
Do Automatic Refactorings Improve Maintainability?
An Industrial Case Study
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Abstract—Refactoring is often treated as the main remedy
against the unavoidable code erosion happening during software
evolution. Studies show that refactoring is indeed an elemental
part of the developers’ arsenal. However, empirical studies
about the impact of refactorings on software maintainability still
did not reach a consensus. Moreover, most of these empirical
investigations are carried out on open-source projects where
distinguishing refactoring operations from other development
activities is a challenge in itself.

We had a chance to work together with several software de-
velopment companies in a project where they got extra budget to
improve their source code by performing refactoring operations.
Taking advantage of this controlled environment, we collected
a large amount of data during a refactoring phase where the
developers used a (semi)automatic refactoring tool. By measuring
the maintainability of the involved subject systems before and
after the refactorings, we got valuable insights into the effect of
these refactorings on large-scale industrial projects. All but one
company, who applied a special refactoring strategy, achieved a
maintainability improvement at the end of the refactoring phase,
but even that one company suffered from the negative impact of
only one type of refactoring.

Index Terms—automatic refactoring; software maintainability;
coding issues; ISO/IEC 25010

I. INTRODUCTION

Refactoring has become an integral part of the software
life cycle. Developers do these restructurings as a regular
task and studies show that they really perform them often:
about 70–80% of all structural changes in the code are due
to refactorings [1], [2]. Since this term first appeared in the
literature [3], [4], it has described smaller or larger structural
changes in the source code to improve its quality, but keeping
its original behavior. As Fowler defines it, refactoring is “a
change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing
its observable behavior” [4]. He proposes this technique
mainly for improving understandability and changeability.
However, further research work show that the idea can also be
applied to other purposes [5], such as improving performance,
security, and reliability. In fact, as our previous research [6]
indicates, developers often tend to do refactoring to fix coding
issues that clearly affect the quality of the system, besides
refactoring code smells or antipatterns.

By definition, the intention of developers with refactoring
is to improve comprehensibility, maintainability, hence the
quality of the source code. However, there is a disagreement
in the literature whether it truly improves quality or not.
For instance, an ‘extract method’ operation may decrease the

average complexity of methods in a class, but may increase
other metrics, such as the number of methods, or even coupling
or cohesion metrics. That is, we win some improvements on
one hand, but we loose some on the other hand. It is hard to
find a good balance. Therefore, many researchers investigate
the impact of refactoring on source code metrics or source
code quality [7]–[13], but there is no general agreement on the
results. Most of these studies were performed on several small
and/or open-source projects, and experience reports on large-
scale proprietary software systems are still missing to help to
understand how developers use – or should use – refactorings.

We had a chance to work together with 5 software develop-
ment companies from the ICT sector in a project where they
got extra budget to improve their source code by refactoring.
First, they did the task manually, and later, after we developed
a tool together to automate refactorings, they used the tool
to commit thousands of automatic refactorings. Thanks to
the project requirements, all the refactorings were thoroughly
documented. In our previous work [6], we investigated what
kind of manual restructurings were targeted by the developers
(e.g. eliminating bad smells, improving metrics, fixing coding
issues) and we found that they mostly decided to fix coding
issues, which can cause faults. Later, we studied the effects of
manual refactorings on source code maintainability [14].

In the work presented in this paper, we study the effects
of automatic refactorings on source code maintainability in
a fully industrial environment. As developers decided to fix
coding issues, the refactorings studied here are also about
these issues. For measuring source code maintainability, we
employed the ColumbusQM maintainability model [15] which
is implemented in the QualityGate tool [16].

We found that the resulting source code of automatic refac-
torings are different compared to those of manual refactorings,
because developers tend to accept an automatically generated
code modification even if it is not the best solution that they
would use by performing manual refactoring. To study this
situation, we address the following questions:

1) Does automatic refactoring increase the overall maintain-
ability of a software system?

2) What is the impact of different automatic refactoring
types on software maintainability?

3) What is the impact of different automatic refactoring
types on the code metrics used in the maintainability
model?
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Figure 1. ColumbusQM maintainability model attribute dependency graph (ADG)

We will show in our in vivo case study that the answers to
these questions are not as straightforward as one might think
at first glance. All the data we used is available as an online
appendix to ease the reproduction of this study.1

The rest of the paper is organized as follows. In Section II
we give an overview of the project background and the main-
tainability model that we use for the analysis. In Section III,
we introduce the methodology how we address our practical
questions, and we present the results in Section IV. Finally,
we give an overview of the related work in Section VI and
draw our conclusions in Section VII.

II. BACKGROUND

A. Motivating Project

This work was part of an R&D project supported by the
EU and the Hungarian Government. The goal of the 2-year
project was to develop a software refactoring framework,
methodology and software tools to support the “continuous
reengineering” methodology, hence provide support to identify
problematic code parts in a system and to refactor them to
enhance maintainability. During the project, we developed an
automatic/semi-automatic refactoring framework and tested it
on the source code of the industrial partners, having an in vivo
environment and live feedback on the tools. So partners not
only participated in this project to develop the refactoring
tools, but they also tested and used the toolset on the source
code of their own products. This provided a good chance to
them to refactor their code and improve its maintainability.

Five experienced software companies were involved in
this project. These companies were founded in the last two
decades and some of their projects were initiated before the
millennium. Their projects consisted of about 5 million lines of
code altogether, written mostly in Java, and covered different
ICT areas like ERPs, ICMS and online PDF Generation. An
overview of these can be seen in Table I.

