
A Static Code Smell Detector for SQL Queries
Embedded in Java Code

Csaba Nagy∗, Anthony Cleve†
PReCISE Research Center, University of Namur, Belgium
∗csaba.nagy@unamur.be, †anthony.cleve@unamur.be

Abstract—A database plays a central role in the architecture
of an information system, and the way it stores the data delimits
its main features. However, it is not just the data that matters.
The way it is handled, i.e., how the application communicates
with the database is of critical importance too. Therefore the
implementation of such a communication layer has to be reliable
and efficient. SQL is a popular language to query a database,
and modern technologies rely on it (or its dialects) as query
strings embedded in the application code. In many languages
(e.g. in Java), an embedded query is typically constructed
through several string operations that obstruct developers in
understanding the statement finally sent to the database. It is a
potential source of fault-prone and inefficient database usage, i.e.,
code smells. In our paper, we present a tool for the identification
of code smells in SQL queries embedded in Java code. Our tool
implements a combined static analysis of the SQL statements
embedded in the source code, the database schema, and the data
in the database. We use a lightweight query extraction algorithm
to extract SQL code from the Java code and implement smell
detectors on the ASG of our fault-tolerant SQL parser. Depending
on the context of the smell, its severity is also determined.
Developers can examine the identified issues with the help of
an Eclipse plug-in or through command line interfaces.

I. INTRODUCTION

In a complex, large-scale information system a database is
almost always involved in every use case which gives it a
central role in the architecture. A database is also critical as
it has to be always readily available and its response time
influences the usability of the entire system. Due to its central
role, it has been shown that the structure of the database can
evolve rapidly reaching hundreds of tables or thousands of
database objects [1]. Moreover, because the application code
and the database depend on each other, they evolve in parallel
[2] resulting in an increased complexity of the source code
which implements the database communication. It is vital that
this layer remains reliable, robust and efficient.

Although NoSQL solutions are becoming popular, SQL is
one of the most widely used languages to interact with a
database. According to the 2017 survey of StackOverflow1,
SQL is the second most popular programming language
right after JavaScript and ahead of Java. Popular database
access technologies also rely on it, e.g., Hibernate (an ORM
framework for Java) uses JDBC and internally translates the
database accesses to the SQL dialect of the RDBMS. Recently,
Goeminne et al. studied 3,707 Java projects on GitHub and
found that JDBC, Hibernate, and JPA are the most widely used

1https://stackoverflow.com/insights/survey/2017

technologies to communicate with a DB, while JDBC occurs
as the only database framework in 56.3% of the projects [3].

Database access technologies intend to help developers in
various ways. They make it easier to integrate the commu-
nication with the database into the application code, e.g., by
providing a link between Java classes and database entities
(e.g. ORMs), or merely by supporting to reuse and construct
queries (e.g. prepared statements). However, as a drawback,
a developer hardly sees the final SQL query that is, in the
end, sent to the database. Except for the rather frequent case
when the query fails, and it appears somewhere in a log file or
a stack trace. In fact, the technology which intended to help
obstructs the developer in observing the final SQL statement.
It makes harder to understand existing queries and to construct
new and efficient ones, which is already a difficult task without
the embedded query context [4], [5]. In the worst case, this can
lead to a potential source of erroneous, incorrect, or inefficient
database usage also known as code smells [6]–[8].

Not long ago, Bill Karwin published a book entitled SQL
Antipatterns [9]. He presents a collection of common issues
developers frequently encounter while working with SQL.
There are also more books and publications related to SQL
code smells [7], [8], but there are only a few tools to identify
such code smells. Tools typically designed for database admin-
istrators can statically analyze queries and identify common
mistakes (e.g., popular ones are TOAD2 and SQL Enlight3),
but they require the SQL code as input.

The analysis of queries embedded in the host code is
different, however, and it has several benefits. A developer
should not necessarily leave his programming environment to
assess existing queries in the application code or to avoid
writing a wrong one. To this end, a static analyzer has to
analyze (1) the application code to extract queries, then (2) the
queries to identify smells. For a precise analysis, this requires
two parsing steps for two different languages. Additionally,
depending on the success of the query extraction, some
statements may remain incomplete because of string fragments
which cannot be resolved statically. A simple example is a
query to check login credentials at the beginning of a session.
A different input means a distinct query, so a static tool either
drops the full query because of the unknown part from the
user input or has to implement a method to handle it.

