
Where Was This SQL Query Executed?
A Static Concept Location Approach

Csaba Nagy, Loup Meurice, Anthony Cleve
PReCISE Research Center, University of Namur, Belgium
{csaba.nagy,loup.meurice,anthony.cleve}@unamur.be

Abstract—Concept location in software engineering is the
process of identifying where a specific concept is implemented in
the source code of a software system. It is a very common task
performed by developers during development or maintenance,
and many techniques have been studied by researchers to make
it more efficient. However, most of the current techniques ignore
the role of a database in the architecture of a system, which
is also an important source of concepts or dependencies among
them.

In this paper, we present a concept location technique for
data-intensive systems, as systems with at least one database
server in their architecture which is intensively used by its clients.
Specifically, we present a static technique for identifying the exact
source code location from where a given SQL query was sent
to the database. We evaluate our technique by collecting and
locating SQL queries from testing scenarios of two open source
Java systems under active development. With our technique, we
are able to successfully identify the source of most of these
queries.

Keywords—concept location; fault location; static analysis;
data-intensive systems; SQL; JDBC; Hibernate

I. INTRODUCTION

Before developers start working on a given change they
always need to identify which parts of the source code im-
plement the feature, and should be examined first. In practice,
what they do is a concept location task (also known as feature
identification/location) which is “the process that identifies
where a software system implements a specific concept” [1].
The input of this process is a change request and the output
is the location of the change, typically one or more methods
in the source code. The boundaries here are vague, but recent
studies define the concept location process as finding only one
part of the concept implementation which is the starting point
of a change, and the rest of the process (to identify the full
extent of the change) will be dealt with impact analysis, say
[2], [3].

There are many existing approaches for supporting devel-
opers in concept location tasks starting from simple pattern
matching (so-called ‘grep’ techniques) to more sophisticated
methods like IR-based techniques or dependency analysis
[4]. However, existing approaches largely ignore the possible
presence of a database in the architecture, which adds further
sources of artifacts or dependencies among them to the process.

In this paper, we present a static analysis solution for a
typical concept location problem for data-intensive systems:
“where was this query executed?”. In particular, we introduce
a static analysis technique for identifying the source code
location(s) where a given SQL query was sent to the database
server.

Typical scenarios for this task are when queries need to be
optimized for performance, or when they cause failures (e.g.
a syntactic error or a deadlock issue). This task can become
really hard as the complexity of a system grows, especially in
the case of languages where queries are constructed dynam-
ically (e.g. in Java applications using JDBC). For example,
simple grep or code search techniques are not sufficient for
systems where thousands of queries are constructed via string
operations and methods deep in the call hierarchy. Moreover,
persistence frameworks (like Hibernate) can hide the query
construction from developers, further complicating the debug-
ging of such issues.

Dynamic techniques exist to trace the query on the database
or client side. However, dynamic analysis cannot help us in
certain situations. Suppose that the user of the application
experiences performance issues at the database; he identifies
the query which causes the performance drop back in the log
files of the database and sends a bug report. Since the problem
occurred in the database and was reported by it (the client was
not directly affected), we do not have a stack trace in the bug
report. How can we determine where the query was prepared
in the source code? We must reproduce everything exactly as
the user did, which might prove impossible if we depend on
the (possibly confidential) data stored in the database. In such
situations, a static approach seems more appropriate.

II. OVERVIEW

Figure 1 shows the main steps of our concept location
approach. The process starts with the developer who specifies
the SQL query that he would like to find in the source code of
an application. Then we analyze the source files including the
database schema (e.g. in the format of SQL schema export).
The result is a set of matching queries and the locations of the
method invocations that send them to the database.

A. Data Access (Query) Extraction

In our analysis we start by determining all those locations
in the source code where SQL queries are sent to the database,
then resolve the set of potential queries for each location.
There are two typical methods to send a SQL statement to
a database server: it can be specified explicitly and executed
by invoking some methods of APIs (e.g. ODBC or JDBC),
or implicitly, by using higher level APIs, which hide the
lower level communication with the database server from the
developers (e.g. ORMs like Hibernate).