B. Estimation of the Maintainability Change

Several maintainability models exist which try to numeri-
cally express the maintainability of a software system. Most

1http://www.inf.u-szeged.hu/~ferenc/papers/ICSME2015/

Table I
COMPANIES INVOLVED IN THE PROJECT

Company Primary domain

Company I. Enterprise Resource Planning (ERP)
Company II. Integrated Business Management
Company III. Integrated Collection Management
Company IV. Specific Business Solutions
Company V. Web-based PDF Generation

of these models rely on the observation that the increase of
some code metrics (e.g. length of the code, or complexity)
indicate decrease in the maintainability, thus software quality.
Chidamber and Kemerer [17] defined several object-oriented
metrics; these definitions are de facto standards used in many
works. Gyimóthy et al. [18] validated empirically that the
increase of some of the defined metrics (e.g. CBO) indeed
increase the probability of faults.

To calculate the absolute maintainability values for the
refactored and prior revisions of all the systems we
used the ColumbusQM probabilistic software maintainability
model [15] that is based on the quality characteristics defined
by the ISO/IEC 25010 [19] standard. In the current work
we treat the estimation of maintainability as a “black box”,
but it is important to give a high level overview of how this
maintainability model works internally.

The computation of the high-level quality characteristics is
based on a directed acyclic graph (see Figure 1) whose nodes
correspond to quality properties that can either be internal
(low-level) or external (high-level). Internal quality properties
characterize the software product from an internal (developer)
view and are usually estimated by using source code metrics.
External quality properties characterize the software product
from an external (end user) view and are usually aggregated
somehow by using internal and other external quality prop-
erties. The nodes representing internal quality properties are
called sensor nodes as they measure internal quality directly
(white nodes in Figure 1). The other nodes are called aggregate
nodes as they acquire their measures through aggregation.
In addition to the aggregate nodes defined by the standard
(dark gray nodes), there are also new ones introduced (light
gray nodes). The used version of the maintainability model
considers the metrics listed in Table II.
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Table II
SOURCE CODE METRICS USED BY THE MAINTAINABILITY MODEL

Metric Abbr. Description

Logical Lines Of Code LLOC Number of non-comment and non-empty lines of code.
Number Of Ancestors NOA Number of classes that a given class directly or indirectly inherits from.
Nesting Level Else-if NLE The maximum of the control structure depth in a method. Only if, switch, for, foreach, while, and do. . . while instructions

are taken into account and in the if-else-if constructs only the first if instruction is considered.
Coupling Between Object classes CBO A class is coupled to another if the class uses any method or attribute of the other class or directly inherits from it.

CBO is the number of coupled classes.
Clone Coverage CC A real value between 0 and 1 that expresses what amount of the item is covered by code duplication.
NUMber of PARameters NUMPAR The number of parameters of the methods.
McCabe’s Cyclomatic Complexity McCC The value of the metric is calculated as the number of the following instructions plus 1: if, for, foreach, while,

do-while, case label (which belongs to a switch instruction), catch, conditional statement (?:).
Number of Incoming Invocations NII The number of other methods and attribute initializations which directly call the method. If a method is invoked several

times from the same method or attribute initialization, it is counted only once.
API Documentation AD Ratio of the number of documented public methods in the class + 1 if the class itself is documented to the number of all

public methods in the class + 1 (the class itself).
Comment Lines of Code CLOC Number of comment and documentation code lines of a method.
Comment Density CD Ratio of the comment lines of a method (CLOC) to the sum of its comment (CLOC) and logical lines of code (LLOC).
Critical / Major / Minor issues – Number of critical/major/minor coding rule violations in the methods.

The edges of the graph represent dependencies between an
internal and an external or two external properties. The aim
is to evaluate all the external quality properties by performing
an aggregation along the edges of the graph, called attribute
dependency graph (ADG). A so-called goodness value (from
the [0,1] interval) is calculated for each node in the ADG that
expresses how good or bad (1 is the best) is the system regard-
ing that quality attribute. These values are transformed into
the [0,10] interval by the QualityGate2 SourceAudit tool [16]
which implements the model, therefore we will use this scale
throughout the paper. The probabilistic statistical aggregation
algorithm uses a so-called benchmark as the basis of the
qualification, which is a source code metric repository database
with 100 open-source and industrial software systems. For
further details on ColumbusQM, please refer to the work of
Bakota et al. [15].

III. METHODOLOGY

Figure 2 shows a brief overview of the automatic refactoring
phase of the project. In this phase, developers of participating
companies were asked to use the implemented Refactoring
Framework3 to execute refactoring tasks on their systems
(semi)automatically. This framework is implemented as a
server-side component providing three types of services:
• A static source code analyzer tool set to derive low-level

quality indicators to be used for identifying refactoring
targets.

• A persistence layer above a database for storing and
querying analysis data (with a complete history).

• A set of web services capable of (semi)automatically ex-
ecuting various refactoring operations to eliminate certain
coding issues and generating a source code patch to be
applied on the original code base.

As can be seen from the above list, the framework was not
only providing refactoring algorithms for the developers, but
it gave them support to identify possible targets for refactoring
by analyzing their systems using a static source code analyzer,

2https://www.quality-gate.com/
3http://www.sed.inf.u-szeged.hu/FaultBuster

namely the SourceMeter4 tool which is based on the Columbus
technology [20] (Step 1). Although the tool is able to give a
list of problematic code fragments including coding issues,
antipatterns (e.g. duplicated code, long functions) and source
code elements with problematic metrics at different levels (e.g.
classes/methods with too high complexity and classes with
bad coupling or cohesion metrics), given that the framework
only supports the refactoring of 21 different coding issues, the
companies were asked to fix issues from this list.

