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Abstract. Nowadays, the most popular programming languages are so-
called third generation languages, such as Java, C# and C++, but higher
level languages are also widely used for application development. Our
work was motivated by the need for a quality assurance solution for a
fourth generation language (4GL) called Magic. We realized that these
very high level languages lie outside the main scope of recent static anal-
ysis techniques and researches, even though there is an increasing need
for solutions in 4GL environment.
During the development of our quality assurance framework we faced
many challenges in adapting metrics from popular 3GLs and de�ning
new ones in 4GL context. Here we present our results and experiments
focusing on the complexity of a 4GL system. We found that popular 3GL
metrics can be easily adapted based on syntactic structure of a language,
however it requires more complex solutions to de�ne complexity metrics
that are closer to developers' opinion. The research was conducted in
co-operation with a company where developers have been programming
in Magic for more than a decade. As an outcome, the resulting metrics
are used in a novel quality assurance framework based on the Columbus
methodology.

Keywords: 4GL, Magic, software metrics, software complexity, soft-
ware quality assurance

1 Introduction

Programming languages are usually categorized into �ve levels or �generations� [1].
Solely binary numbers, the machine languages are the �rst generation languages
(1GLs). Lower level programming languages (e.g. assembly) are the second gen-
eration languages (2GLs) and currently popular procedural and object-oriented
languages are the third generation languages (3GLs). The higher level languages
are all closer to human thinking and spoken languages. Using fourth generation
languages (4GLs) a programmer does not need to write source code, but he can
program his application at a higher level of abstraction, usually with the help
of an application development environment. Finally, �fth generation languages
(5GLs), would involve a computer which responds directly to spoken or written
instructions, for instance English language commands.



The main motivation of this work was to provide a quality assurance solution
for a 4GL called Magic. Quality assurance tools are built heavily on software
metrics, which re�ect various properties of the analyzed system. Although several
product metrics are already de�ned for mainstream programming languages,
these metrics re�ect the specialties of third generation programming languages.
We faced the lack of software quality metrics de�ned for 4GLs. As we revealed
the inner structure of Magic programs, we identi�ed key points in de�ning new
metrics and adapting some 3GL metrics to Magic. Our work was carried out
together with a software company, where experts helped us in choosing the right
de�nitions. The greatest challenge we faced was the de�nition of complexity
metrics, where experienced developers found our �rst suggestions inappropriate
and counterintuitive. Enhancing our measures we involved several developers in
experiments to evaluate di�erent approaches to complexity metrics.

In this paper we present our experiences in de�ning complexity metrics
in 4GL environment, particularly in the application development environment
called Magic, which was recently renamed to uniPaaS. Our contributions are:

� we adapted two most widespread 3GL complexity metrics to Magic 4GL
(McCabe complexity, Halstead);

� we carried out experiments to evaluate our approaches (we found no signi�-
cant correlation between developers ranking and our �rst adapted McCabe
complexity, but we found strong correlation between a modi�ed McCabe
complexity, Halstead's complexity and between the developers ranking);

� as an outcome of the experiments we de�ned new, easily understandable and
applicable complexity measures for Magic developers.

Supporting the relevance of the adapted metrics our experiment was designed
to address the following research questions:

RQ1: Is there a signi�cant correlation between adapted metrics of Magic pro-
grams?

RQ2: Is there a signi�cant correlation between the complexity ranking given by
developers and the ranking given by the adapted metrics?

The paper is organized as follows. First, in Section 2 we introduce the reader
to the world of Magic and then in Section 3 we de�ne our complexity metrics
that were adapted to 4GL environment. Validating these metrics we carried out
experiments which we describe in Section 4 and evaluate in Section 5. We discuss
related work in Section 6 and �nally we conclude in Section 7.

2 Specialties of 4GLs and the Magic Programming

Language

It is important to understand the specialties of a fourth generation language be-
fore discussing its quality attributes. Hence, in this section we give an introduc-
tion into Magic as a fourth generation language. We present the basic structure



of a typical Magic application and we discuss potential quality attributes of a
Magic application.