Here, we target two popular libraries from the world of
Java: JDBC and Hibernate. With these libraries, one can access
data tables as follows:

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

580

Fig. 1. Overview of the approach, where the main steps are in numbered boxes with their respective inputs and outputs

• Sending native SQL statements directly to the database
server (e.g. by invoking executeQuery() in JDBC
or createSQLQuery() in Hibernate)

• Constructing HQL or JPA queries as strings to query
the database server (e.g. createQuery() in Hiber-
nate)

• Using criteria queries
• Accessing entity objects (e.g persist(),

saveOrUpdate())

Our approach is currently able to handle the first two cases,
when a query is specified via string operations and it is possible
to extract the query string of a data access point. The success
of this technique relies on the resolution of the values of
string variables, for which we improved our previous study
[5], and we trace back string variables following the control
flow and call graph of the application. When a variable cannot
be resolved statically, the query cannot be fully extracted and
contains unresolved query fragments. As this case is very
common, we design our concept location technique to be
able to handle unresolved query fragments. For this step, it
simply means that we use a special string ‘@@null@@’ as a
placeholder for such fragments.

160 L i s t<Book> getBook (i n t code) {
161 S t r i n g where=”WHERE b . code = : code ” ;
162 Query q = s . c r e a t e Q u e r y (” b . t i t l e FROM Book b ” +

where) ;
163 q . s e t P a r a m e t e r (” code ” , code) ;
164 L i s t<Book> books = q . l i s t () ;
165 r e t u r n books ;
166 }

Fig. 2. Example Hibernate HQL query construction

BookDAO . j a v a (1 6 4) : ” b . t i t l e FROM Book b WHERE b . code
=@@null@@”

Fig. 3. HQL query extracted from the code sample in Figure 2

BookDAO . j a v a (1 6 4) : ”SELECT b . t i t l e FROM book tab b
WHERE b . code=@@null@@”

Fig. 4. A SQL query translated from the HQL query in Figure 3

Figure 2 shows a typical method that constructs an HQL
query to list some books in a database, and Figure 3 shows
the query string that we can extract from this method.

B. ORM-SQL Translation

The goal of this step is to handle data access points where
we cannot extract a SQL query string, e.g. because an ORM
library generates and sends the queries to the database server.

We implement this step by invoking the internal HQL
to SQL compiler of Hibernate (org.hibernate.hql.
QueryTranslator) for each HQL or JPA query with the
same context that would be used for execution. Therefore,
when data is accessed by HQL or JPA queries, we are able
to generate the SQL query that would be sent to the database
by Hibernate at runtime. A sample result of such a translation
can be seen in Figure 4.

For data object accesses and criteria queries, however, we
cannot use the internal translation engine of Hibernate. One
possible solution here is to manually generate a SQL query
based on the data objects accessed and the API methods used
to access it. During this SQL generation, any uncertainty of
dynamic constructs could be handled by using placeholders for
unresolved query fragments as illustrated above. However, our
current implementation does not support these data accesses.

C. SQL Parsing

Once we have all the potential data access points and all the
native or translated SQL queries, the next step is to compare
all these with the query that the developer is interested in. We
perform this comparison at the level of Abstract Syntax Trees
(ASTs) in order to have more flexibility for the comparison and
to be able to handle unresolved query fragments. It requires a
robust SQL parser which is able to handle the dialect of the
targeted database management system, and to parse statements
with unresolved query fragments.

Our current implementation has a SQL parser which sup-
ports the MySQL dialect and whenever it reaches an unre-
solved query fragment, it adds a special node to the AST
that we call a Joker node. In Figure 5 we can see an AST
constructed from the statement given in Figure 4.

581

Fig. 5. Illustration of the AST of the query in Figure 4

Fig. 6. Example AST matching the AST in Figure 5

D. Query Matching

The goal here is to find those queries that we extracted and
have ASTs matching the AST of the query searched by the
developer. This can be viewed as a clone matching technique
where we attempt to find clones between the extracted and
searched queries.

When we compare the ASTs, we follow our recursive
definition of the matching relation matchexact(ti, tj) between
ti and tj trees, which we define as true if all the attributes
of the root node of ti (root(ti)) (including the type of the
node) are equal to the attributes of root(tj), and for all
the tik subtrees of root(ti) and tjk subtrees of root(tj),
matchexact(tik , tjk).

To handle the unresolved fragments, ‘joker’ nodes should
match any other nodes or subtrees. That is, we define
match(ti, tj) as true if either ti or tj is a ‘joker’ node or
matchexact(ti, tj) is true.

Figure 6 shows a sample AST which is in match relation
with the AST in Figure 5. All the nodes are exactly the same,
except the Literal node, which matches the ‘joker’ node in
the tree.