Figure 2. Overview of the refactoring process

It was a project requirement for the developers to refactor
their own code, hence improve its maintainability, but they
were free to select how they go through that. So it was
the choice of the developers what kind of coding issues
they fix with the help of the framework. The process of
fixing a coding issue was to apply the appropriate refactoring
operation offered by the framework through the developers’
standard development environment. Plugins were created for
all three IDEs the companies used (Eclipse, NetBeans, and
IntelliJ IDEA) to easily utilize the functionalities provided
by the Refactoring Framework. These plugins were able to
load from the framework and to present in the IDEs all
the detected coding issues that the developers were able to
refactor (semi)automatically (Step 2). To apply a refactoring

4https://www.sourcemeter.com/
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operation, the developers selected an issue from the code and
called the refactoring service through the IDE plugins (Step
3). Some of the refactoring algorithms could be executed
fully automatically, like the refactoring of “Local Variable
Could Be Final” coding issue (i.e. inserting the final key-
word in front of a variable is unambiguous), while other
refactoring types required user interaction, thus were executed
semi-automatically (e.g. to refactor “Empty Catch Block” we
asked the developers what to insert into the empty block).
Regardless of the type of the refactoring, after gathering all
the required information from the plugin, a request was sent
to the Refactoring Framework to perform the refactoring step
on the code (Step 4).

The description of the refactoring mechanism in detail is
beyond the scope of this study, but in short, the framework per-
formed graph transformations on the abstract semantic graph
(ASG) built from the source code to produce the appropriate
refactorings. After a refactoring operation was carried out on
the ASG, the framework re-generated the transformed source
code. To avoid the unnecessary alternations of the code layout,
the framework generated only a patch for the affected code
part, not the entire source code. This patch was sent back to
the IDE plugins in which the developers were able to preview
the modifications (with the help of the built-in diff viewers
of the IDEs) before they applied it (Step 5). Of course, the
developers had the possibility to discard the changes if they
were not satisfied with the resulting refactored code. In that
case, no changes were made in the code base. Note, that
the framework allowed fixing multiple issues at once, but
this type of batch refactorings had to be of the same type
(for example, the framework was able to fix hundreds of
PositionLiteralsFirstInComparisons issues in one patch, but
mixing issues was not supported). If the provided patch got
accepted, the developers applied them on the current code base
and performed a commit to upload the refactored code into the
source code repository (Step 6).

Besides applying concrete refactorings, the project required
that the companies fill out a survey (that we collected in the
same framework) after each refactoring and give an expla-
nation on what and why they refactored during their work
(Step 7). The survey contained revision related information as
well, so we could relate one refactoring to a revision in the
version control systems.

After this refactoring phase, we analyzed the marked re-
visions and investigated the change in the maintainability
of the systems caused by refactoring commits. Figure 3
gives an overview of this analysis. It was not a requirement
from the developers that they commit only refactorings to
the version control system, or that they create a separate
branch for this purpose. It was more realistic, and some
developers particularly asked us to commit these changes to
the mainline or development branches, so they could develop
their system in parallel with the refactoring process. What was
a requirement though is that a commit containing refactoring
operations could not contain other code modifications. Hence,
for each system we could identify the revisions (rt1 , ...,

rti , ..., rtn ) that were reported in the surveys collected by
the Refactoring Framework after refactoring commits, and
we analyzed all these revisions with the revisions prior to
them. As a result, we considered for a system the set of
revisions rt1−1, rt1 , ..., rti−1, rti , ..., rtn−1, rtn where rti is a
refactoring commit and rti−1 is the revision prior to this
commit.

We performed the analysis of these revisions of the source
code with the QualityGate SourceAudit tool [16], which uses
the maintainability model explained in Section II-B. If a
commit contained more than one refactoring of the same type
– because the framework supported such way of bulk fixing the
issues – we calculated the average amount of maintainability
changes of a refactoring type by dividing the maintainability
change caused by the whole commit with the number of
actual refactorings contained in it. Everywhere in the paper, if
we deal with maintainability change caused by a refactoring
type, we use the average values of these changes. This is of
course a small threat to validity, as it is not guaranteed that
all the fixed issues in various places in the code affect the
maintainability the same way. However, all the refactorings
were performed by an automatic framework which resulted
in very similar (though due to the possible manual steps not
necessarily the same) fixes for the issues, therefore the chances
that these refactorings had different impacts on maintainability
is minimal. Besides analyzing the maintainability of the above
revisions, we gathered data from the version control system
as well, such as diffs and log messages.

Figure 3. Overview of the analysis process

IV. RESULTS

Following the process described in Section III, the com-
panies performed a large number of automatic refactorings
on their own code base using the Refactoring Framework
developed within the project. They uploaded almost 4,000
refactorings to the source code repositories in more than 1,000
commits altogether (see Table III). We analyzed 4 projects
of 4 different companies and collected data according to
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the method depicted in Figure 3. That is, we calculated all
the maintainability changes caused by refactoring commits
and aggregated the data at various levels. As the utilized
maintainability model takes the number of coding issues into
consideration (see Figure 1) and the Refactoring Framework
supports the refactoring of such coding issues, one might
think that it is trivial that upon refactoring the maintain-
ability of code will increase. Nonetheless, fixing an issue
might cause code changes that lead to e.g. changes in code
clones, new coding issues, or changes in metrics. So it is far
from trivial to predict the complex effect of refactorings on
code maintainability. It further complicates the task that the
Refactoring Framework includes some semi-automatic steps,
thus developers are able to configure the same refactoring
operations somewhat differently. For example, fixing an Emp-
tyCatchBlock issue begins with three options, namely a) add
logger; b) use printStackTrace(); and c) leave a comment,
where selecting one option may introduce new options (e.g.:
comment text and logger kind).

