
FaultBuster: An Automatic Code Smell
Refactoring Toolset

Gábor Szőke, Csaba Nagy, Lajos Jenő Fülöp, Rudolf Ferenc, and Tibor Gyimóthy
Department of Software Engineering

University of Szeged, Hungary
{gabor.szoke,ncsaba,flajos,ferenc,gyimothy}@inf.u-szeged.hu

Abstract—One solution to prevent the quality erosion of a
software product is to maintain its quality by continuous refac-
toring. However, refactoring is not always easy. Developers need
to identify the piece of code that should be improved and decide
how to rewrite it. Furthermore, refactoring can also be risky;
that is, the modified code needs to be re-tested, so developers
can see if they broke something. Many IDEs offer a range of
refactorings to support so-called automatic refactoring, but tools
which are really able to automatically refactor code smells are
still under research.

In this paper we introduce FaultBuster, a refactoring toolset
which is able to support automatic refactoring: identifying
the problematic code parts via static code analysis, running
automatic algorithms to fix selected code smells, and executing
integrated testing tools. In the heart of the toolset lies a
refactoring framework to control the analysis and the execution
of automatic algorithms. FaultBuster provides IDE plugins to
interact with developers via popular IDEs (Eclipse, Netbeans
and IntelliJ IDEA). All the tools were developed and tested in
a 2-year project with 6 software development companies where
thousands of code smells were identified and fixed in 5 systems
having altogether over 5 million lines of code.

Index Terms—Automatic refactoring, code smells, coding is-
sues, antipatterns, SourceMeter, Columbus

I. INTRODUCTION

As the process of refactoring [1], [2] has become more and
more recognized by developers and researchers, more tools
have become available to support it. Also, many IDEs offer
refactoring features to provide assistance in these regular tasks.
Eclipse, for instance, has a separate Refactor menu where such
operations are available, e.g., developers can rename a source
code element (e.g., a variable) and the IDE will correct all its
references. Similarly, it is possible to extract local variables,
methods, classes, or move elements, among several other oper-
ations. These, so-called automatic refactorings help developers
to easily rewrite parts of the source code of a software system
in order to improve its quality without modifying the observed
external functionality.

Tools which support automatic refactorings often assume
that programmers already know how to refactor and they have
knowledge about the catalog of refactorings [2], but this is
usually not a reasonable assumption. As Pinto et al. found it in
their study where they examine questions of refactoring tools
on Stack Overflow, programmers are usually not able to iden-
tify refactoring opportunities, because of lack of knowledge
in refactoring, or lack of understanding of the legacy code.

They also claim that “refactoring recommendations is one of
the features that most of Stack Overflow users desire (13% of
them)” [3]. In another recent study, Fontana et al. compare the
capabilities of refactoring tools to remove code smells and they
identify only one tool (JDeodorant) which is able to support
code smell detection and then to suggest which refactoring
to apply to remove the detected smells [4]. Certainly, most
current tools lack this required feature to identify refactoring
opportunities and to recommend problem-specific corrections
which could be even fully automatically performed by the tools
(or semi-automatically including some interactions with the
developers).

In this paper, we introduce FaultBuster, an automatic code
smell refactoring toolset which was designed with the follow-
ing primary goals:

• to assist developers in identifying code smells that should
be refactored,

• to provide problem specific, automatic refactoring algo-
rithms to correct the identified code smells (currently it
implements 40 refactoring algorithms),

• to integrate easily with the development processes via
plugins of popular IDEs (Eclipse, NetBeans, IntelliJ) so
developers can initiate, review, and apply refactorings
right in their favorite environments.

The development of FaultBuster was carried out in an EU-
supported project in which 6 software development companies
were involved. Most of these companies were founded before
the millennium and developed Java systems for different ICT
areas like ERPs or Collection Management Systems. Their
Java projects consisted of over 5 millions lines of code
altogether. So they were not just involved in the development
of FaultBuster, but all the companies really wanted to improve
the quality of their legacy code bases. Hence, they also served
as an in-vivo testing environment for the project.

In the rest of the paper we give an overview of the features
and the architecture of FaultBuster and we show a typical
usage scenario of the tools. Then we present a comparison
of our tool with similar tools that are available for automatic
refactoring.