III. EVALUATION

We implemented our approach for systems written in Java
and accessing a database via JDBC and/or Hibernate. To
evaluate it, we tested the implementation on two open source
systems, namely OSCAR EMR Clinical Management System1

and OpenMRS Medical Record System2. Both systems use
JDBC and Hibernate intensively and while OpenMRS uses
89 tables with a Java code base over 301 kLOC, Oscar has
480 tables and 2054 kLOC (see Table I). The size and the
architecture of these systems allow us to demonstrate the
efficiency of our approach in a real world environment.

1http://http://oscar-emr.com/
2http://openmrs.org/

A. Query Extraction and SQL Parsing

Table I shows the number of SQL queries that we suc-
cessfully extracted and parsed from the source code of Oscar3

and OpenMRS4. Both systems follow the Data Access Object
pattern (but not strictly), hence most of the queries are prepared
and sent to the database from DAO classes. It can be seen,
however, that Oscar mixes the usage of JDBC and Hibernate,
while OpenMRS uses Hibernate more extensively. The col-
umn of successfully parsed statements shows the number of
queries for which we could successfully construct an AST.
Queries that we cannot parse might contain syntactic errors or
language constructs that our parser cannot handle in its current
implementation state.

TABLE I
SIZE METRICS OF THE SYSTEMS AND THE NUMBER OF QUERIES

EXTRACTED AND SUCCESSFULLY PARSED

System LOC Tables JDBC Queries Hibernate HQL/JPA
Extracted Parsed Extracted Parsed

Oscar 2 054 940 480 123 643 123 298 27 242 9 005
OpenMRS 301 232 89 88 73 205 151

B. Query Matching

To play the role of the developer who seeks a problematic
query, we collected SQL queries from execution traces of
usage and testing scenarios. Both Oscar and OpenMRS have
a test database available in their source repository, and their
developers intensively use unit tests for basic functionalities
and DAO implementations too. Oscar and OpenMRS have
1311 and 3258 test cases respectively, in their unit testing
framework. We executed all these test cases and used log4jdbc5

to trace database usage. For all the collected SQL queries,
we saved the actual stack trace too. Then we filtered queries
(based on their traces) that were sent to the database via JDBC
or Hibernate HQL/JPA and we tried to locate them with our
method.

The concept location task is injective: one query is sent to
the database from exactly one location. However, one location
can implement several queries. In fact, the same query string
could be constructed in more locations too. Owing to this fact,
and because of unresolved code fragments, we usually cannot
report just the exact location where the query was sent to the
database, but provide a set of matching locations. We treat
(for the evaluation) this set as true positive if it contains the
locations where the query was sent to the database, and false
positive otherwise.

Table II and III show the number of queries and the true
positive (TP) or false positive (FP) location sets, respectively,
with the true or false positive ratios (TPR, FPR). Queries
where the set of locations reported is empty are false negatives
(Queries − TP − FP). Max, Avg, V ar Match stands for
the maximum, average and variance values for the sizes of the
sets of locations reported.

The results of JDBC reveal that we were able to identify
most of the queries of Oscar usage scenarios with a TPR
(which is actually equal to the recall in our case) of 87-99%.

3Checked out from GitHub at August 26, 2014.
4Checked out from GitHub at November 6, 2014.
5https://code.google.com/p/log4jdbc/

582

TABLE II
TRUE AND FALSE POSITIVE RATIO OF LOCATIONS REPORTED FOR JDBC QUERIES

System Test Scenario Queries TP TPR FP FPR Max. Match Avg. Match Var.

Oscar Billing 103 102 0.9903 0 0.0000 19 9.9706 8.4983
Oscar Change Password 3 2 0.6667 0 0.0000 2 1.5000 0.5000
Oscar First Login 3 2 0.6667 0 0.0000 2 1.5000 0.5000
Oscar New Demographic 3 2 0.6667 0 0.0000 2 1.5000 0.5000
Oscar Request Consultation 101 100 0.9901 0 0.0000 19 1.5000 10.1400
Oscar Send Message 5 3 0.6000 0 0.0000 2 1.3333 0.4444
Oscar Update User 3 2 0.6667 0 0.0000 2 1.5000 0.5000
Oscar Writing Prescriptions 3 2 0.6667 0 0.0000 2 1.5000 0.5000
Oscar Unit Tests 1005 650 0.6468 14 0.0139 4 1.5136 0.5027
OpenMRS Unit Tests 39 34 0.8718 0 0.0000 4 2.1176 0.4948

TABLE III
TRUE AND FALSE POSITIVE RATIO OF LOCATIONS REPORTED FOR HIBERNATE QUERIES

System Test Scenario Queries TP TPR FP FPR Max. Match Avg. Match Var.