Table III
SELECTED PROJECTS

Company Project kLOC Analyzed Refactoring Refactorings
revisions commits

Company I Project A 1,119 299 217 1,444
Company II Project B 962 868 449 1,306
Company III Project C 206 1,313 316 404
Company IV Project D 780 200 66 682

Total 3,067 2,680 1,048 3,836

First, we show how the sum of all refactoring related
maintainability changes turned out for the various projects.
Next, we dig a bit deeper into the data to find out what is the
average impact of the individual refactoring types on software
maintainability. Finally, we go even one step further to explore
the effect of refactoring types on software maintainability at
the level of code metrics.
A. Effect of Automatic Code Refactoring on Software Main-
tainability

The data presented in Table IV can bring us closer to
find the answer to our first question. The rows of the table
contain an overview of the quality properties of 4 systems
of 4 companies participating in the automatic refactoring
phase of the project. The Coding Issues column shows the
overall number of issues that were fixed by (semi)automatic
refactoring in a particular system. The Maintainability Before
and Maintainability After columns hold the maintainability
values of the systems before and after the automatic refactoring
phase calculated as described in Section II-B (0 is the worst
value, 10 is the best). The total improvement (Total Impr.)
column reflects the difference between the maintainability
values before and after the automatic refactoring phase, thus if
this value is negative, the overall maintainability of the system
has decreased during the refactoring phase, while positive
difference means a maintainability improvement. Note, that
the companies were allowed to perform any kind of code
modifications during this phase, not just refactorings, so this
number shows the combined effect of all the code changes

on the system maintainability. The next column, refactoring
improvement (Ref. Impr.) is the code improvement achieved
solely by refactorings. This is calculated as the sum of
the maintainability changes caused by commits containing
refactoring operations only (i.e. sum of the maintainability
differences between refactoring and prior commits). The last
column (Ref. Impr. %) is simply the ratio of the refactoring and
total improvement values. Its intuitive meaning would be the
amount of code improvement caused by refactoring commits.
Greater values than 100% can occur, which mean that the
effect of refactorings is higher than the overall effect of all
the code changes; however, this effect might be positive and
negative as well.

In total, 3 out of 4 cases the overall system maintainability
values increased during the refactoring phase. For all these 3
projects, the net effect of refactoring commits was also pos-
itive, meaning that the automatic refactoring phase increased
the maintainability of the code. The only exception is Project
A, where both the overall system maintainability and the net
effect of refactoring commits were negative. But even in this
case only a fraction (i.e. 80%) of the maintainability decrease
was caused by the refactoring commits. This finding is more
or less in line with the results of the manual refactoring phase
of the project. As we described in Section I, the project had
two refactoring phases; first, companies performed manual
refactorings that was followed by a second phase where
they performed (semi)automatic refactorings. The automated
refactoring framework used to perform (semi)automatic refac-
torings was developed also within the same project. In the
current paper this second, (semi)automatic refactoring phase
is under investigation. We analyzed the results of the manual
refactoring [14] and found that in most of the cases refactoring
improved the overall maintainability of the systems with only
a few exceptions. In the case of (semi)automatic refactoring,
this finding also holds for 3 projects out of 4.

Table IV
QUALITY CHANGES OF THE SELECTED PROJECTS

Company – Coding Maint. Maint. Total Ref. Ref.
Project Issues Before After Impr. Impr. Impr. %

Comp I – Proj A 1,444 4.449238 4.411970 -0.037268 -0.029822 80
Comp II – Proj B 1,306 6.039320 6.072320 0.032999 0.032999 100
Comp III – Proj C 404 4.132307 4.258933 0.126627 0.144507 114
Comp IV – Proj D 682 6.158691 6.161626 0.002935 0.003142 107

The seemingly negative results of Project A could be
explained by a very project specific factor. The system which
suffers from maintainability decrease belongs to a company
where developers performed only two different types of
refactorings, namely PositionLiteralsFirstInComparisons and
UnnecessaryConstructor. Their motivation might have been
that these refactorings required only local changes (i.e. they
were low hanging fruits), therefore they were easier to manage
and test the code after the modification. However, the effect
of this limited set of refactoring types is completely different
than a more balanced set of refactorings (see Table V).

The results of the other three companies support this hy-
pothesis, as they performed a much wider range of refactoring
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Table V
QUALITY CHANGES CAUSED BY REFACTORING CODING ISSUES

Coding Issue Type Project A Project B Project C Project D
# avg ratio # avg ratio # avg ratio # avg ratio

