
Designing and Developing Automated Refactoring
Transformations: An Experience Report

Gábor Szőke∗†, Csaba Nagy∗†, Rudolf Ferenc∗ and Tibor Gyimóthy∗

{gabor.szoke, ncsaba, ferenc, gyimothy}@inf.u-szeged.hu
∗Department of Software Engineering, University of Szeged, Hungary

†Refactoring 2011 Ltd., Hungary

Abstract—There are several challenges which should be kept in
mind during the design and development phases of a refactoring
tool, and one is that developers have several expectations that are
quite hard to satisfy. In this report, we present our experiences
of a two-year project where we attempted to create an automatic
refactoring tool. In this project, we worked with five software
development companies that wanted to improve the maintain-
ability of their products. The project was designed to take into
account the expectations of the developers of these companies and
consisted of three main stages: a manual refactoring phase, a tool
building phase, and an automatic refactoring phase. Throughout
these stages we collected the opinions of the developers and faced
several challenges on how to automate refactoring transforma-
tions, which we present and summarize.

Index Terms—Automated Refactoring; Code Smells; Coding
Issues; Software Maintenance

I. INTRODUCTION

Several papers investigate the benefits and challenges of
refactoring [1], e.g., its effects on software quality or maintain-
ability [2]–[8], but there are only a few reports that tackle this
topic from the developers’ viewpoint. Recently, Kim et al. [9]
conducted a field study of refactoring definition, benefits,
and challenges. They surveyed developers of a large software
development company and pointed out that even the refactor-
ing definition in practice seems to differ from the academic
definition. Pinto et al. [10] examined Stack Overflow posts
to investigate what developers expect from refactoring tools,
and they found that most of these expectations are far from
being complete. Developers may overlook several features,
for example, they may miss refactoring recommendations like
the identification of duplicate or dead code, code smells, and
optimization opportunities. In a workshop paper, Campbell et
al. [11] say that common shortcomings of refactoring tools
are that developers find them difficult to learn, they do not
trust the tool, or they are not familiar how to use them. Also,
developers often feel that they can apply refactorings more
efficiently by hand.

We also observed similar findings in a project that motivated
our experience report. In our project, we worked together
with five companies to develop automatic refactoring tools
that could be used to improve the source code quality of
their systems. This project was meant to take into account
the requirements of the developers of these companies, and we
ended up facing several challenges to fulfill all the expectations
of the developers and companies.

The project lasted for two years and it had three main stages:
analysis as a manual refactoring stage, design & development,
and application as an automatic refactoring stage. A key idea
of our project plan was to collect the opinions of the developers
in each phase, so the next phase could build on the previous
one and take into account the feedback of the developers.

In previous studies, we investigated how refactoring trans-
formations affected the source code maintainability when the
developers manually applied them on the code [12], [13]. We
found that the effect of a single transformation usually has an
unbalanced positive/negative effect on one or more quality at-
tributes, but when developers applied them en masse, it always
had a beneficial effect on the maintainability of the code. Later,
in the automatic refactoring phase, we found that developers
tend to have a different behavior when they use automatic
tools (e.g., they accept a solution recommended by the tool
even if manually they would probably do something else), so
we examined the automatic transformations as well [14]. In a
recent tool demo paper [15], we described the architecture of
the tools developed in the project.

Here, we report our experiences and the challenges that
we faced while we designed and implemented the tools, but
unlike earlier reports [10], [11], we focus on the automatic
transformations and not on the general usability of the tool.
Also, developers provided us with several recommendations in
the manual phase (How did they refactor? Do they think that
it is possible to automate their steps? If yes, how would they
automate them?). Then, they gave us feedback on the resulting
implementations. Besides our experiences, we also examined
their opinions. Therefore, our report can serve as a guideline
for others, who face similar challenges.

II. REFACTORING PROJECT

A. Project background

Our motivation was a two-year R&D project supported by
the EU and the Hungarian State. One goal of the project
was to develop software tools to support the ‘continuous
reengineering’ methodology, hence provide support to identify
problematic code parts in a system and to refactor them to
enhance maintainability. This included the development of an
automatic refactoring framework and the testing of it on the
source code of the industrial partners. Hence, we had an in vivo
environment and continuous feedback on the tools. Moreover,
the project provided the companies with a good opportunity
to refactor their code and improve its maintainability.