II. OVERVIEW

A. Problem Context
The potential users of FaultBuster are members of a de-

velopment team, potentially a developer or maybe a quality

978-1-4673-7529-0/15 c© 2015 IEEE SCAM 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

253



Figure 1. Overview of the architecture of FaultBuster

specialist or a lead developer. Our purpose was to help them by
supporting ‘continuous refactoring’ where developers prefer to
make small improvements on a regular basis instead of only
adding new features for a longer period and restructuring the
whole code base only when real problems arise. Continuous
refactoring has many benefits [5], as Kerievsky says “by con-
tinuously improving the design of code, we make it easier and
easier to work with. This is in sharp contrast to what typically
happens: little refactoring and a great deal of attention paid
to expediently adding new features. If you get into the hygienic
habit of refactoring continuously, you’ll find that it is easier
to extend and maintain code” [6].

For this purpose, FaultBuster was designed to periodically
analyze the system under question, report problematic code
fragments and provide support to fix the identified problems
through automatic transformations (refactorings).

We notice here, that most of the transformations supported
by FaultBuster can be considered as classic refactorings which
do not alter the external behavior at all, just improve the
internal structure of the source code, but some of them may not
fit into the classic definition. As Fowler says, “refactoring is
the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves
its internal structure” [2]. Some of the transformations fix
potential bugs, which may indeed alter the behavior of the
program, but not the behavior which was originally intended
to be implemented by the developer. Hence, for some trans-
formations, it means that we slightly deviate from the strict
definition by allowing changes to the code that fix possible
bugs, but do not alter the behavior of the code in any other
way. For simplicity, we call refactorings all the transformations
of FaultBuster.

A sample refactoring of a coding rule violation (Position
Literals First In Comparisons) can be seen in Listing 1. This

code works perfectly, until we invoke the ‘printTest’ method
with a null reference which would result in a Null Pointer
Exception (because of line 3). To avoid this, we have to
compare the String literal to the variable, not the variable to
the literal (see Listing 2). This and similar refactorings are
simple, but one can avoid critical or even blocker errors using
them properly.

public class MyClass{
public static void printTest(String a){
if(a.equals("Test")) {
System.out.println("This is a test!");

}
}
public static void main(String[] args) {
String a = "Test";
printTest(a);
a = null;
printTest(a); // What happens?

}
}

Listing 1. A sample ‘Position Literals First In Comparisons’ issue

public class MyClass{
public static void printTest(String a){
if("Test".equals(a)) {
System.out.println("This is a test!");

}
}
public static void main(String[] args) {
String a = "Test";
printTest(a);
a = null;
printTest(a); // What happens?

}
}

Listing 2. Sample refactoring of Listing 1

254



B. Architecture

Figure 1 gives an overview of the architecture of
FaultBuster. The toolset consists of a core component called
Refactoring Framework, three IDE plugins to communicate
with the framework and a standalone Java Swing client (desk-
top application).

1) Refactoring Framework: This component is the heart of
FaultBuster as its main task is to control the whole refactoring
process. The framework deals with the continuous quality
measurements of the source code, identification of critical parts
from the viewpoint of refactoring, the restructuring of them,
the measurement of quality improvement and the support of
regression tests to verify the invariance after applying the
refactorings.

In order to do so, the framework:

• Controls the analysis process and stores the results in a
central database: it regularly checks out the source code
of the system from a version control system (Subversion,
CVS, Mercurial, Git), executes static analyzers (Java
analyzer, rule checker, code smell detector, etc.) and
uploads the results into the database.

• Provides an interface through web services to query the
results of the analyses and to execute automatic refac-
toring algorithms for selected problems. After executing
the algorithms on server side, the framework generates a
patch (diff file) and sends it back to the client.

• The analysis toolchain is controlled and can be configured
through Jenkins.

• Refactoring algorithms and main settings of the frame-
work are configurable through a web engine of the
framework.

The framework was designed to be independent from the
programming language, so it is suitable to support new lan-
guages and to be easily extensible with additional refactorings.
Several modules are integrated for the realization of the task:
well-known tools supporting development procedures, like ver-
sion control systems, project management tools, development
environments, tools supporting tests, tools measuring and qual-
ifying source code and automatic algorithms implementing
refactorings.

2) IDE plugins: We implemented plugins for today’s most
popular development environments for Java (Eclipse, Net-
Beans, IntelliJ IDEA) and integrated them with the framework.
The goal of these plugins is to bring the refactoring activities
to be implemented closer to the developers.

A plugin obtains a list of problems in the source code from
the framework, processes the results, and shows the critical
points which influence software quality negatively to the user.
A developer can then select one or more problems from this
list and ask for solution(s) from the framework, which can
then be visualized and (after confirmation) applied to the code
by the plugin. Finally, the developer can make some minor
changes to it (e.g. commenting) and commit the final patch to
the version control system.

When we designed the plugins, the main concept was
to integrate the features offered by the framework as much
as we can into the development environment. For example,
we implemented standard features such as context assist in
Eclipse. So it was a main concern that developers can work
in the environment that they are used to and access the new
features in a standard way.