AddEmptyString 0 0 0 150 0 1 ↑ 1 0 1 ↑ 270 0 1 ↑
ArrayIsStoredDirectly 0 0 0 33 0.000027 1.31 ↑ 2 0.000184 3.15 ↑ 0 0 0
AvoidPrintStackTrace 0 0 0 17 0 1 ↑ 3 0.000061 1.71 ↑ 0 0 0
AvoidReassigningParameters 0 0 0 30 0.000010 1.12 ↑ 174 0.000007 1.08 ↑ 10 0 1 ↑
AvoidThrowingNullPointerException 0 0 0 10 0 1 ↑ 3 0.000540 7.32 ↑ 0 0 0
AvoidThrowingRawExceptionTypes 0 0 0 3 0.000062 1.63 ↑ 0 0 0 6 0 1 ↑
BooleanGetMethodName 0 0 0 125 0 1 ↑ 1 0 1 ↑ 9 0 1 ↑
EmptyCatchBlock 0 0 0 20 0.000058 1.68 ↑ 14 0.000550 7.43 ↑ 30 0.000044 1.51 ↑
EmptyIfStmt 0 0 0 32 0.000012 1.14 ↑ 5 0.000074 1.87 ↑ 5 0 1 ↑
MethodNamingConventions 0 0 0 2 0 1 ↑ 21 0.000004 1.05 ↑ 9 0 1 ↑
PositionLiteralsFirstInComparisons 409 0.000114 2.33 ↑ 26 0.000054 1.42 ↑ 5 0.000432 6.05 ↑ 9 0.000060 1.70 ↑
PreserveStackTrace 0 0 0 90 0.000003 1.04 ↑ 24 -0.000001 0.99 ↑ 8 0 1 ↑
SimpleDateFormatNeedsLocale 0 0 0 141 0.000001 1.02 ↑ 17 0 1 ↑ 58 0 1 ↑
SwitchStmtsShouldHaveDefault 0 0 0 170 0.000016 1.19 ↑ 47 0.000020 1.23 ↑ 23 0.000010 1.12 ↑
UnnecessaryConstructor 1,035 -0.000077 0.10 ↑ 41 -0.000023 0.73 ↑ 7 -0.000170 0.99 ↓ 40 -0.000042 0.51 ↑
UnnecessaryLocalBeforeReturn 0 0 0 149 0 1 ↑ 13 0 1 ↑ 135 -0.000002 0.98 ↑
UnusedLocalVariable 0 0 0 32 0.000012 1.14 ↑ 30 0.000050 1.58 ↑ 0 0 0
UnusedPrivateField 0 0 0 36 0.000005 1.06 ↑ 0 0 0 4 0 1 ↑
UnusedPrivateMethod 0 0 0 29 0.000007 1.08 ↑ 6 0.000285 4.33 ↑ 5 0 1 ↑
UseLocaleWithCaseConversions 0 0 0 57 0.000108 2.26 ↑ 0 0 0 44 0.000034 1.40 ↑
UseStringBufferForStringAppends 0 0 0 113 0.000008 1.09 ↑ 30 0.000099 2.16 ↑ 17 0.000008 1.09 ↑

tasks, and the maintainability of their systems increased in all
cases. In the cases of Project C and D, it is even true that
the refactoring commits caused a larger increase in the main-
tainability than the overall increase at the end of the phase,
which means that code modifications other than refactorings
decreased the maintainability. In the UnnecessaryConstructor
line of Table V, we can see that all the values are negative,
meaning that this type of refactoring caused a maintainability
decrease in each and every system. Taking into consideration
that out of the two types of refactoring performed by Com-
pany I, UnnecessaryConstructor was the absolute dominant
by its number, it is now clear that the overall decrease in
the maintainability of their system can be credited to this
single type of refactoring. It is an interesting question in
itself why removing an UnnecessaryConstructor decreases the
maintainability, which we elaborate in Section IV-B.

To summarize, we observe that the overall effect of the
automatic refactoring phase tends to be positive, the only small
bias is caused by the dominant number of a single type of
refactoring (i.e. UnnecessaryConstructor) in Project A.

B. Impact of Automatic Refactoring Types on Software Main-
tainability

During the automatic refactoring period, developers fixed
different kinds of coding issues, which had different impacts
on software maintainability. In Table V we show for each
system the number of fixed coding issues (column ‘#’) and
its average maintainability change (column ‘avg’) credited
to the various kinds of coding issue types the developers
fixed (semi)automatically. As the maintainability change of a
single commit measured on the scale of 0 to 10 is extremely
small, we also added a column to the table (column ‘ratio’)
that reflects the number of times this change is bigger or
less compared to an average maintainability change caused
by a non-refactoring commit. We refer to this number as
nonRefactAvg in the followings, and its value is 0.00005. The
↑ means that the actual change is bigger than the average

maintainability change of the non-refactoring commits, while
↓ marks a worse effect than the average. Please note that the
average maintainability change of the non-refactoring commits
is negative, thus a maintainability decrease may still be marked
with ↑ (meaning that the actual maintainability degradation is
smaller than that of an average commit). For example, a ratio
of 1.68 ↑ means that the actual maintainability improvement
is greater than the average non-refactoring commit with 1.68
times of the absolute value of the average change:

avg = nonRefactAvg + ratio ∗ |nonRefactAvg|

This is why a neutral change value (i.e. 0) is marked with
1 ↑, as 0 is better than the average maintainability change of
non-refactoring commits, which is negative.

We can easily observe that Company I fixed only 2 types
of coding issues in Project A as we already pointed it out
in the previous section. The other companies fixed coding
issues more diversely, 21 types altogether. Results indicate
that in 55% of the cases refactoring increased the overall
maintainability of the system, while it decreased the main-
tainability in only 10% of the cases (indicated with bold
letters). In 35% of the cases it did not cause any traceable
difference in maintainability measured by the model (i.e.
the model was insensitive to the change). If we compare
the results with the average maintainability changes of non-
refactoring commits, we can see that only one value caused a
larger maintainability decrease than an average non-refactoring
commit. So even in those few cases where a refactoring type
caused a maintainability decrease, it was much smaller than an
average maintainability degradation introduced by a commit
containing no refactorings. While the largest maintainability
increases caused by some refactoring types are more than
7 times bigger than the average decrease caused by non-
refactoring commits.