Table I
COMPANIES INVOLVED IN THE PROJECT

Company Primary domain

Company I Enterprise Resource Planning (ERP)
Company II Integrated Business Management
Company III Integrated Collection Management
Company IV Specific Business Solutions
Company V Web-based PDF Generation

Five experienced software companies were involved in this
project. They were founded in the last two decades, and
they started developing some of their systems before the
millennium. The systems that they refactored in the project
consisted of about 2.5 million lines of code altogether, had
been written mostly in Java, and were related to different areas
like ERPs, ICMs, and online PDF Generators (see Table I).

B. Project design

Figure 1 gives an overview of the main stages of the
project. In the first stage (Analysis), we asked the companies
to refactor their code manually. We gave them support by
using static code analyzers to help them identify code parts
that should be refactored in their code (antipatterns or coding
issues, for instance). We asked the developers to provide
detailed documentation of each refactoring, and explain the
main reasons and the steps of how they improved the code
fragment in question.

Design &

DevelopmentAnalysis Application

Manual

refactoring

survey

Refactoring

Framework

IDE plugins
(Eclipse, IDEA, Netbeans)

Refactoring Algorithms

Automated

refactoring

survey

Figure 1. Overview of the refactoring project.

In the second stage (Design & Development), we designed
and implemented a refactoring framework [15] based on
the results of the manual refactorings. This framework was
implemented as a server-side component that provided three
types of services:

• A static source code analyzer toolset to derive low-
level quality indicators that could be used to identify
refactoring candidates.

• A persistence layer above a database for storing and
querying analysis data (with a complete history).

• A set of web services capable of automatically perform-
ing various refactoring operations to eliminate certain
coding issues and generate a source code patch to be
applied on the original code base.

As can be seen from the above list, the framework not
only provided refactoring algorithms for the developers, but
it also helped to identify possible targets for refactoring by
analyzing their systems using a static source code analyzer.
The tool was able to give a list of problematic code fragments

including coding issues, antipatterns (e.g. duplicated code,
long functions) and source code elements with problematic
metrics at different levels (e.g. classes/methods with excessive
complexity and classes with bad coupling or cohesion metrics).
However, the framework only supported the refactoring of 40
different coding issues, so the companies were just asked to
fix issues from this list.

The participating companies took part in the development
of the refactoring tools as well. One of their tasks was to
develop IDE plugins for their own working environments
(Eclipse, IDEA, and Netbeans). So it was the responsibility
of the framework to perform the refactoring transformations
and generate patches. The IDE plugins were responsible for
providing an interface to all the features of the framework by
taking advantage of the UI elements of the IDEs. This way,
the refactoring process was controlled by the framework and
the developers worked in their familiar workspace.

In the third stage of the project (Application), the developers
used the automatic tool to refactor their code base. Over 7,800
issues got fixed, which fell into about 30 different kinds of
issues. Thanks to the project requirements, all the refactorings
were well documented.

III. WHAT DEVELOPERS THINK ABOUT REFACTORING
AUTOMATION?

Throughout the manual refactoring and the automatic refac-
toring phases, we asked developers to fill out surveys for
the refactoring operations they had carried out. For each
refactoring commit, they had to fill out a survey that contained
questions targeting the initial identification steps, and they also
had to explain why, how, and what they modified in their code.
There were around 40 developers involved in this phase of the
project (5-10 per company). The questions related to our study
were the following:

• How difficult would it be to automate your manual
refactoring for the issue? (1 - very easy, 5 - very hard)
+ explanation

• How much did the automated refactoring help in your
task? (1 - no help at all, 5 - great help) + explanation

A. Manual refactorings

During the manual refactoring phase of the project, devel-
opers refactored their codebase manually, and they filled out
a survey for each refactoring. We had an online Trac system
for this purpose, and whenever they opened a ticket for an
issue, they had to explain why they found it problematic, and
answer some additional questions. Similarly, we asked them
some questions when they closed the ticket after they had
finished the refactoring.