Magic 4GL was introduced by Magic Software Enterprises (MSE) in the early
80's. It was an innovative technology to move from code generation to the use
of an underlying meta model within an application generator.

2.1 The Structure of a Magic Application

Magic was invented to develop business applications for data manipulating and
reporting, so it comes with many GUI screens and report editors. All the logic
that is de�ned by the programmer, the layout of the screens, the pull down
menus, reports, on-line help, security system, reside inside tables called Reposi-
tories. The most important elements of the meta model language are the various
entity types of business logic, namely the Data Tables. A Table has its Columns
and a number of Programs (consisting of subtasks) that manipulate it. The Pro-
grams or Tasks are linked to Forms, Menus, Help screens and they may also
implement business logic using logic statements (e.g. for selecting variables, up-
dating variables, conditional statements).

Focusing on the quality � especially on the complexity � of a Magic soft-
ware, the most important language elements are those elements that directly
implement the logic of the application. Figure 1 shows these most important
language entities. A Magic Application consists of Projects, the largest entities
dividing an application into separate logical modules. A Project has Data Ta-
bles and Programs (a top-level Task is called a Program) for implementing the
main functionalities. A Program can be called by a Menu entry or by other
Programs during the execution of the application. When the application starts
up, a special program, the Main Program is executed. A Task is the basic unit
for constructing a program. A Program can be constructed of a main task and
subtasks in tree-structured task hierarchy. The Task represents the control layer
of the application and its Forms represent the view layer. It typically iterates
over a Table and this iteration cycle de�nes so-called Logic Units. For instance, a
Task has a Pre�x and a Su�x which represent the beginning and the ending of a
Task, respectively. A record of the iteration is handled by the Record Main logic
unit, and before or after its invocation the Record Pre�x or Su�x is executed.
A Logic Unit is the smallest unit which performs lower level operations (a series
of Logic Lines) during the execution of the application. These operations can be
simple operations, e.g. calling an other Task or Program, selecting a variable,
updating a variable, input a data from a Form, output the data to a Form Entry.

Programming in Magic requires a special way of thinking. Basically, the whole
concept is built on the manipulation of data tables which results in some special
designs of the language. It can be seen that a Task belongs to an iteration over
a data table so when a Task is executed it already represents a loop. Hence,
the language was designed in a way that loops cannot be speci�ed explicitly at
statement level. It is also interesting that the expressions of a Task are handled
separately so an expression can be reused more than once simply by referring
to its identi�er. For example, each Logic Line has a condition expression which
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Fig. 1. Most important Magic schema entities.

determines whether the operation should be executed or not. This condition can
be easily maintained through the application development environment and the
same expression may be easily used for more statements. So the developers are
more comfortable in using conditional branches in the logic of an application.
Consequently, they can easily see when the execution of statements belongs to
the same condition even if the statements do not directly follow each other.

2.2 Measuring the Quality of a Magic Application

In previous projects [13], [14] we re-used and adapted elements of the Colum-
bus methodology in the Magic environment. This methodology was successfully
applied on object-oriented languages before [8] and today it covers the most
in�uential areas of the software life cycle including the following goals [3]: de-
crease the number of post-release bugs, increase maintainability, decrease devel-
opment/test e�orts, assure sustainability though continuous measurement and
assessment. Goals are targeted with continuous monitoring: scheduled analysis,
data processing, storing and querying, visualization and evaluation. To accom-
plish these goals it is important to measure the characteristics of the software
under question. For more details about Columbus methodology, please refer to
our previous paper [3].

In case of third level languages, usually the best description of the software
under question is its source code. It is obvious that the analysis of the source code
is important to specify certain quality attributes. In case of fourth generation
languages, developers do not necessarily write source code in the traditional way.
In Magic, developers simply edit tables, use form editors, expression editors,
etc. In such a language, the meta model of an application serves as a �source
code� that can be analyzed for quality assurance purposes. Using this model
we can describe the main characteristics of an application and we can locate
potential coding problems or structures which may indicate bugs or bad design.
We determined a number of product metrics for Magic and categorized them
in size, coupling, and complexity groups. Most of them are based on popular
and well-known product metrics such as the Lines of Code, Number of Classes,



Number of Attributes, Coupling Between Object classes [4]. We realized that
some metrics can be easily adapted from third generation languages, but their
meaning and bene�ts for the developers may be completely di�erent, compared
to 3GL counterparts.