Figure 2 shows a screenshot of the Eclipse plugin with a
wizard to set parameters of an algorithm which fixes a Long
Function issue. Figure 3 shows the visualization of a patch
after the execution of the algorithm.

3) Standalone Swing Client: Besides the IDE plugins, we
implemented a standalone desktop client to communicate
with the Refactoring Framework. In the beginning this client
had only testing purposes, but finally it implemented all the
necessary features of the whole system, so it became a useful
standalone tool of FaultBuster. The client is able to browse
the reports on problematic code fragments in the system,
select problems for refactoring, and invoke the refactoring
algorithms, just like IDE plugins can do.

4) Administrator Pages: The framework has two graphical
user interfaces to configure its settings. Analysis tasks are
controlled by Jenkins to periodically check out the source
code and to execute the static analyzers. These tasks can be
configured through the admin page of Jenkins. The rest of the
framework can be configured through its own admin pages.
Here, it is possible to configure user profiles and set some
global parameters of the refactoring algorithms. In addition,
this UI can be used to examine log messages and statistics of
the framework.

5) Refactoring Algorithms: We implemented automatic
refactoring algorithms to fix common code smells and bad
programming practices. The input of such an algorithm is a
coding issue (with its kind and position information) and the
abstract semantic graph (ASG) of the source code generated
by the SourceMeter tool (see Section II-C). The output of
an algorithm is a patch (unified diff file) fixing the selected
problem.

FaultBuster implements algorithms to solve 40 different
kinds of coding issues (see Table I) in Java. Most of these
algorithms solve common programming flaws like ‘empty
catch block’, ‘avoid print stack trace’, ‘boolean instantiation,’
while some of them implement heuristics to fix bad code
smells such as long function, too complex methods or code
duplications.

Some algorithms can interact with the developer, because
they can be parametrized. For instance, in the case of a
‘method naming convention’ issue it is possible to ask the
developer to give a new name for the badly named method. On
the other hand, many algorithms do not need extra information,
e.g. the case of a ‘local variable could be final’ issue, the
final keyword can be simply inserted to the declaration of the
variable automatically.

It is also possible to select more occurrences of the same
problem type and fix them all together by invoking a so-called
batch refactoring task. In this case, the Refactoring Framework

255



Figure 2. Eclipse plugin – Screenshot of a Refactoring wizard with the configuration step of a refactoring algorithm for the Long Function smell

Figure 3. Eclipse plugin – Difference view of a patch after refactoring a Long Function smell

will execute the refactoring algorithms and will generate a
patch containing the fixes for all the selected issues. The only
limit here is the boundary of the analysis, so it is possible to
select problems from any classes, packages or projects, they
just had to be analyzed beforehand by the framework.

C. Technologies

The Refactoring Framework of FaultBuster relies on the
SourceMeter product1 of FrontEndART Ltd.2 as a toolchain
for static analysis and to generate the ASG for the refactoring
algorithms. The core framework was implemented in Java as a

1http://sourcemeter.com
2http://frontendart.com

Tomcat Web Application and serves the IDE plugins through
web services. Refactoring algorithms were implemented in
Java using the Columbus ASG API of SourceMeter. Thanks
to the Tomcat environment the toolset is platform-independent
and runs on all the supported platforms of SourceMeter
(Windows and Linux).

III. EXPERIENCES

Thanks to the project which motivated the development of
FaultBuster, we had chance to get immediate feedback from
potential users of the tool in all stages of its development
(starting from the design phases to the last testing phases of
the project). We gathered a lot of experience in how to design

256



Table I
REFACTORING ALGORITHMS IN FAULTBUSTER

Local AddEmptyString
ArrayIsStoredDirectly
AvoidReassigningParameters
BooleanInstantiation
EmptyIfStmt
LocalVariableCouldBeFinal
PositionLiteralsFirstInComparisons
UnnecessaryConstructor
UnnecessaryLocalBeforeReturn
UnusedImports
UnusedLocalVariable
UnusedPrivateField
UnusedPrivateMethod
UselessParentheses

Naming BooleanGetMethodName
MethodNamingConventions
MethodWithSameNameAsEnclosingClass
ShortMethodName
SuspiciousHashcodeMethodName

Interactive AvoidInstanceofChecksInCatchClause
AvoidPrintStackTrace
AvoidThrowingNullPointerException
AvoidThrowingRawExceptionTypes
EmptyCatchBlock
LooseCoupling
PreserveStackTrace
ReplaceHashtableWithMap
ReplaceVectorWithList
SimpleDateFormatNeedsLocale
SwitchStmtsShouldHaveDefault
UseArrayListInsteadOfVector
UseEqualsToCompareStrings
UseLocaleWithCaseConversions
UseStringBufferForStringAppends

Heuristical Clone Class (experimental)
CyclomaticComplexity
ExcessiveMethodLength
LongFunction
NPathComplexity
TooManyMethods

and implement such a tool, and also on the final usability of
FaultBuster, which we briefly sum up in this section.