Among these questions, they had to rate with a value from
1 to 5 (1 - very easy, 5 - very hard) how difficult it would be
to automate the manual refactoring. Along with this number,
they had to give a brief explanation of their answer.

The developers completed the survey for 430 tickets, as can
be seen in Table II. Our results tell us that developers gave
responses for 61 different kinds of coding issues (actually we



Table II
DEVELOPERS’ FEEDBACK ON HOW HARD IT WOULD BE TO AUTOMATE

REFACTORING OPERATIONS

Num. of Replies Avg Med Dev Num. of Types

430 2.06 1 1.23 61

showed them around 220 different kinds of coding issues).
Figure 2 shows the histogram of the given replies. As can
be seen, most of the refactorings were rated with smaller
values, which indicates that they were optimistic about the
automation: they thought that most of the coding issues could
be easily fixed through automated transformations. However,
they also identified some cases where they thought that the
automation would be hard to realize. Notice also that Table II
also supports this observation, as the average value is around
2 and the median is 1. Table III lists the coding issues and
the level of difficulty of their automation based on feedback
of the developers.

Table III
HOW DIFFICULT THE REFACTORING AUTOMATION OF CODING ISSUES IS

ACCORDING TO DEVELOPERS

Aut. Coding Issues

Very
Hard (5)

AvoidInstanceofChecksInCatchClause, ExceptionAsFlowControl, EmptyIf-
Stmt

Hard (4) SwitchStmtsShouldHaveDefault, AvoidCatchingThrowable, Method-
ReturnsInternalArray

Medium
(3)

UseStringBufferForStringAppends, AvoidSynchronizedAtMethod-
Level, SignatureDeclareThrowsException, AvoidCatchingNPE,
AbstractClassWithoutAbstractMethod, ConsecutiveLiteralAppends,
LooseCoupling, NonThreadSafeSingleton, ReplaceHashtableWithMap,
SystemPrintln, UnusedFormalParameter, UseLocaleWithCaseConversions,
UnsynchronizedStaticDateFormatter

Easy (2)

EmptyCatchBlock, OverrideBothEqualsAndHashcode, PreserveStackTrace,
UnnecessaryLocalBeforeReturn, AtLeastOneConstructor, UnusedPri-
vateField, UnusedPrivateMethod, AvoidThrowingRawExceptionTypes,
UnusedLocalVariable, AvoidDuplicateLiterals, AvoidDeeplyNeste-
dIfStmts, AddEmptyString, AvoidFieldNameMatchingTypeName,
ArrayIsStoredDirectly, AbstractNaming, ImmutableField, OnlyOneReturn,
UnnecessaryConstructor, UnnecessaryWrapperObjectCreation

Very
Easy (1)

AvoidPrintStackTrace, UnusedImports, UseIndexOfChar, InefficientString-
Buffering, IntegerInstantiation, MethodArgumentCouldBeFinal, Cyclomat-
icComplexity, BooleanInstantiation, BigIntegerInstantiation, BeanMem-
bersShouldSerialize, CollapsibleIfStatements, CompareObjectsWithEquals,
IfElseStmtsMustUseBraces, LocalVariableCouldBeFinal, SimplifyCondi-
tional, ShortVariable, UncommentedEmptyMethod, UnnecessaryFinalMod-
ifier, UnusedModifier, UnnecessaryReturn, VariableNamingConventions

0

50

100

150

200

250

1 - very

easy

2 3 4 5 - very

hard

Figure 2. Histogram of the answers given for ”How difficult would it be to
automate your manual refactoring for the issue?”

B. Automated refactorings
We started implementing the automated refactorings based

on our observations got in the manual phase. Also, we asked

the companies to provide us with a list of coding issues (with
priorities) that they wanted to fix in the automated phase so
that we could concentrate on the most desired ones. After
gathering the lists, we ranked each coding issue by the values
the companies provided us. Then we created a ranked list of
the coding issues that most of the companies wanted at the
top, and the coding issues that nobody wanted at the end.
Interestingly, the resulting list contained many issues that were
no longer considered during the manual phase, most probably
because the companies fixed all occurrences of some issue
types so they were not interested in the automation of these.