In case of size metrics, for instance, there is a possibility to identify a series
of �Number of� metrics (e.g. Number of Programs, Menus, Helps), but they are
considered less useful and interesting for the developers. The reason for that is
that these numbers can be easily queried through the application development
environment. The Lines of Code (LOC ) metric can be easily adapted by taking
into account that the Logical Line language entity of Magic can be corresponded
to a �Line of Code� in a third generation language. However, the adapted metric
should be used with caution because it carries a di�erent meaning compared
to the original LOC metric. In 3GLs LOC typically measures the size of the
whole system and it is used to estimate the programming e�ort in di�erent
e�ort models (e.g. COCOMO [5]). In case of Magic, a project is built on many
repositories (Menus, Help screens, Data Tables, etc.) and LOC measures just
one size attribute of the software (the Program repository). Hence, LOC is not
the sole size attribute of an application so it cannot be used alone for estimating
the total size of the full system. It is interesting to note that when 4GLs became
popular, many studies were published in favor of their use. These studies tried
to predict the size of a 4GL project and its development e�ort, for instance by
calculating function points [16],[17] or by combining 4GL metrics with metrics
for database systems [10].

Coupling is also interesting in a 4GL environment. In object-oriented lan-
guages a typical metric for coupling is the Coupling Between Object classes
(CBO) metric which provides the number of classes to which a given class is
coupled. A class is coupled to another one if it uses its member functions and/or
instance variables. 4GLs usually do not have language elements representing ob-
jects and classes. For instance in Magic, there are no entities to encapsulate
data and related functionalities, however there are separated data entities (Ta-
bles) and their related functionalities are speci�ed in certain Tasks or Programs.
Therefore it makes sense measuring the Coupling Between Tasks and Data Ta-
bles, not unlike the Coupling Between Tasks and Tasks.

3 Measuring the Complexity of Magic Applications

We identi�ed di�erent quality attributes and de�ned a bunch of metrics for Magic
applications. Simple size and coupling metrics re�ected well the opinion of the
developers, but this was not the case for complexity metrics. It was our biggest
challenge to measure the complexity of a 4GL system. There are many di�erent
approaches for third generation languages [6]. At source code level, well known
approaches were developed by McCabe [11] and Halstead [9], which are widely
used by software engineers, e.g., for software quality measurement purposes and
for testing purposes.

We adapted McCabe's cyclomatic complexity and Halstead's complexity met-
rics in 4GL environment, but when we showed the results to developers, their



feedback was that all the programs that we identi�ed as most complex programs
in their system are not that much complex according to their experience. We
note here that all the programmers have been programming in Magic for more
than 3 years (some of them for more than a decade) and most of them were well
aware of the de�nition of structural complexity [1], but none of them have heard
before about cyclomatic or Halstead complexity.

3.1 McCabe's Cyclomatic Complexity Metric

In this section we present our adaptations of complexity metrics and a modi�ed
cyclomatic complexity measure.

First, we adapted McCabe's complexity metric [11] to Magic. McCabe used
a graph-theory measure, the cyclomatic number to measure the complexity of
the control �ow of a program. It was shown that of any structured program
with only one entrance and one exit point, the value of McCabe's cyclomatic
complexity is equal to the number of decision points (i.e., the number of �if�
statements and conditional loops) contained in that program plus one.

McCabe's complexity is usually measured on method or function level. For
object-oriented languages it is possible to aggregate complexities of methods
to class level. The idea of Weighted Methods per Class (WMC ) [7] is to give
weights to the methods and sum up the weighted values. As a complexity measure
this metric is the sum of cyclomatic complexities of methods de�ned in a class.
Therefore WMC represents the complexity of a class as a whole.