Looking closer into the results, we can see that fixing the
UnnecessaryConstructor coding issue decreased the maintain-
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ability in each case. This issue occurs when a constructor
is not necessary; i.e., when there is only one constructor,
it is public, has an empty body, and takes no arguments.
The automatic refactoring algorithm simply deleted these
constructors. Intuitively, the maintainability of the source code
should have been increased because we deleted unnecessary
code and decreased the lines of code metric as well. However,
ColumbusQM is not directly affected by the system size as
it could lead to false conclusions like larger systems are
necessarily harder to maintain, so the code reduction itself
would not justify a maintainability increase anyway. Instead of
the mere sizes of the systems, the maintainability model relies
on the distribution of the method lengths. In this particular case
the method length distribution is shifted towards the direction
of longer methods as a lot of “good quality” code/methods
got deleted. The removed constructors consisted of just a few
lines, had no coding issues, had small complexity and they did
not refer to other classes. Therefore, a maintainability decrease
occur upon deleting such good quality methods due to the shift
in the distribution of metric values like length, complexity or
number of parameters of the remaining methods.

There are two other issues where the maintainability of
a system decreased for some of the projects. One issue is
the UnnecessaryLocalBeforeReturn that caused a decrease in
maintainability for Project D. In this case the automatic refac-
toring algorithm simply inlined the value of the local variable
into the return statement (which resulted in a line deletion as
well). This should have increased the maintainability because
it reduces the method length and removes a coding issue from
the source code. However, it did not change the maintainability
or it even decreased it (albeit the decrease was very small
compared to other changes). Investigation of this phenomena
revealed that a single change in lines of code or in the number
of minor (low-priority) rule violations is so small that it has
no noticeable effect. Additionally, in some cases fixing these
issues introduced code clones as well (the only difference
between two methods was the unnecessary local variable)
which immediately decreased the measured maintainability.

The other issue causing a maintainability decrease is Pre-
serveStackTrace in Project C. The typical fix of this issue is to
add the root exception as a second parameter to the constructor
of the newly thrown exception. However, Company III could
not apply this strategy as their own exception classes did
not override this two parameter constructor. So instead of the
usual fix, they instantiated a new exception in a local variable,
called its initCause() method with the root exception and threw
the new exception. Besides the additional lines, the fix also
introduced a new incoming call to the initCause() method of
the exception objects. All these decrease the maintainability,
which slightly outweigh the positive effect of removing a
coding issue.

All in all, the results indicate that despite the seemingly
counter-intuitive effects of fixing some issues, refactoring
different types of coding issues usually increase code main-
tainability.

C. Impact of Automatic Code Refactoring on Code Metrics

Table VI shows all sensor nodes (internal quality properties)
of the ColumbusQM ADG (see Figure 1), and the overall
maintainability of a system as well. Sensor nodes represent
goodness values of source code metrics. In the table we list two
ratios for each sensor node. A ratio is the number of coding
issue fixes when the refactoring caused a positive (column
‘+’) or negative (column ‘–’) change to the goodness value of
the current sensor, divided by the number of all refactorings
(positive, negative, and zero change). The values larger than
0.5 are highlighted with bold letters. The table also shows the
priority (column Pri.) for each coding issue according to a
scale between 1-3, and describes how dangerous an issue is
(P1 – critical, P2 – major, P3 – minor).

The goal of the project was to increase the maintainability
of the software systems. The column ‘Maint. +’ shows the
ratio of how many times a refactoring increased the overall
maintainability of a system. For example, 0.86 means that
UseLocaleWithCaseConversions fixes had a positive impact on
maintainability in 86% of the cases. The column ‘Maint. –’
shows the ratio of how many times a refactoring decreased the
overall maintainability of a system. Looking at the same line
as before, we see that the value is 0, which means that fixing
this type of issues never decreased the maintainability. The
remaining 14% did not affect the maintainability in neither
positive nor negative way.

Looking at these values, we can see that fixing coding issues
mainly increases the overall maintainability. However, there
are a few issue types which did not change the maintain-
ability at all, or they even decreased it. Increases happened
mostly because of the expected behavior of the maintainability
model, that is, decreasing the number of coding issues in
the source code improves maintainability and stability, thus
quality. This behavior can be observed mainly in the P1,
P2, P3 columns (the numbers of coding issues with different
priorities, respectively). For example, ArrayIsStoredDirectly
did not change any other sensors, just the number of P2
coding issues and this increased the maintainability in all
cases. Still, this pattern cannot be applied to every row in the
table. For example AddEmptyString, BooleanGetMethodName
coding issues increased the goodness of P3 sensor in 6-7% of
the cases but we cannot see any increase in maintainability.
This is because the positive effect of P3 sensor was so small
that it increased the overall maintainability only in such a small
amount that it is invisible due to rounding errors.

An interesting observation can be made on the EmptyCatch-
Block where besides the 91% improvement of P1, one can
see a 13% decrease in the P2 sensor. A closer look into
this case showed us that in some automatic EmptyCatchBlock
refactorings developers choose to solve the issue with “put an
e.printStackTrace() call into the catch block” option for the
refactoring algorithm which resolved the EmptyCatchBlock but
introduced a new AvoidPrintStackTrace issue at the same time.