2https://www.quest.com/toad
3http://ubitsoft.com

In our paper, we present a prototype tool, which was
designed to statically analyze SQL queries embedded in Java
code and to identify typical coding mistakes among them,
i.e., code smells. To the best of our knowledge, there is no
other tool available which can statically extract SQL queries
from the Java code, then perform a combined analysis of the
database schema and the database to identify code smells in
the queries. With our prototype implementation, we targeted
JDBC as a common database access technology and MySQL
as a popular RDBMS. The tool is publicly available4.

In the rest of the paper, we discuss related work and tools
which are available for similar purposes. Then we introduce
our tool, and the code smells we implemented. We also
present example usage of the tool and finally we discuss future
directions for possible improvements.

II. RELATED WORK

Common mistakes in SQL has been already in the interest of
researchers before the appearance of the ISO SQL-92 standard
[10]. In 1985, Welty studied how human factors can affect
users in using SQL and found that user performance could
be significantly improved [11]. Later, Brass et al. started
working on the automatic detection of logical errors in SQL
queries [12] and extended their work with the recognition
of common semantic mistakes [13]. They implemented the
SQLLint tool which was able to automatically identify these
errors in (syntactically correct) SQL statements [14]. The tool
seems to be unsupported today. There is another online tool
named SQLLint5, but it is a SQL beautifier.

There are also books in this area. The Art of SQL [8] and
Refactoring SQL Applications [15] provide guidelines to write
efficient queries, while the book of Bill Karwin [9] collects
antipatterns that should be avoided. In a paper, Ahadi et al.
presented a large-scale analysis of students’ semantic mistakes
in writing SQL SELECT statements [16]. They collected data
from over 2,300 students across nine years and summarized
typical mistakes of the students. They found that most of
the mistakes were made in queries which require a JOIN,
a subquery or a GROUP BY operator. We argue that queries
typically use more complex syntax in practice compared to
student projects. Hence, the situation can be even worse.

In the realm of embedded SQL, Christensen et al. proposed
a technique and a tool (JSA, Java String Analyzer) to extract
string expressions from Java code statically [17]. As a poten-
tial application of their approach, they check the syntax of
dynamically generated SQL strings. They limit their approach
to the syntactic validation of the queries. Wassermann et al.
propose a static string analysis technique to identify possible
errors in dynamically generated SQL code [18]. With the
implementation of a CFL-reachability algorithm they detect
type errors (e.g., concatenating a character to an integer
value). Their approach works with extracted query strings of
valid SQL syntax. In a tool demo paper, they present their

4http://perso.unamur.be/∼cnagy/scam2017-eng
5http://www.sqllint.com

prototype tool called JDBC Checker [19]. Recently, Anderson
and Hills studied query construction patterns in PHP [20].
They analyzed query strings embedded in PHP code with the
help of the PHP AiR framework.

Quality assessment of embedded SQL was proposed by
Brink et al. in 2007 [21]. They analyzed embedded query
strings in PL/SQL, Cobol, and Visual Basic programs while
they propose a generic approach which could be applied to
Java too [22]. They investigate relationships which could be
detected through embedded queries (e.g., access, duplication,
control dependencies) and they propose quantitative query
measures for quality assessment. Many static techniques which
try to deal with embedded query strings do it with the purpose
of SQL injection detection [23]. Yeole and Meshram published
a survey of these techniques [24]. SQL injection detection
is different as the goal is specifically to determine whether
a query could be affected by user input. Some papers also
tackle SQL fault localization techniques. A dynamic approach
was proposed by Clark et al. to localize SQL faults in database
applications [25]. They provide command-SQL tuples to show
the SQL statements executed at database-interaction points.

A recent work of Delplanque et al. targets the database to
assess the quality of the schema and to detect design smells
in it [26]. They implement a tool called DBCritics which can
analyze PostgreSQL schema dumps and identify design smells
such as missing primary keys or foreign key references. A
tool which also has to be mentioned here is the Eclipse plug-
in called Alvor [27]. Just like JDBCChecker [19] and JSA
[17], this plug-in analyzes the string expressions in Java code.
What is more, Alvor checks syntax correctness, semantics
correctness, and object availability by comparing the extracted
queries against its internal SQL grammar and by checking
SQL statements against an actual database.