In case of Magic, the basic operations are executed at Logic Unit level. A
Logic Unit has its well-de�ned entry and exit point too. Likewise, a Task has
prede�ned Logic Units. That is, a Task has a Task Pre�x, Task Su�x, Record
Pre�x, Record Main, Record Su�x, etc. This structure is similar to the construc-
tion of a Class where a Class has some prede�ned methods, e.g., constructors
and destructors. Hence, we de�ned McCabe's complexity at Logic Unit level with
the same de�nition as it is de�ned for methods (see de�nition of McCC (LU) in
De�nition 1). So it can be simply calculated by counting the statements with
preconditions (i.e., the branches in the control �ow) in a Logic Unit. Likewise,
the complexity of a Task can be measured by summing up the complexity values
of its Logic Units. We call this complexity measure as the Weighted Logic Units
per Task (see WLUT (T ) in De�nition 2).

McCC (LU) = Number of decision points in LU + 1.
LU: a Logic Unit of a Task

Def. 1: The de�nition of McCabe's cyclomatic complexity for Logic Units.

WLUT (T ) =
∑

LU∈T

McCC (LU)

T: a Task in the Project
LU: a Logic Unit of T

Def. 2: The de�nition of Weighted Logic Units per Task (WLUT).



The McCC (LU) and WLUT (T ) metrics were adapted directly from the 3GL
de�nitions simply based on the syntactic structure of the language. When we
�rst showed the de�nitions to the developers they agreed with them and they
were interested in the complexity measures of their system. However, the results
did not convince them. Those Tasks that we identi�ed as the most complex tasks
of their system were not complex according to the developers, not unlike, those
tasks that were identi�ed complex by the developers had lower WLUT values.

Developers suggested us, that in addition to the syntactic structure of the
language, we should add the semantic information that a Task is basically a loop
which iterates over a table and when it calls a subtask it is rather similar to an
embedded loop. This semantic information makes a Task completely di�erent
from a Class. Considering their suggestion we modi�ed the McCabe complexity
as follows (McCC2 ). For a Logic Unit we simply count the number decision
points, but when we �nd a call for a subtask it is handled as a loop and it increases
the complexity of the Logic Unit by the complexity of the called subtask. That
is, the complexity of a Task is the sum of the complexity of its Logic Units. For
the formalized de�nition see De�nition 3.

McCC 2(LU) = Number of decision points in LU +
∑

TC∈LU

McCC2(TC) + 1.

McCC 2(T ) =
∑

LU∈T

McCC 2(LU)

LU: a Task of the Project
LU: a Logic Unit of T
TC: a called Task in LU

Def. 3: The de�nition of the modi�ed McCabe's cyclomatic complexity
(McCC2 ).

The main di�erence between WLUT (T ) and McCC2 (T ) is that McCC2 (T )
takes into account the complexity of the called subtasks too in a recursive way.
A recursive complexity measure would be similar for procedural languages when
a function call would increase the complexity of the callee function by the com-
plexity of the called function. (Loops in the call graph should be handled.)

Developers found the idea of the new metric more intuitive as it takes into ac-
count the semantics too. Later, in our experiments we found that the new metric
correlates well with the complexity ranking of the developers (see Section 4).

3.2 Halstead's Complexity Metrics

Some of the developers also complained that our metrics do not re�ect the com-
plexity of the expressions in their programs. It should be noted here that Magic
handles the expressions of a Task separately. An expression has a unique identi-
�er and can be used many times inside di�erent statements simply by referring
to its identi�er. The application development environment has an expression
editor for editing and handling expressions separately. This results in a coding
style where developers pay more attention on the expressions they use. They see
the list of their expressions and large, complex ones may be easily spotted out.

Halstead's complexity metrics [9] measure the complexity of a program based
on the lexical counts of symbols used. The base idea is that complexity is a�ected



by the used operators and their operands. Halstead de�nes four base values for
measuring the number of distinct and total operands and operators in a pro-
gram (see De�nition 4). The base values are constituents of higher level metrics,
namely, Program Length (HPL), Vocabulary size (HV ), Program Volume (HPV ),
Di�culty level (HD), E�ort to implement (HE ). For the formalized de�nitions
see De�nition 5.

n1: the number of distinct operators
n2: the number of distinct operands
N1: the total number of operators
N2: the total number of operands

Def. 4: Base values for measuring the number of distinct and total operands
and operators in a program.