Another compelling case is the AvoidReassigningParame-
ters issue which shows a definitive improvement in the logical

435



Table VI
RATIOS OF QUALITY CHANGES ON INDIVIDUAL METRICS LEVEL

Coding Issue Pri. # AD CBO CC CD CLOC LLOC McCC NII NLE NOA PAR P1 P2 P3 Maint.
+ – + – + – + – + – + – + – + – + – + – + – + – + – + – + –

AddEmptyString P3 421 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0
ArrayIsStoredDirectly P2 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.97 0 0 0 0.97 0
AvoidPrintStackTrace P2 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0.05 0
AvoidReassigningParameters P3 214 0 0 0 0 0 0.11 0 0 0 0 0.02 0 0 0 0 0 0.12 0 0 0 0 0 0 0 0 0 0.16 0 0.29 0.02
AvoidThrowingNullPointerExcept. P1 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0 0 0 0 0.23 0
AvoidThrowingRawExceptionTypes P2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0 0 0.11 0
BooleanGetMethodName P3 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 0
EmptyCatchBlock P1 64 0 0 0 0 0.05 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.91 0 0 0.13 0 0 0.91 0.02
EmptyIfStmt P2 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.07 0 0 0 0.1 0.02
MethodNamingConventions P3 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0 0.03 0
PositionLiteralsFirstInComparisons P1 449 0 0 0 0 0.02 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.88 0 0 0 0 0 0.88 0
PreserveStackTrace P2 122 0 0 0 0 0.01 0.03 0 0 0 0 0 0.01 0 0 0 0.02 0 0 0 0 0 0 0 0 0.25 0 0 0 0.25 0.06
SimpleDateFormatNeedsLocale P3 216 0 0 0 0 0.04 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0.1 0.01
SwitchStmtsShouldHaveDefault P2 240 0 0 0 0 0.01 0.01 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0.04 0 0.35 0 0 0 0.4 0.01
UnnecessaryConstructor P3 1,123 0.13 0.02 0 0 0 0.08 0 0 0.04 0.01 0 0.14 0 0.16 0.01 0.21 0 0.14 0 0 0 0.22 0 0.08 0 0.13 0.19 0 0.04 0.73
UnnecessaryLocalBeforeReturn P3 297 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.12 0 0 0.1
UnusedLocalVariable P2 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0 0 0 0.15 0
UnusedPrivateField P2 40 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03 0
UnusedPrivateMethod P2 40 0 0 0.03 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0.08 0 0 0 0.05 0 0 0 0.1 0.05
UseLocaleWithCaseConversions P1 101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.86 0 0 0 0 0 0.86 0
UseStringBufferForStringAppends P2 160 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0.01 0.26 0

lines of code (LLOC) and nesting level (NLE) sensors. Fixing
this reassignment involved removing some code parts that
lowered the code lines and sometimes the complexity (i.e.
the maximal nesting level) of the projects. Besides reducing
the number of coding issues, these improvements caused a
maintainability increase in 29% of the cases. However, in 2%
of the cases, we observed a maintainability decrease though.
That is because in 11% of the cases the removal of some code
parts resulted in new code clones (CC), hence, two or more
code parts differed only in the removed statements. So the
effect of this refactoring is not trivial to predict, but in the
majority of the cases we observed a maintainability increase.

UnusedPrivateField increased the goodness of the CBO
sensor in 3% of the cases but it did not affect any of the other
sensors. This happened mostly because the small number of
fixes and also because it sometimes introduced UnusedImports
coding issues as well.

Section IV-B showed why UnnecessaryLocalBeforeReturn
coding issue decreased maintainability. Table VI shows that
the introduction of code clones (CC) had bigger effect on
maintainability than the fixes of the P3 issue. Similarly,
UnnecessaryConstructor is also referred in Section IV-B and
its effects can be seen in Table VI in detail. Almost every
sensor is affected by this coding issue fix, but this is mainly
because the large number of refactorings.

As a summary, we observe that fixing coding issues via
automatic refactorings does not have a significant impact on
metrics in most of the cases, mainly because the changes
are local. However, some fixes have an effect on metrics one
would not think of at first glance.

V. THREATS TO VALIDITY

Even in a case study which was carried out in a controlled
environment, there are many different threats which should be
considered when we discuss the validity of our observations.
Here, we give a brief overview of the most important ones.

Heterogeneity of the commits: As we were interested in
the effect of particular refactoring types on software maintain-
ability, we filtered out those commits that contained different
types of refactorings. Although the number of such commits
was relatively low, it is obviously a loss of information.
Additionally, when a commit contained multiple refactoring
operations of the same type, we had to use the average of the
maintainability changes to estimate the effect of an individual
refactoring operation. This is also a threat to validity, as same
refactorings may have different impact on the same system.
However, its likelihood is minimal, as all the refactorings have
been carried out (semi)automatically, thus resulting a very
similar type of modifications in the code.

Maintainability analysis relies only on the ColumbusQM
maintainability model: The maintainability model is an impor-
tant part of the analysis as it determines also what we consider
as an “effect on maintainability” of refactorings. Currently
we rely on ColumbusQM with all of its advantages and
disadvantages. On the positive side this model is published,
validated and reflects the opinion of developers [15]; however,
we saw that the model might miss some aspects which would
reflect some changes caused by refactorings.

Limitations of the project: We claim that our experiment
was carried out in an in vivo industrial context. However,
this project might had unintentional effects on the study. For
example, the budget for refactoring was not “unlimited” and
some companies were seeking for fixes requiring the lowest
amount of extra effort. A good example for this is Company I,
who performed basically only two such types of refactorings.

Limitations of the supported refactoring types: The sup-
ported automatic refactorings focus on fixing 21 different cod-
ing issues. It is only a fraction of the possible and widely used
set of refactoring operations, therefore the final conclusions are
limited to these type of refactorings. However, most of these
refactorings are simple yet powerful tools to improve the code
structure agreed by all the companies involved in the project.
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VI. RELATED WORK

Since the term ‘refactoring’ was introduced [3], [4], many
researchers studied the role of it in software development.
Some studies estimate that about 70–80% of all structural
changes in the code are due to refactorings [1], [2], which
clearly indicates its importance in software evolution. Mens
et al. published a survey to provide an extensive overview of
research work in the realm of software refactoring [21] and
cited over 100 studies. But the popularity of the topic has been
further increasing.