III. OVERVIEW

Our work was inspired by the antipattern catalog of Bill
Karwin [9]. As he says, “SQL Antipatterns describes the
most frequently made missteps I’ve seen people naively make
while using SQL.” The book categorizes antipatterns into
Logical Database Design, Physical Database Design, Query,
and Application Development categories. Our purpose was to
support working with queries embedded in Java code. Hence,
we implemented a prototype tool for the identification of
Query antipatterns. We refer to these as SQL code smells since
they are specific to SQL queries and indicate ‘smelly’ code,
i.e. there might be a bug or an issue nearby [6]. The rest of
the categories mostly relate to database design.

Figure 1 presents a high-level overview of the main compo-
nents of our tools. A primary component is the SQL Extractor
which extracts SQL queries embedded in the Java code. The
input of this component is the Java source code, and the
output is a list of SQL statements with some additional meta
information such as the call chain through which the statement
is constructed or the location in the source code where it
is sent to the database. By default, the tool executes our
lightweight SQL extractor implementation which relies on

Figure 1. An overview of the SQL code smell detector tools.

an intra-procedural string resolution working with the AST
provided by Eclipse JDT. Since the tool comes with an Eclipse
plug-in as a user interface, this solution makes available an
easy way to integrate the analyzer into the IDE and perform
a fast, initial analysis that can quickly present results to the
developer. Preliminary results indicate that this engine can
identify the locations in the source code where SQL statements
are sent to the database with great success, and able to extract a
query string when its main part is constructed within a method.
In a sample open source project management application,
which uses JDBC and has about 130 kLOC in Java, Plandora6,
the extractor identified 424 unique SQL statements in 62 DAO
classes. The design of the tool allows an easy replacement of
this component with other SQL extraction engines through
the implementation of a wrapper if needed. Example SQL
extraction techniques which could be used here are the solution
of Meurice et al. [1] or the JSA of Christensen et al. [17]. A
more accurate engine could perform better in the extraction
of more SQL statements resulting in a more precise analysis
but may have an adverse impact on the execution time, which
may also affect usability.

The SQL Code Smell Detector takes as input the SQL
statements extracted and optionally the schema description
of the database along with the table content. It parses the
statements, constructs an AST then an ASG and runs the smell
detectors. The description of the schema can also be provided
as data definition statements (e.g. create table statements) in
an external file, or when access is given to the database, the
tool can fetch it by itself. For parsing, we rely on a newer
version of our SQL parser [1], [28], [29]. This version is
implemented in Java with an ANTLR4 grammar. The grammar
covers data definition and CRUD statements of MySQL with
about 400 syntactic rules in 4800 lines of code. It was designed
to handle embedded SQL statements even if some of their
parts cannot be successfully extracted. For an ‘unrecognized
code fragment,’ the parser inserts a special node into the AST
which indicates the incompleteness of the statement but helps
to keep its original structure.

Finally, the code smell detector algorithms are executed to
identify different smell types. Each smell detector implements
a different algorithm to search for patterns in the ASG during
its traversal. Our goal was also to provide a list of smells with
a severity categorization which can help the developer to first

6http://www.plandora.org/index.html

concentrate on the more serious issues. Hence, a detector does
not just point to the source code but also provides severity
information based on the type and context of the smell. For
some smells, this may require access to the database too. The
results are reported to the standard output or in a report file
in XML format.

Each analyzer has a Command-line user interface to execute
the analyses. The main UI, however, is the Eclipse plug-in
which was developed on top of the SQL extractor. We present
some use cases of these interfaces in Section V.

IV. QUERY SMELLS

The SQL Antipatterns book [9] lists six query antipatterns
out of which we implemented four in our prototype. Two
of the antipatterns remain unimplemented as we found them
too general for static analysis. For the sake of completeness,
we introduce all the smells here using the original names
from the catalog. We explain the problems and outline our
implementation to identify the issues.

A. Fear of the Unknown

The reason behind this antipattern is the special meaning
of NULL in relational databases that can easily confuse de-
velopers. NULL is a special marker to indicate that data does
not exist in the database, i.e. it is ‘unknown’. NULL is not
the same as 0. A number ‘ten times greater than an unknown’
is still ‘unknown’. NULL is not the same as FALSE, either.
Hence, a boolean expression with AND, OR, and NOT can
easily produce a result that someone may find confusing. Also,
NULL is not the same as an empty string. A string combined
with NULL is also NULL in standard SQL, but to make things
more complicated, different RDBMSs handle it differently,
e.g., in Oracle and Sybase the concatenation of NULL to a
string will result in the original string.