We started implementing the refactoring algorithms based
on this ordered list. We developed automatic refactoring so-
lutions for 42 different coding issues. The supported list of
coding issues consisted of 22 different issue types that were
considered during the manual period plus 20 new ones.

During the automatic refactoring stage, we asked the de-
velopers to document their refactorings again. This time, we
incorporated the survey into our tool that asked them to fill
it out after each refactoring transformation. This way, we
gathered over 1,700 answers for 30 coding issue types (see
Table IV).

Table IV
TOTAL HELP FACTOR SURVEY

Num. of Replies Avg Med Dev Num. of Types

1,726 3.05 3 1.23 31

0

100

200

300

400

500

600

700

1 - no help

at all

2 3 4 5 - great

help

Figure 3. Histogram of the answers given for the question “How much did
the automated refactoring help in your task?”

In the automatic phase, we asked developers about how
much the automated refactoring solution aided them in their
refactoring task. They had to give a value between 1 and 5 here
as well. A 5 meant that the automation helped a lot, while a 1
meant that it did not help at all (or it even made the situation
worse). As we see in Table IV, the average of the replies was
around three. In Figure 3, the distribution of the responses
can be seen in a histogram. This tells us that developers were
generally satisfied with the automated refactoring solutions,
and they gave a score of 4 in many cases.

Actually, if we consider all the transformations where the
given value is greater than 1 (these are the transformations
that the developers said were a help), we find that all the
refactorings made the tasks of developers easier or faster,
except for two cases. This can be seen in Figure 4, where
we can see the degree of help for each kind of coding issue.



The points stand for the average help of a refactoring solution
and the bars around them indicate the standard deviation.

Every refactoring algorithm for a coding issue got a value
above 1, except the LooseCoupling and the MethodNaming-
Convetions coding issues. In their explanations, the developers
said that they found that fixing one issue had a communication
overhead that sometimes made it easier for them to refactor
the code manually in the IDE instead. However, this overhead
might be negligible if they fix more issues together. For ex-
ample, the refactoring solution for MethodNamingConvetions
issue suggests a better name for a method (e.g. if a method
name starts with an uppercase letter it recommends the same
name beginning with a lowercase letter). After the developer
accepted the refactoring suggestion, they had to wait until our
tool applied the modification. This could take a few seconds
because of the server-client architecture.

Upon examining Figure 4 again, we realized that when we
consider not only the average but also the standard deviation
for each coding issue, we can classify the following 5 refac-
toring types as ‘sometimes bad’: LongFunction, Cyclomatic-
Complexity, UseStringBufferForStringAppends, UselessParen-
theses, TooManyMethods.

The developers explained these as follows. The Useless-
Parentheses issue fell into the same category as the former
two; it is faster to do it manually in some cases. The Long-
Function and CyclomaticComplexity issue fixing refactoring
solutions used an extract method refactoring algorithm where
the algorithm applied a heuristic to find parts of the code that
can be extracted to satisfy the requirement by the issue, to
reduce the length of the method or to reduce the complexity
of it. The main problem with this algorithm was that it
was hard for developers fathom how it worked. They simply
preferred to do it manually instead of using the tools. The
TooManyMethods issue suffered from the same problem, but
in this case the underlying algorithm was ‘extract class’.
Developers’ notes on the UseStringBufferForStringAppends
issue show that although they were satisfied with the semantic
aspect of the algorithm, many formatting problems arose.

IV. EXPERIENCES

Throughout the lifetime of the project we faced many
challenges. Here, we present our experiences that we learned
from the feedbacks of the developers and from their responses
given to the survey.