Oscar Add Provider 20 19 0.9500 0 0.0000 1 1.0000 0.0000
Oscar Add Role 22 20 0.9091 0 0.0000 1 1.0000 0.0000
Oscar Billing 702 294 0.4188 2 0.0028 5 1.0845 0.1598
Oscar Change Password 39 33 0.8462 0 0.0000 1 1.0000 0.0000
Oscar First Login 77 60 0.7792 0 0.0000 1 1.0000 0.0000
Oscar New Demographic 67 47 0.7015 1 0.0149 5 1.1250 0.2344
Oscar Request Consultation 498 150 0.3012 2 0.0040 5 1.0658 0.1264
Oscar Send Message 43 36 0.8372 1 0.0233 2 1.0270 0.0526
Oscar Update User 56 39 0.6964 0 0.0000 1 1.0000 0.0000
Oscar Writing Prescriptions 100 67 0.6700 1 0.0100 2 1.0294 0.0571
Oscar Unit Tests 1559 950 0.6094 23 0.0148 5 1.1079 0.1970
OpenMRS Unit Tests 317 268 0.8454 0 0.0000 4 1.0672 0.1283

The results of Hibernate look promising too. Except for
two scenarios, we were able to identify the origin of 60-
95% of the queries by reporting almost everywhere just the
matching location (see Avg. Match values). These results could
probably be improved by getting a better parsed-extracted ratio
for HQL/JPA queries in Oscar (see Table I).

Figure 7 shows a sample SQL query that we traced from
the Billing scenario of Oscar and its origin, which is shown
in Figure 8.

s e l e c t b i l l i n g s e r 0 . b i l l i n g s e r v i c e n o as b i l l i n g s 1 3 7 3 ,
b i l l i n g s e r 0 . a n a e s t h e s i a a s anaes the2 373 , b i l l i n g s e r 0 .
b i l l i n g s e r v i c e d a t e a s b i l l i n g s 3 3 7 3 , b i l l i n g s e r 0 .
d e s c r i p t i o n as d e s c r i p t 4 3 7 3 , b i l l i n g s e r 0 . d i s p l a y s t y l e a s
d i s p l a y s 5 3 7 3 , b i l l i n g s e r 0 . g s t F l a g as g s t F l a g 3 7 3 ,
b i l l i n g s e r 0 . p e r c e n t a g e as p e r c e n t a g e 3 7 3 , b i l l i n g s e r 0 .
r e g i o n as reg ion373 , b i l l i n g s e r 0 . s e r v i c e c o d e as
s e r v i c e 9 3 7 3 , b i l l i n g s e r 0 . s e r v i c e c o m p o s i t e c o d e as
s e r v i c e 1 0 3 7 3 , b i l l i n g s e r 0 . s l i F l a g as s l i F l a g 3 7 3 ,
b i l l i n g s e r 0 . s p e c i a l t y a s s p e c i a l t y 3 7 3 , b i l l i n g s e r 0 .
t e r m i n a t i o n d a t e as te rmina13 373 , b i l l i n g s e r 0 . v a l u e as
va lue373 from b i l l i n g s e r v i c e b i l l i n g s e r 0 where
b i l l i n g s e r 0 . s e r v i c e c o d e = ’A001A ’ and b i l l i n g s e r 0 .
b i l l i n g s e r v i c e d a t e =(s e l e c t MAX(b i l l i n g s e r 1 .
b i l l i n g s e r v i c e d a t e) from b i l l i n g s e r v i c e b i l l i n g s e r 1 where
b i l l i n g s e r 1 . b i l l i n g s e r v i c e d a t e <=’2014−10−28 ’ and
b i l l i n g s e r 1 . s e r v i c e c o d e = ’A001A ’) ;

Fig. 7. An example SQL query from the Billing scenario of Oscar

236 p u b l i c O b j e c t [] g e t U n i t P r i c e (S t r i n g bcode , Date d a t e) {
237 S t r i n g s q l = ” s e l e c t bs from B i l l i n g S e r v i c e bs where

bs . s e r v i c e C o d e = ? and bs . b i l l i n g s e r v i c e D a t e = ? ” ;
238 Query que ry = e n t i t y M a n a g e r . c r e a t e Q u e r y (s q l) ;
239 que ry . s e t P a r a m e t e r (1 , bcode) ;
240 que ry . s e t P a r a m e t e r (2 , g e t L a t e s t S e r v i c e D a t e (da t e , bcode)

) ;
241

242 L i s t<B i l l i n g S e r v i c e> r e s u l t s = que ry . g e t R e s u l t L i s t () ;
243 . . .
244 }

Fig. 8. The original HQL query and the Java code which prepares the query
in Figure 7 (BillingServiceDao.java)

We collected the biggest number of distinct query strings
from unit tests and got false positive reports because of
methods in complex DAO classes where we could not extract
query strings due to dynamic query construction.