SELECT ∗ FROM r e n t a l s WHERE c u s t o m e r i d = 456 ;
−− w i l l n o t r e t u r n r e c o r d s where c u s t o m e r i d i s n u l l
SELECT ∗ FROM r e n t a l s WHERE NOT (c u s t o m e r i d = 4 5 6) ;

Listing 1. Fear of the Unknown example.

A common confusion can be seen in Listing 1. Both the
first and the second queries are syntactically and semantically
correct. The problem is that it is tempting to assume that the
result of the second query is the complement of the first query.
However, this is not always the case. For records in the table
with a NULL value for customer_id, the expression in the
WHERE clause evaluates to ‘unknown,’ which do not satisfy the
search criteria, so these records will not appear in the output.

Other typical mistakes can be seen in Listing 2. None of
the last two queries will return records where customer_id
is NULL. The proper way to test for NULL is to use the IS
NULL operator in SQL. Both queries are syntactically and
semantically correct and will run without error, however.

We implemented the recognition of the antipattern as fol-
lows. We check if a column is used in one of the following
expressions: column = NULL or column <> NULL. In
such cases, we report a smell with HIGH_CERTAINTY. We

−− w i l l r e t u r n NULL i f age i s NULL
SELECT age + 10 FROM c u s t o m e r s ;
−− w i l l r e t u r n NULL i f e . g . m i d d l e i n i t i a l i s NULL
SELECT f i r s t n a m e | | ’ ’ | | m i d d l e i n i t i a l | | ’ ’

| | l a s t n a m e AS f u l l n a m e FROM c u s t o m e r s ;

−− s h o u l d use IS NULL or IS NOT NULL
SELECT ∗ FROM r e n t a l s WHERE c u s t o m e r i d = NULL ;
SELECT ∗ FROM r e n t a l s WHERE c u s t o m e r i d <> NULL ;

Listing 2. Fear of the Unknown example (cont.)

also check whether a column has NOT NULL constraint in
the database schema if it is used in an expression of a where
clause. If the column has no such constraint, and it appears
in arithmetic, string or boolean expression, we report a smell
with NORMAL_CERTAINTY; or with HIGH_CERTAINTY if
we find a record with a NULL field in the table. In any other
cases, the problem is reported with LOW_CERTAINTY.

B. Ambiguous Groups

GROUP BY is a feature of SQL which can make the
construction and comprehension of a query more complicated.
Ahadi et al. found that GROUP BY is one of the most
common reasons for students’ mistakes in queries [16]. Com-
mon confusions are misplaced conditions in WHERE clause
instead of HAVING clause, missing ORDER BY, or too many
unnecessary columns in the GROUP BY clause.

−− t h e r e f e r e n c e t o ’ addres s ’ c a u s e s u n p r e d i c t a b l e
−− b e h a i v o u r i n MySQL and SQLi te
SELECT name , a d d r e s s , AVG(age) FROM c u s t o m e r s

GROUP BY name ;

Listing 3. Ambiguous Groups example.

Another source of errors is the handling of columns in the
SELECT list of a query with a GROUP BY clause. The SQL-
92 standard is straightforward and it “does not permit queries
for which the select list, HAVING condition, or ORDER BY
list refer to nonaggregated columns that are not named in the
GROUP BY clause.” Therefore, the reference to the address
column in Listing 3 makes the query invalid according to the
standard. Later standards, however, such as SQL-99 “permits
such non-aggregates [. . .] if they are functionally dependent on
GROUP BY columns.” So, if address functionally depends
on name, the query is acceptable. This relaxation of the rule
leads to various implementations in RDBMSs. For instance,
Oracle follows the strict standard7. While the default behavior
of MySQL is that the “use of GROUP BY permits the select
list, HAVING condition, or ORDER BY list to refer to nonag-
gregated columns even if the columns are not functionally
dependent on GROUP BY columns.”8 Moreover, “the server
is free to choose any value from each group, so unless they
are the same, the values chosen are indeterminate, which is
probably not what you want.” SQLite, as another popular

7Restriction on the select list: https://docs.oracle.com/cd/B19306 01/server.
102/b14200/statements 10002.htm#i2182483

8https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html

RDBMS implements a similar behavior: “if the expression is
an aggregate expression, it is evaluated across all rows in the
group. Otherwise, it is evaluated against a single arbitrarily
chosen row from within the group.”9 Needless to say that this
is a reason for queries which sometimes work as the developer
wants it, but sometime may also result in unexpected behavior.