A. Challenges in how to automate refactoring transformations

1) Precise syntax tree: Without a doubt, a key consid-
erations of refactoring transformations is to have a precise
representation of the source code. One can model the source
code as an abstract syntax tree (AST) to perform different
(graph) transformations on it. Transformations can be just
as good as the underlying representation is, so we found it
necessary to have an accurate and complete AST. To illustrate
this, consider a rename method refactoring. Here, we do not
simply change the method name, but a) we have to check that
the new name does not conflict with other method names in

the same scope (e.g. parent and child classes); b) we have to
check for disambiguation in other classes where the method
is invoked; c) and then, when it passes the former two checks
we are allowed to rename the method and all of its invocations
to the new name. To do this, we have to analyze all the
dependencies, and potentially include external ones as well.

2) Regenerate (only the) modified code: After the trans-
formations on the AST, we have to apply the changes to the
source code. To do this, we have to (re)generate the source
code from the AST (at least, and preferably only for the
modified code parts). It is also important not to introduce
unnecessary changes to the other parts of the source code.

3) Code formatting: The process of code generation re-
quires some indentation and code formatting as well. It is
usually hard for the users to specify formatting rules, and
hence it is also hard to regenerate a code formatted exactly as
the user would like to see it. This was one of the most difficult
challenges we could not fully overcome, and this caused the
most dissatisfaction among developers. However, based on our
experiences, developers mostly accepted this limitation if they
found the refactoring to be semantically correct and they had
to reformat the code only a bit manually (e.g., they could
easily do that in the IDE automatically).

4) Patch generation: As the last step after the transforma-
tion, we generated a diff (difference file or patch) between the
old source code and the new one. Then we sent this diff file to
the IDE where the developers could decide to accept or reject
the modification.

5) Code clone elimination: Another interesting experience
was that the developers eagerly wanted to eliminate code
duplications (code clones). By the end of the project, we
developed an experimental algorithm that was able to refactor
code clones via extract method and extract class refactoring
transformations. Note that automated code clone detection
is a hot research topic as well [16], especially code clone
elimination. It is quite a challenge to come up with a solution
for this issue.
B. What makes a refactoring operation good or bad?

1) Precise problem detection: Developers only wanted rec-
ommendations made for real faults or optimization opportuni-
ties, and they wanted to avoid false positives. Looking at false
recommendations takes time, and it does not bring any benefit
to the project. Besides false positive issues, they also wished
to avoid true negative issues. As a common use case, they said
they wanted to remove all the occurrences of a certain type
of issue. Reporting only some occurrences would give them a
false sense of security.

2) Understandability of the transformations: Refactorings
with a good and easy-to-comprehend description were more
popular among the developers. Unlike those refactoring so-
lutions that required more parameters or were harder to
understand, developers rarely used these and gave worse scores
in the survey.

3) Performance: It was important to carry out the modi-
fications quickly, or at least quicker than it would be to do
manually.



Figure 4. How much the automated refactoring solution assisted the developers (5 - great help, 1 - no help at all)

4) Batch refactorings: One way to improve efficiency is
by supporting the refactoring of several issues at the same
time. With the automated tool, developers were able to fix
many issues of the same type all at once (we called this batch
refactoring). This batch-refactoring process made refactoring
tasks a lot faster. For example, they were able to fix all
occurrences of UnusedConstructor issues with a press of a
button. This option was beloved by developers, and batch
refactorings got better scores in the survey. However, we did
not allow batch refactoring of all the issues. We had to imple-
ment some restrictions in this process because we observed
that developers tended to accept these refactorings without
checking the result of the automated refactoring operations.
This was flattering because it meant that they trusted the
algorithm and its results. Nonetheless, we did not want them to
blindly accept the refactorings. Therefore, we only allowed the
refactoring of one type of issue at a time, and we only allowed
it for some simpler refactorings. This way we guaranteed
that they check complex refactorings (e.g. extract class) and
ensured that simpler ones run fast.

5) Comment handling: Comments are integral parts of the
source code, and sometimes they are closely related to source
code elements. Developers expected from the transformations
that they would also handle these situations. For instance, a
refactoring that removes an unused constructor should remove
the comment before the constructor as well. Similarly, in some
cases they asked us to generate simple comments.