C. Threats to Validity

Oscar and OpenMRS have been developed by two separate
communities, hence, they have a different design and use a
different coding style, e.g. for data accesses. It makes them
good candidates for our technique, but so far our evaluation
was performed only on them and it is possible that other
systems might produce different results.

Our implementation is limited to some technologies as
well. The query extraction technique is limited to JDBC and
Hibernate and able to extract SQL, HQL and JPA queries and
to identify data access points for criteria queries or simple
Object accesses. The ORM-SQL translation is just able to
handle HQL and JPA while the SQL parser supports only
MySQL. Hence, we had to make the assumption for our
evaluation that a developer seeks these kinds of queries and
when we collected SQL strings, we filtered and kept only
JDBC/Native/HQL/JPA queries. With this filtering, we also
filtered statements that were also generated by Hibernate, e.g.
because of two-pass (Eager/Lazy) fetching. We note, however,
that for a general solution it would be necessary to support all
the special features of the ORM library.

IV. RELATED WORK

Pioneer research on concept location dates back to the
early ’90s when Wilde et al. addressed the problem of locating
user functionalities by “using carefully designed test cases as
probes to identify code that is closely related to a particular
user functionality” [6]. Since then, many researchers have
studied different techniques, which they sometimes refer to as
feature/concern location/identification too. Wilde et al. used
a dynamic approach, but there are static techniques such as

583

information retrieval [2] or dependency analysis [7]; or it is
also possible to combine static and dynamic approaches [8].
Dit et al. published a survey in which they identified 89 papers
dealing with concept location [4].

One core step of our approach is the extraction of query
strings from the source code, called the query extraction. Here,
we rely on a technique by Meurice et al. [5] because of its
ability to handle unresolved fragments. This area has also
been intensively studied [9], [10] for different purposes such
as quality assessment [11] and error checking [12], [13]. Some
of these approaches are called as SQL fault localization [14] or
fault diagnostics [15], but their goal is different (prevention by
identifying erroneous SQL statements). Available techniques
are usually unable to handle unresolved fragments of a query
string, which allows us to compare extracted strings with
concrete queries.

Our method for identifying data access points and ex-
tracting nested SQL queries has many other applications such
as test generation [16], test coverage measurement [17], test
selection [18], database semantic recovery [19], optimization
[20] and impact analysis [21].

Compared to the above approaches, our study is, to the
best of our knowledge the very first to propose a static analysis
technique that addresses a specific concept location question
for database applications: where was this SQL query executed?

V. CONCLUSIONS AND FUTURE PLANS

There are several forum questions and blog posts like
“Finding the origin of a Query”6 and “Backtrace from SQL
query to application code”7 and because of the lack of static
tools, they almost always recommend a dynamic solution. In
contrast, as we pointed out earlier, dynamic analysis is not
always feasible. Here, our goal was to devise a static analysis
approach and to demonstrate its potential use.

Preliminary results show that a static technique can achieve
good precision and recall with good true/false positive ratio
in locating SQL queries sent to the database over JDBC or
Hibernate. Although our implementation is just limited to
these technologies, the main steps of the approach are general
enough to be adapted to other technologies (e.g. a different
ORM), and may possibly provide similar results.

As we mentioned above, we are not able to handle all
the features of Hibernate, but we have preliminary solutions.
Once we are able to handle Criteria queries and simple Object
accesses, we can perform a thorough evaluation on more
systems and usage scenarios.

ACKNOWLEDGEMENTS

The second author of this paper is supported by the F.R.S.-
FNRS via the DISSE project.

REFERENCES

[1] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev, “Static
techniques for concept location in object-oriented code,” in Proc. of the
13th International Workshop on Program Comprehension (IWPC’05).
IEEE Comp. Soc., 2005, pp. 33–42.