HPL = N1 +N2

HV = n1 + n2

HPV = HPL ∗ log2(HV )
HD = (n1

2
) ∗ (N2

n2
)

HE = HV ∗HD

Def. 5: Halstead's complexity measures.

In case of Magic, symbols may appear inside expressions so the choice of Hal-
stead's metrics seemed appropriate for measuring the complexity of expressions.
Operands can be interpreted as the symbols like in a 3GL language (e.g. variable
names, task identi�ers, table identi�ers) and operators are the operators (plus,
minus, etc.) inside expressions.

Later, in our experiments we found that the Halstead's metrics correlate
with the complexity ranking of the developers (see Section 4), but the modi�ed
McCabe's complexity is closer to the opinion of the developers.

4 Experiments with Complexity Metrics

Although the classic complexity metrics are successfully adapted to the Magic
language, there are no empirical data available on how they relate to each other
and on their applicability in software development processes. We observed that,
except the McCabe metric, complexity metrics generally do not have a justi�ed
conceptual foundation. Rather, they are de�ned based on experience [18]. We
plan to �ll in the gap �rst, by calculating and evaluating the adapted metrics
on industrial size programs to see their relations; second, by surveying experts
at a Magic developer company to see the usability of the de�nitions. We empha-
size the importance of feedback given by Magic experts. There is no extensive
research literature on the quality of Magic programs. Hence, the knowledge ac-
cumulated during many years of development is essential to justify our metrics.

Thus, to evaluate our metrics, metrical values were computed on a large-
scale Magic application, and a questionnaire was prepared for experienced Magic
developers to see their thoughts on complexity. We sought for answers for the
following research questions:



RQ1: Is there a signi�cant correlation between adapted metrics of Magic pro-
grams?
RQ2: Is there a signi�cant correlation between the complexity ranking given by
developers and the ranking given by the adapted metrics?

We performed static analysis and computed metrics on a large-scale appli-
cation using the MAGISTER system [13] (see Table 1). There are more than
2,700 programs in the whole application, which is a huge number in the world of
Magic. The total number of non-Remark Logic Lines of this application is more
than 300,000. The application uses more than 700 tables.

Metric Value

Number of Programs 2 761
Number of non-Remark Logic Lines 305 064
Total Number of Tasks 14 501
Total Number of Data Tables 786

Table 1. Main characteristics of the system under question.

There were 7 volunteer developers taking part in the survey at the software
developer company. The questionnaire consisted of the following parts:

1. Expertise:
(a) Current role in development.
(b) Developer experience in years.

2. Complexity in Magic:
(a) At which level of program elements should the complexity be measured?
(b) How important are the following properties in determining the complex-

ity of Magic applications? (List of properties is given.)
(c) Which additional attributes a�ect the complexity?

3. Complexity of concrete Magic programs developed by the company.
(a) Rank the following 10 Magic programs (most complex ones �rst).

The most important part of the questionnaire is the ranking of the concrete
programs. This makes possible comparing what is in the developers' mind to the
computed metrics. Subject programs for ranking were selected by an expert of
the application. He was asked to select a set of programs which a) is representa-
tive to the whole application, b) contains programs of various size, c) developers
are familiar with. He was not aware of the purpose of selection. The selected
programs and their main size measures can be seen in Table 2. The number of
programs is small as we expected a solid, established opinion of participants in a
reasonable time. In the table the Total Number of Logic Lines (containing task
hierarchy) (TNLL), the Total Number of Tasks (TNT ), Weighted Logic Units
per Task (WLUT ) and the cyclomatic complexity (McCC2 ) are shown.

5 Results

We �rst discuss our �ndings about complexity measurements gathered via static
analysis of the whole application. Later, we narrow down the set of observed
programs to those taking part in the questionnaire, and �nally we compare them
to the opinion of the developers.