During the design phase of the tool we consulted regularly
with the developers of the participating companies about the
refactoring transformations which they wanted to be available
in the final product. Throughout the initial meetings it became
clear that they wanted ready solutions for their actual prob-
lems, particularly for those which were easily understandable
for the developers and by solving them, they could gain
the most in terms of increasing the maintainability of their

products. However, they did not really provide us a concrete
list of the issues that they wanted to deal with. In addition,
most of the developers said that before the project they had
not used any refactoring tools except the ones provided by
their IDEs. Therefore, we started implementing transformation
algorithms to fix coding rule violations which were very com-
mon in their projects. Soon, when we provided the companies
the first prototype versions for testing, they started to send
us tons of other issue types and refactoring algorithms that
they wanted to be supported in the new releases. Among the
desired refactorings, there were some more complex ones too
like eliminating long or complex methods. In the end, we
also implemented an algorithm which eliminates clones (code
duplications) from the source code.

At the end of the project, we can say, that FaultBuster
performed well and was tested exhaustively by the companies.
The companies participating in the project performed around
6,000 refactorings altogether which fixed over 11,000 coding
issues. Interviews with the developers showed that they found
the work with the tool really helpful in many situations and
they intend to keep using it in the future.

IV. RELATED TOOLS

Since the introduction of the term ‘refactoring’ [1], many
researchers studied it [7] as a technique, e.g., to improve
source code quality [8], [9], and many tools were implemented
providing different features to assist developers in refactoring
tasks. FaultBuster is a refactoring tool to detect and remove
code smells, i.e., in this section, we give an overview of tools
which have similar capabilities, or are related to FaultBuster
through some specific features.

In a recent study, Fontana et al. examined refactoring tools
to remove code smells [4]. They evaluated the following tools:
Eclipse,3 IntelliJ IDEA,4 JDeodorant,5 and RefactorIT.6 In the
case of JDeodorant, they say that this „is the only software cur-
rently available able to provide code smell detection and then
to suggest which refactoring to apply to remove the detected
smells.” To evaluate the other refactoring tools, they relied on
the code smell identification of iPlasma7 and inCode8.

In an earlier study, Pérez et al. also identified smell detec-
tion and automatic corrections as an open challenge for the
community, and proposed an automated bad smell correction
technique based on the generation of refactoring plans [10].

On the side of detecting bad smells, there are many static
analyzers to automatically identify programming flaws, like
the products of Klocwork Inc.9 or Coverity Inc.10 These tools
are sometimes able to identify serious programming flaws
(e.g. buffer overflow or memory leak problems) that might

3https://www.eclipse.org/
4http://www.jetbrains.com/idea/
5http://www.jdeodorant.com/
6http://sourceforge.net/projects/refactorit/
7http://loose.upt.ro/reengineering/research/iplasma
8http://www.intooitus.com/products/incode
9http://www.klocwork.com/
10http://www.coverity.com/

257



lead to critical or blocker problems in the system. There
are open source or free solutions as well, such as PMD,11

FindBugs,12 CheckStyle,13 for Java, or the Code Analysis
features and FxCop in Visual Studio.14 These tools usually
implement algorithms to detect programming flaws, but fixing
the identified issues remains the task of the developers.

The DMS Software Reengineering Toolkit15 product of
Semantic Designs Inc. has a ‘program transformation engine’
which enables the tool to do code generation and optimization,
and makes it able to remove duplicated code (with CloneDR).

There are many IDEs available with automatic refactoring
capabilities and they support typical code restructurings (e.g.
renaming variables, classes) and some common refactorings
from the Fowler catalog. For instance, IntelliJ IDEA was one
of the first IDEs to implement these techniques and it is able
to support many languages (e.g. PHP, JavaScript, Python),
not only Java which it was originally designed for. Eclipse
and NetBeans also implement similar algorithms. However,
neither of these IDEs support the automatic refactoring of
programming flaws. On the other hand, there are many plu-
gins available to extend their refactoring capabilities, such as
ReSharper16 and CodeRush17 for .NET.