Our implementation detects queries where the SELECT list
refers to columns which are not listed in the GROUP BY clause
and not used in an aggregate function.

C. Random Selection
It is relatively common that one needs to select a random

value from the database. A standard solution can be seen in
Listing 4. The problem with such a solution is that it performs
a full table scan and an expensive sort operation, which sounds
unnecessary for the selection of a single record. The possi-
bilities in SQL are limited, and even popular StackOverflow
posts come to the same solution10. However, if one considers
the embedded context too, there are additional possibilities to
avoid the performance drop back. The SQL Antipatterns book
gives useful advice to overcome the issue [9]. For example,
some servers provide ready solutions like the TABLESAMPLE
clause in SQL Server or the SAMPLE clause in Oracle.

SELECT ∗ FROM c u s t o m e r s ORDER BY RAND() LIMIT 1 ;

Listing 4. Random Selection example.

We implemented this antipattern by searching for the invo-
cation of the RAND method in the ORDER BY clause.

D. Implicit Columns
The usage of * in a SELECT list makes it easy to construct

a query (see Listing 5), but it is not recommended in batch
or embedded context. If the query is embedded, e.g. in Java,
a change in the order of the columns in the returned result
set may cause problems for the code which processes it.
Whenever the structure of the table is modified (e.g., a column
is added/deleted, or an existing one is renamed), the query
will return records according to the modified structure. Also,
the query may return irrelevant columns which may generate
unnecessary network traffic. The recommended way to avoid
the issue is to give up using * and name the columns in the
select list explicitly.

SELECT ∗ FROM c u s t o m e r s c JOIN r e n t a l s r
ON c . c u s t o m e r i d = r . c u s t o m e r i d ;

INSERT INTO c u s t o m e r s VALUES
(DEFAULT, ’ Brown ’ , ’ P e t e r ’ , NULL, NULL) ;

Listing 5. Implicit Columns example.

Our implementation looks for the usage of * in the SELECT
lists except if it is used in the form of tablename.*
which indicates that the developer selected all the columns
on purpose.

9https://sqlite.org/lang select.html
10https://stackoverflow.com/questions/580639/how-to-randomly-select-

rows-in-sql

E. Spaghetti Query (not implemented)

We tend to construct huge queries when we need to join
multiple tables and specify more search criteria spiced with
some subqueries. The maintenance of such a query can be a
tedious task as it becomes hard to rediscover what and why we
(or someone else) did to make it work. The problem can often
be broken down into smaller ones which could be put together
with the help of views, stored procedures or multiple queries
embedded in the client code. Sometimes, however, a single
query has benefits: e.g., the SQL engine can better optimize
it, or it is easier to integrate one in a reporting tool.

There is no objective definition to tell whether a query is too
large with more disadvantages than advantages, so it ‘smells’
like a spaghetti query. For instance, one can say that a query
which joins more than X tables, views or subqueries is too
large; or a query over Y lines or characters is a spaghetti
query. We found such a rule too subjective to implement in
our prototype tool.

F. Poor Man’s Search Engine (not implemented)

SELECT ∗ FROM c u s t o m e r s WHERE name LIKE ’%brown%’ ;
SELECT ∗ FROM c u s t o m e r s WHERE name REGEXP ’ brown ’ ;

Listing 6. Poor Man’s Search Engine example.

We often need to use pattern-matching predicates to com-
pare strings in fields (see Listing 6). Such operations may
have poor performance because they cannot always benefit
from indexes. The recommendation is to avoid these predicates
and take advantage of full-text indexes or text search features
of the underlying database, e.g., use FULLTEXT INDEX and
MATCH AGAINST in MySQL. Another suggestion is to use
third-party search engines like Sphinx11 or Apache Lucene12.
These solutions are rather problem or RDBMS dependent, so
we did not implement the recognition of this code smell.

V. USAGE EXAMPLES

The tool has three interfaces to interact with users. The
primary UI is an Eclipse plug-in, which integrates the analyzer
into the Eclipse IDE (currently supported version is Eclipse
Neon, 4.3.6). Using the plug-in, one can execute the analysis
of a project and then examine the results through a queries
view, and markers of the code smells.

