.com/technology/products/
database/sql_developer/index.html
3http://www.semanticdesigns.com/Products/Clone