Compared to these tools, they all lack the feature of scan-
ning the code and suggesting which refactorings to perform,
which is one of the main advantages of FaultBuster. JDeodor-
ant, as an Eclipse plug-in, is the only tool, which has a similar
capability, as it is able to identify four kinds of bad smells
(namely ‘Feature Envy’, ‘State Checking’, ‘Long Method’
and ‘God Class’), and refactor them by the combination of 5
automatic refactoring algorithms. FaultBuster is more general
in a way, as it allows the refactoring of coding issues (see
Table I) and has plug-in support for IntelliJ and NetBeans too
(besides Eclipse).

Another main feature of FaultBuster is the ability to effec-
tively perform a large set of refactorings (i.e. batch refactor-
ings) together on a large code base. The lack of tools which are
able to handle a massive Java code base and to provide a large
class of useful refactorings also motivated the development of
refactoring tools, e.g. Refaster18 from Google [11].

V. CONCLUSION

FaultBuster was implemented as a product of an R&D
project supported by the EU and the Hungarian Government.
Six companies were involved in this project and in addition
to the project goal (to implement automatic refactoring tools)
they wanted to improve the source code of their own products
as well. Hence, they provided a real-world test environment
and they tested the tools on their own products. Thanks to

11http://pmd.sourceforge.net/
12http://findbugs.sourceforge.net/
13http://checkstyle.sourceforge.net/
14https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
15http://www.semdesigns.com/products/DMS/DMSToolkit.html
16http://www.jetbrains.com/resharper/
17https://www.devexpress.com/Products/CodeRush/
18https://github.com/google/Refaster

this context, the implementation of the toolset was driven
by real, industrial motivation and all the features and refac-
toring algorithms were designed to fulfill the requirements
of the participating companies. We implemented refactoring
algorithms for 40 different coding issues, mostly for common
programming flaws. By the end of the project the companies
refactored their systems with over 5 million lines of code in
total and fixed over 11,000 coding issues. FaultBuster gave a
complex and complete solution for them to improve the quality
of their products and to implement continuous refactoring to
their development processes.

We have many plans to improve FaultBuster for future work.
Primarily we want to extend it with more refactoring algo-
rithms, to support different kinds of coding issues. However,
it is important to see that an algorithm can only be effective
if the method which identifies the coding issue is effective
too. Although we implemented our refactoring algorithms with
preliminary checks where we decide whether a selected coding
issue can be fixed or not, our partners reported also some false
positive warnings. To eliminate these we plan to improve the
precision of the underlying issue checker too.

A FaultBuster demo can be downloaded and a video can be
found in the online appendix of this paper at:
http://www.sed.inf.u-szeged.hu/FaultBuster.

ACKNOWLEDGEMENTS

This research work was supported by the EU supported
Hungarian national grant GOP-1.2.1-11-2011-0002. Here, we
would like to thank all the participants of this project for their
help and cooperation.

REFERENCES

[1] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. disser-
tation, 1992.

[2] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[3] G. H. Pinto and F. Kamei, “What programmers say about refactoring
tools?: An empirical investigation of Stack Overflow,” in Proceedings of
the 2013 ACM Workshop on Workshop on Refactoring Tools, ser. WRT
’13. ACM, 2013, pp. 33–36.

[4] F. A. Fontana, M. Mangiacavalli, D. Pochiero, and M. Zanoni, “On
experimenting refactoring tools to remove code smells,” in Scientific
Workshop Proceedings of the XP2015, ser. XP ’15 workshops. New
York, NY, USA: ACM, 2015, pp. 7:1–7:8.

[5] T. Bakota, P. Hegedus, G. Ladanyi, P. Kortvelyesi, R. Ferenc, and
T. Gyimothy, “A cost model based on software maintainability,” in
Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM), Sept 2012, pp. 316–325.

[6] J. Kerievsky, Refactoring to Patterns. Pearson Higher Education, 2004.
[7] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Trans.

Softw. Eng., vol. 30, no. 2, pp. 126–139, Feb. 2004.
[8] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengi-

neering Patterns. Morgan Kaufmann, 2002.
[9] B. Du Bois, “A study of quality improvements by refactoring,” Ph.D.

dissertation, 2006.
[10] J. Pérez and Y. Crespo, “Perspectives on automated correction of bad

smells,” in Proceedings of the Joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE) and Software
Evolution (Evol) Workshops, ser. IWPSE-Evol ’09. New York, NY,
USA: ACM, 2009, pp. 99–108.

[11] L. Wasserman, “Scalable, example-based refactorings with Refaster,” in
Proceedings of the 2013 ACM Workshop on Workshop on Refactoring
Tools, ser. WRT ’13. New York, NY, USA: ACM, 2013, pp. 25–28.

258