Id Name TNLL TNT WLUT McCC2

69 Engedmény számítás egy tétel 1352 24 10 214
128 TESZT:Engedmény/rabatt/formany 701 16 14 63
278 TÖRZS:Vev® karbantartó 3701 129 47 338
281 TÖRZS:Árutörzs összes adata 3386 91 564 616
291 Ügyfél zoom 930 29 8 27
372 FOK:Fökönyv 1036 31 113 203
377 El®leg bekér® levél képzése 335 6 5 20
449 HALMOZO:Havi forgalom 900 22 3 117
452 HALMOZO:Karton rend/vissz 304 9 4 34
2469 Export_New 7867 380 382 761

Table 2. Selected programs with their size and complexity values.

5.1 RQ1: Is there a signi�cant correlation between adapted metrics

of Magic programs?

Here we investigate the correlation between the previously de�ned metrics.The
McCabe and Halstead metrics are basically di�erent approaches, so �rst we
investigate them separately.

Halstead metrics Within the group of Halstead metrics signi�cant correlation
is expected, because � by de�nition � they depend on the same base measures. In
spite of that, di�erent Halstead measures capture di�erent aspects of computa-
tional complexity. We performed a Pearson correlation test to see their relation
in Magic. Correlation values are shown in Table 3. Among the high expected
correlation values, HD and HE metrics correlate slightly lower with the other
metrics. We justi�ed Halstead metrics using the Total Number of Expressions
(TNE ), which can be computed in a natural way as expressions are separately
identi�ed language elements. The relatively high correlation between TNE and
other Halstead metrics shows that the TNE metric is a further candidate for a
complexity metric. This re�ects suggestions of the developers too. For the sake
of simplicity, in the rest of this paper we use the HPV metric to represent all
�ve metrics of the group.

HPL HPV HV HD HE TNE

HPL 1.000 0.906 0.990 0.642 0.861 0.769
HPV 0.906 1.000 0.869 0.733 0.663 0.733
HV 0.990 0.869 1.000 0.561 0.914 0.773
HD 0.642 0.733 0.561 1.000 0.389 0.442
HE 0.861 0.663 0.914 0.389 1.000 0.661

Table 3. Pearson correlation coe�cients (R2) of Halstead metrics and the Total Num-
ber of Expressions (TNE) (all correlations are signi�cant at 0.01 level).

Comparison of adapted complexity metrics Table 4 contains correlation
data on McCabe-based complexity (WLUT , McCC2 ), HPV and two size met-
rics. The three complexity measures has signi�cant, but only a slight correlation,
which indicates that they show di�erent aspects of the program complexity.



We already presented the di�erences between WLUT and McCC2 before.
The similar de�nitions imply high correlation between them. Surprisingly, based
on the measured 2700 programs their correlation is the weakest (0.007) compared
to other metrics so they are almost independent. McCC2 is measured on the
subtasks too, which in fact a�ects the results. Our expectation was that, for this
reason, McCC2 has a stronger correlation with TNT than WLUT . However, the
McCC2 metric only slightly correlates with TNT . This con�rms that developers
use many conditional statements inside one task, and the number of conditional
branches has a higher impact on the McCC2 value.

WLUT McCC2 HPV NLL TNT

WLUT 1.000 0.007 0.208 0.676 0.166
McCC2 0.007 1.000 0.065 0.020 0.028
HPV 0.208 0.065 1.000 0.393 0.213

Table 4. Pearson correlation coe�cients (R2) of various complexity metrics (all cor-
relations are signi�cant at 0.01 level).

Rank-based correlation From this point on, we analyze the rank-based cor-
relation of metrics. The aim is to facilitate the comparison of results to the ranks
given by the developers. The number of considered programs is now narrowed
down to the 10 programs mentioned before in Section 4. Ranking given by a
certain metric is obtained in the following way: metric values for the 10 pro-
grams are computed, programs with higher metric values are ranked lower (e.g.
the program with highest metric value has a rank no. 1). The selection of 10
programs is justi�ed by the fact, that the previously mentioned properties (e.g.
di�erent sizes, characteristics) can be observed here as well. In Figure 2, the
ranking of Halstead metrics is presented. On the x axis the programs are shown
(program Id), while their ranking value is shown on the y axis (1-10). Each line
represents a separate metric. Strong correlation can be observed as the values
are close to each other. Furthermore, the HD and HE metrics can also be visually
identi�ed as a little bit outliers. (Note: Spearman's rank correlation values are
also computed.) The ranking determined by the three main complexity metrics
can be seen in Figure 3. The x axis is ordered by the McCC2 complexity, so
programs with lower McCC2 rank (and higher complexity) are on the left side.
The similar trend of the three metrics can be observed, but they behave in a
controversial way locally.
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Answering our research question, we found that some of the investigated
complexity measures are in strong correlation, but some of them are independent
measures. We found strong correlation between the Halstead metrics and we
also found that these metrics correlate to the Total Number of Expressions. We
found that our �rst adaptation of cyclomatic complexity (WLUT ) has only a
very weak correlation to our new version (McCC2 ), which correlates well with
other measures. This also con�rms that the new measure might be a better
representation of the developers opinion about complexity.