Automation techniques can support the regular task of
refactoring and are intensively studied by researchers. Ge et
al. implemented the BeneFactor tool which detects developers’
manual refactoring and reminds them that automation is avail-
able, then it completes the refactoring automatically [22], [23].
Vakilian et al. proposed a compositional paradigm for refactor-
ing (automate individual steps and let programmers manually
compose the steps into a complex change) and implemented
a tool to support it. Henkel et al. implemented a framework
which captures and replays refactoring actions [24]. Jensen
et al. used genetic programming for automated refactoring
and the introduction of design patterns [25]. Also, there are
many approaches to support specific refactoring techniques,
e.g. extract method [26], [27], refactoring to design patterns
[28] or clone refactoring [29].

There seems to be, however, a disagreement among re-
searchers whether refactoring truly improves software main-
tainability or not. Stroulia and Kapoor [7] investigated how
metrics were affected and found that size and coupling metrics
of their system decreased after the refactoring process. Du Bois
and Mens [9] studied the effects of refactoring on internal
quality metrics based on a formalism to describe the impact
of a representative number of refactorings on an AST repre-
sentation of the source code. Du Bois wrote his dissertation on
studying the effects of refactoring on internal and external pro-
gram quality attributes [30] and previously Du Bois et al. [31]
proposed refactoring guidelines for enhancing cohesion and
coupling metrics; they obtained promising results by applying
these transformations to an open-source project. Kataoka et
al. [8] provided a quantitative evaluation method to measure
the maintainability enhancement effect of refactorings. Yu et
al. [32] adapted a modeling framework in order to analyze
software qualities to determine which software refactoring
transformations are the most appropriate. Moser et al. [11]
studied the impact on quality and productivity as observed
small teams working in similar, highly volatile domains and
assessed the impact of refactoring in a close to industrial
environment. Their results indicate that refactoring not only
increases software quality, but also improves productivity. One
of the few industrial case studies investigating the typical use
and benefits of refactorings is carried out by Kim et al. [33] at
Microsoft. Their survey revealed that the refactoring definition
in practice is not confined to a rigorous definition of semantics-
preserving code transformations and that developers perceive
that refactoring involves substantial cost and risks. They found

that the top 5 percent of preferentially refactored modules
in Windows 7 experience higher reduction in the number of
inter-module dependencies and several complexity measures
but increase size more than the bottom 95 percent. This
indicates that measuring the impact of refactoring requires
multi-dimensional assessment.

A large-scale study was carried out by Murphy-Hill et
al. [12] where they studied manual refactorings from Fowler’s
catalog, and their data set spans over 13,000 developers with
240,000 tool-assisted refactorings of open-source applications.
Similarly, Negara et al. [13] presented an empirical study
that considered both manual and automated refactorings. They
reported that they analyzed 5,371 refactorings applied by stu-
dents and professional programmers, but they did not provide
further information on the systems under question.

Most of the above studies were performed on either several
small projects and/or open-source systems, which is one
important difference compared to our work, as we observe
a large amount of automatic refactorings on proprietary
software. Another difference is that we use the ColumbusQM
to objectively measure changes in the maintainability, while
earlier studies rely only on internal code metrics. It makes us
able to compare different refactorings and draw conclusions
which might help developers in planning refactoring tasks or
inspire research projects.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we described the outcome of a large-scale in
vivo investigation of the impact of automatic refactorings on
software maintainability. Taking advantage of an R&D project
ensuring an extra budget for several industrial companies to
carry out refactoring tasks on their software systems, we
were able to collect and analyze real data regarding the
maintainability of the involved systems before and after the
refactorings. Given that developers are rarely allowed to spend
enough time on refactoring, most of such activities are ad-hoc
and undocumented, so the collected data is an asset in itself.

Employing the QualityGate SourceAudit tool [16] (which
implements the ColumbusQM quality model [15]), we an-
alyzed the maintainability changes caused by the different
refactoring tasks. The analysis revealed that from the sup-
ported coding issue fixes all but one type of refactoring
operation had a consistent and traceable positive impact on
the software systems in the majority of the case. 3 out of the
4 involved companies reached a more maintainable system at
the end of the refactoring phase. We observed however, that
the first company preferred low-cost modifications, therefore
they performed only two types of refactorings from which
removing unnecessary constructors had a controversial effect
on maintainability. Another observation was that it was some-
times counter productive to just blindly apply the automatic
refactorings without taking a closer look at the proposed code
modification. It happened several times that the automatic
refactoring tool asked for user input to be able to select
the best refactoring option, but developers used the default
settings because this was easier. Some of these refactorings
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then introduced new coding issues, or failed to effectively
remove the original issue. So human factor is still important,
but the companies could achieve a measurable increase of
maintainability by applying only automatic refactorings.

Last but not least, this study shed light on some important
aspects of measuring software maintainability. Some of the
unexpected effects of refactorings (like the negative impact
of removing unnecessary constructors on maintainability) are
caused by the specialties of the applied maintainability model.
Repeating the study with other maintainability models could
open interesting research challenges and opportunities, which
lied outside of the scope of this paper. Nonetheless, most of the
existing approaches use the same source of information (i.e.
source code metrics) to assess maintainability, which mostly
differ in the way of combining metrics, thus we would expect
similar results in terms of maintainability.

In the future, we plan to compare the effects of manual and
automatic refactoring phases of the project. We would like
to investigate differences between the spent time and main-
tainability gain on a manual refactoring against an automatic
refactoring. Is it worth to give up manual refactoring for the
sake of the performance gain we can achieve with automatic
refactoring?
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