6http://java.dzone.com/articles/hibernate-debugging-where-does
7http://stackoverflow.com/questions/12631315/backtrace-from-sql-query-to-

application-code

[2] D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location using
formal concept analysis and information retrieval,” ACM Trans. Softw.
Eng. Methodol., vol. 21, no. 4, pp. 23:1–23:34, 2012.

[3] M. Revelle, B. Dit, and D. Poshyvanyk, “Using data fusion and
web mining to support feature location in software,” in Proceedings
of the 18th International Conference on Program Comprehension
(ICPC2010). IEEE, June 2010, pp. 14–23.

[4] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[5] L. Meurice, J. Bermudez, J. Weber, and A. Cleve, “Establishing
referential integrity in legacy information systems - reality bites!” in
Proc. of 30th Interntional Conference on Software Maintenance and
Evolution (ICSME2014). IEEE Comp. Soc., Oct. 2014.

[6] N. Wilde, J. Gomez, T. Gust, and D. Strasburg, “Locating user func-
tionality in old code,” in Proceerdings of Conference on Software
Maintenance, 1992, Nov 1992, pp. 200–205.

[7] M. Trifu, “Improving the dataflow-based concern identification ap-
proach,” in Proceedings of the 2009 European Conference on Software
Maintenance and Reengineering (CSMR ’09). IEEE Comp. Soc., 2009,
pp. 109–118.

[8] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source
code,” IEEE Trans. Softw. Eng., vol. 29, no. 3, pp. 210–224, Mar. 2003.

[9] B. Wiedermann, A. Ibrahim, and W. R. Cook, “Interprocedural query
extraction for transparent persistence,” SIGPLAN Not., vol. 43, no. 10,
pp. 19–36, Oct. 2008.

[10] M. Veanes, P. Grigorenko, P. Halleux, and N. Tillmann, “Symbolic
query exploration,” in Proceedings of the 11th International Confer-
ence on Formal Engineering Methods: Formal Methods and Software
Engineering (ICFEM ’09). Springer-Verlag, 2009, pp. 49–68.

[11] H. v. d. Brink, R. v. d. Leek, and J. Visser, “Quality assessment for
embedded SQL,” in Proceedings of the Seventh IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM
’07). IEEE Comp. Soc., 2007, pp. 163–170.

[12] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static checking of
dynamically generated queries in database applications,” ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 4, Sep. 2007.

[13] M. Sonoda, T. Matsuda, D. Koizumi, and S. Hirasawa, “On automatic
detection of SQL injection attacks by the feature extraction of the
single character,” in Proceedings of the 4th International Conference
on Security of Information and Networks (SIN ’11). ACM, 2011, pp.
81–86.

[14] S. R. Clark, J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold,
“Localizing SQL faults in database applications,” in Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’11). IEEE Comp. Soc., 2011, pp. 213–222.

[15] M. A. Javid and S. M. Embury, “Diagnosing faults in embedded queries
in database applications,” in Proceedings of the 2012 Joint EDBT/ICDT
Workshops (EDBT-ICDT ’12). ACM, 2012, pp. 239–244.

[16] K. Pan, X. Wu, and T. Xie, “Guided test generation for database
applications via synthesized database interactions,” ACM Trans. Softw.
Eng. Methodol., vol. 23, no. 2, pp. 12:1–12:27, Apr. 2014.

[17] M. J. Suárez-Cabal and J. Tuya, “Using an SQL coverage measurement
for testing database applications,” SIGSOFT Softw. Eng. Notes, vol. 29,
no. 6, pp. 253–262, Oct. 2004.

[18] D. Willmor and S. M. Embury, “A safe regression test selection
technique for database-driven applications,” in Proceedings of the 21st
IEEE International Conference on Software Maintenance (ICSM ’05).
IEEE Comp. Soc., 2005, pp. 421–430.

[19] A. Cleve, J.-R. Meurisse, and J.-L. Hainaut, “Database semantics
recovery through analysis of dynamic SQL statements,” in Journal on
Data Semantics XV, S. Spaccapietra, Ed. Berlin, Heidelberg: Springer-
Verlag, 2011, ch. Database Semantics Recovery Through Analysis of
Dynamic SQL Statements, pp. 130–157.

[20] W. Kim, “On optimizing an SQL-like nested query,” ACM Trans.
Database Syst., vol. 7, no. 3, pp. 443–469, Sep. 1982.

[21] A. Maule, W. Emmerich, and D. S. Rosenblum, “Impact analysis of
database schema changes,” in Proceedings of the 30th International
Conference on Software Engineering (ICSE ’08). ACM, 2008, pp.
451–460.

584