5.2 RQ2: Is there a signi�cant correlation between the complexity

ranking given by developers and the ranking given by the

adapted metrics?

In the third part of the questionnaire developers were asked to give an order of
the 10 programs which represents their complexity order. Previously, developers
were given a short hint on common complexity measures, but they were asked to
express their subjective opinion too. Most of the selected programs were probably
familiar to the developers since the application is developed by their company.
Furthermore they could check the programs using the development environment
during the ranking process.

Ranks given by the 7 developers are shown in Figure 4, where each line
represents the opinion of one person. It can be seen that developers set up
di�erent ranks. There are diverse ranks especially in the middle of the ranking,
while the top 3 complex programs are similarly selected. Accordingly, developers
agree in the least complex program, which is 2469. Correlations of developers'
ranks were also computed. Signi�cant correlation is rare among the developers,
only ranks of P4, P5 and P6 are similar (Pi denotes a programmer in Figure 4).
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We de�ned the EC value (Experiment Complexity) for each selected program
as the rank based on the average rank given by developers. In Figure 5 the EC
value is shown together with min and max ranks of the developers. We note that
summarizing the developers' opinion in one metric may result in loosing infor-
mation since developers may had di�erent aspects in their minds. We elaborate
on this later in the Threats to Validity section. We treat this value as the opinion
of the developer community.



We compared the EC value to the previously de�ned complexity metrics. Ta-
ble 5 contains correlation values of main metrics. The EC value shows signi�cant
correlation only with the HE measure.

WLUT McCC2 HPV HE EC

WLUT 1.000 0.575 0.218 0.004 0.133
McCC2 0.575 1.000 0.520 0.027 0.203
HPV 0.218 0.520 1.000 0.389 0.166
HE 0.004 0.027 0.389 1.000 0.497
EC 0.133 0.203 0.166 0.497 1.000

Table 5. Correlation of Magic complexity metrics and developers` view (Spearman's
ρ2 correlation coe�cients, marked values are signi�cant at the 0.05 level).

Besides statistical information, complexity ranks are visualized as well. We
found that the rank based correlation obscures an interesting relation between
McCC2 and the EC value. Ranks for each program are shown in Figure 6. The
order of programs follows the McCC2 metric. Despite that Spearman's ρ2 val-
ues show no signi�cant correlation, it can be clearly seen that developers and
McCC2 metric gives the same ranking, except for program 2469. This program
is judged in an opposite way. The program contains many decision points, how-
ever developers say that it is not complex since its logic is easy to understand.
According to the HE metric, this program is also ranked as the least complex.

0

2

4

6

8

10

12

2469 281 278 69 372 449 128 452 291 377

R
a
n
k

Program Id

WLUT

McCC2

HPV

HE

EC

Fig. 6. The EC value compared to the main complexity metrics

Answering our research question we found that the rankings given by adapted
metrics have signi�cant and sometimes surprisingly strong relation to the ranking
given by developers, except for the WLUT metric. Halstead's metrics have a
signi�cant correlation here, especially the HE metric. However, the strongest
relation was discovered in case of the McCC2 metric.