V. CONCLUSIONS

In this paper, we summarized our experiences of a two-year
project where we sought to develop automated refactorings,
and we made interesting observations about the opinions of
the developers who utilized our tools. The results showed that
they found most of the manual refactorings of coding issues
easily implementable via automatic transformations. Also,
when we implemented these transformations and observed the
automated solutions, we found that almost all refactoring types
helped them to improve their code.

We had to take into account several expectations of the
developers when we designed and implemented the automatic
refactoring tools. Among several challenges of the imple-
mentation, we identified some quite important ones, such as

performance, indentation, formatting, understandability, pre-
cise problem detection, and the necessity of a precise syntax
tree. Some of these have strong influence on the usability
of a refactoring tool, hence they should be considered early
on the design phase. Here, our recommendations may serve
as a guideline for others to design and develop automatic
refactoring tools that meet the high expectations of today’s
developers.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[2] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A Quantitative Evalua-
tion of Maintainability Enhancement by Refactoring,” in Proc. of ICSME
2002. IEEE, 2002, pp. 576–585.

[3] T. Mens and T. Tourwé, “A Survey of Software Refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139, 2004.

[4] J. Ratzinger, M. Fischer, and H. Gall, “Improving Evolvability Through
Refactoring,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, 2005.

[5] S. Demeyer, “Refactor Conditionals into Polymorphism: What’s the
Performance Cost of Introducing Virtual Calls?” in Proc. of ICSM.
IEEE, 2005, pp. 627–630.

[6] K. Stroggylos and D. Spinellis, “Refactoring–Does It Improve Software
Quality?” in Proc. of the 5th Int. Workshop on Software Quality. IEEE
Comp. Soc., 2007, p. 10.

[7] M. Alshayeb, “Empirical Investigation of Refactoring Effect on Software
Quality,” Inf. Softw. Technol., vol. 51, no. 9, pp. 1319–1326, Sep. 2009.

[8] A. Yamashita and L. Moonen, “To What Extent Can Maintenance
Problems Be Predicted by Code Smell Detection? - An Empirical Study,”
Inf. Softw. Technol., vol. 55, no. 12, pp. 2223–2242, Dec. 2013.

[9] M. Kim, T. Zimmermann, and N. Nagappan, “A Field Study of Refac-
toring Challenges and Benefits,” in Proc. of the 20th Int. Symposium on
the Foundations of Software Engineering. ACM, 2012, pp. 50:1–50:11.

[10] G. H. Pinto and F. Kamei, “What Programmers Say About Refactoring
Tools?: An Empirical Investigation of Stack Overflow,” in Proc. of the
6th Workshop on Refactoring Tools. ACM, 2013, pp. 33–36.

[11] D. Campbell and M. Miller, “Designing Refactoring Tools for Develop-
ers,” in Proc. of the 2nd Ws. on Refactoring Tools. ACM, 2008.

[12] G. Szőke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy, “Bulk
Fixing Coding Issues and Its Effects on Software Quality: Is It Worth
Refactoring?” in Proc. of SCAM 2014. IEEE, 2014, pp. 95–104.

[13] G. Szőke, C. Nagy, R. Ferenc, and T. Gyimóthy, “A Case Study
of Refactoring Large-Scale Industrial Systems to Efficiently Improve
Source Code Quality,” in Proc. of ICCSA 2014. Springer, 2014, pp.
524–540.

[14] G. Szőke, C. Nagy, P. Hegedűs, R. Ferenc, and T. Gyimóthy, “Do
Automatic Refactorings Improve Maintainability? An Industrial Case
Study,” in Proc. of ICSME 2015. IEEE, 2015, pp. 429–438.

[15] G. Szőke, C. Nagy, L. J. Fülöp, R. Ferenc, and T. Gyimóthy, “Fault-
Buster: An Automatic Code Smell Refactoring Toolset,” in Proc. of
SCAM 2015. IEEE, 2015, pp. 253–258.

[16] C. K. Roy, M. F. Zibran, and R. Koschke, “The Vision of Software
Clone Management: Past, Present, and Future (keynote paper),” in Proc.
of CSMR-WCRE. IEEE, 2014, pp. 18–33.