5.3 Discussion of the Limitations

Although we carefully designed our experiments, there are some points which
may a�ect our results and observations. Complexity metrics were computed on



a large-scale and data-intensive application, but the results may be a�ected by
coding style and conventions of a single company. Measurements of Magic appli-
cations from other domains and developer companies are needed. This applies
to the questionnaire as well. The number of participants and selected programs
should be increased to draw general conclusions. Programs were selected by a
person, not randomly based on a speci�c distribution, which may also a�ect our
results. Evaluation of developers' view is done by means of ranking, which re-
sults in loss of information in transforming measured values into ranks. The EC
value is an average rank given by the developers. It would be more realistic to
formalize their viewpoints during the ranking process.

6 Related work

We cited related papers before when we elaborated on our metrics and exper-
iments. We note here, that there are many di�erent approaches for measuring
the complexity of a software at source code level. First, and still popular com-
plexity measures (McCabe [11], Halstead [9], Lines of Code [2]) was surveyed by
Navlakha [15]. A recent survey which sums up todays complexity measures was
published by Sheng Yu et al. [18]. In 4GL environment, to our best knowledge,
there were no previous researches to measure structural complexity attributes of
a Magic application. Even though, for other 4GLs there are some attempts to
de�ne metrics to measure the size of a project [16], [17], [10]. There are also some
industrial solutions to measure metrics in 4GL environment. For instance Rain-
Code Roadmap4 for Informix 4GL provides a set of prede�ned metrics about code
complexity (number of statements, cyclomatic complexity, nesting level), about
SQLs (number of SQL statements, SQL tables, etc.), and about lines (number
of blank lines, code lines, etc.). In the world of Magic, there is a tool for opti-
mization purposes too called Magic Optimizer5 which can be used to perform
static analysis of Magic applications. It does not measure metrics, but it is able
to locate potential coding problems which also relates to software quality.

In 3GL context there are also papers available to analyze the correlation
between certain complexity metrics. For instance, Meulen et al. analyzed about
71,917 programs from 59 �elds written in C/C++ [12]. Their result showed that
there are very strong connections between LOC and HCM, LOC and CCM. Our
work found also similar results, but our research was performed in a 4GL con-
text with newly adapted complexity metrics. We additionally show, that in our
context traditional metrics have totally di�erent meanings for the developers.

7 Conclusions and Future Work

The main scope of our paper was to adapt most widespread 3GL structural
complexity metrics (McCabe's cyclomatic complexity and Halstead's complex-
ity measures) to a popular 4GL environment, the Magic language. We introduced

4 http://www.raincode.com/fglroadmap.html
5 http://www.magic-optimizer.com/



the specialties of Magic and we presented formal de�nitions of our metrics in
4GL environment. Besides the simple adaptation of the metrics, we presented
a modi�ed version of McCabe's cyclomatic complexity (McCC 2), which mea-
sured the complexity of a task by aggregating the complexity values of its called
subtasks too. We addressed research questions about our new metrics whether
they are in relation with developers' complexity ranking or not. We designed
and carried out an experiment to answer our questions and we found that:

� there is signi�cant correlation among all the investigated metrics, and there
is strong correlation between the Halstead measures which also correlate to
the Total Number of Expressions;

� the rankings given by adapted metrics have signi�cant and very strong re-
lation to the ranking given by developers (especially in case of the McCC2,
but except for the WLUT metric).

As an outcome, we found also that our modi�ed measure has a strong correlation
with developers' ranking.

To sum up the conclusions of our work, we make the following remarks:

� We made advancement in a research area where no established metrics (pre-
vious similar measurements and experience reports) were available.

� We successfully adapted 3GL metrics in a popular 4GL environment, in the
Magic language.

� We evaluated our metrics by the developers in a designed experiment and
metrics were found easily understandable and useful.

� A modi�ed version of the McCabe's cyclometic complexity was found to
re�ect surprisingly well the ranking given by the developer community.

Besides gathering all the previously mentioned experiences, the de�ned met-
rics are implemented as part of a software quality assurance framework, namely
theMAGISTER6 system which was designed to support the development pro-
cesses of an industrial Magic application.

About our future plans, as we o�er quality assurance services, we expect to
gain data from other application domains to extend our investigations. Most
importantly we plan to set up appropriate baselines for our new metrics in order
to better incorporate them into the quality monitoring process of the company
and into the daily use.
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