An example screenshot of Eclipse with a DAO class opened
from the Plandora project can be seen in Figure V. Among
the views at the bottom, there is a list of queries in the actual
source file including their execution points. In the middle of
the editor, there is an example of a prepared statement with a
marker showing the actual query sent to the database.

Another interface is the command line interface of the SQL
extractor. This command line tool can be fully parameterized
to run the analysis of the Java code. It requires a directory
of the source files and invokes the Query Extractor. Its
analysis is based on the ASTParser of the Eclipse JDT API.

11http://www.sphinxsearch.com
12http://lucene.apache.org

Configuration options such as the classpath for the analysis can
be passed to it through command line parameters. An example
usage of this command line interface can be seen in Listing 7.
Also, Listing 8 shows an XML output of the tool with a short
list of code smells in Plandora.

There is a command line interface for the SQL Smell
Detector too. It mainly serves testing purposes but also enables
a user to analyze text files containing SQL statements directly.
One can get different debug outputs from the phases of
analyses, e.g. dumps of the AST.

A detailed description of the usage of different interfaces,
the internal working mechanisms, and the supported smells
can be found at the website of the tool set (see Section I).

VI. CONCLUSIONS

During our earlier research work, we observed a lack of
code smell detector tools which can detect potential coding
errors in SQL statements embedded in application code, par-
ticularly in Java. Due to the increasing popularity of these
technologies, there is a high demand for such a tool, which
is also supported by many StackOverflow questions and blog
posts. Although there have been some attempts to fill this gap,
to the best of our knowledge, there is no publicly available tool
that is readily usable for developers. Our goal is to provide
a solution and help developers who struggle with complex
SQL statements deeply buried in their source code. In this
paper, we introduced our prototype implementation which
includes a lightweight query extraction and can detect query
antipatterns from Bill Karwins SQL Antipatterns catalog [9]. It
was tested on open source projects with various sizes, and as a
prototype tool, it does not just serve well as a proof concept but
also demonstrates the potential of the approach. There remain
several possibilities for improvements too. Above all, we plan
to add more features to the Eclipse plug-in, extend the list of
code smells and support additional SQL dialects.

REFERENCES

[1] L. Meurice, C. Nagy, and A. Cleve, “Static analysis of dynamic database
usage in Java systems,” in Proc. of the 28th Int. Conf. on Advanced
Information Systems Engineering (CAiSE2016). Springer LNCS, 2016.

[2] L. Meurice, M. Goeminne, T. Mens, C. Nagy, A. Decan, and A. Cleve,
Software Technology: 10 Years of Innovation in IEEE Computer. John
Wiley & Sons, 2017, ch. Analysing the Evolution of Database Usage in
Data-Intensive Software Systems.

[3] M. Goeminne and T. Mens, “Towards a survival analysis of database
framework usage in Java projects,” in Proc. of the 31st Int. Conf. on
Soft. Maint. and Evolution (ICSME2015). IEEE, 2015, pp. 551–555.

[4] D. A. Robb, P. L. Bowen, A. F. Borthick, and F. H. Rohde, “Improving
new users’ query performance: Deterring premature stopping of query
revision with information for forming ex ante expectations,” J. Data and
Information Quality, vol. 3, no. 4, pp. 7:1–7:22, Sep. 2012.

[5] A. Ahadi, J. Prior, V. Behbood, and R. Lister, “A quantitative study
of the relative difficulty for novices of writing seven different types of
SQL queries,” in Proc. of the Conf. on Innovation and Technology in
Computer Science Education (ITiCSE2015). ACM, 2015, pp. 201–206.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[7] Red Gate Software Ltd., 119 SQL Code Smells, 2014.
[8] S. Faroult and P. Robson, The Art of SQL. O’Reilly Media, Inc., 2006.
[9] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Pro-

gramming (Pragmatic Programmers). Pragmatic Bookshelf, 2010.

Figure 2. Example screenshot of the Eclipse plug-in.

j a v a −c l a s s p a t h . : l i b s /∗ : Ecl ipseSQL −0 . 1 . 1 8 . j a r
e c l i p s e s q l . Ecl ipseSQLCLI
−c l a s s p a t h / u s r / l i b / jvm / java−8−o r a c l e / j r e / l i b / r t . j a r
−dumpquer i e s p landora−code / q u e r i e s . xml
−r u n s m e l l s −s m e l l r e p o r t f o r m a t xml
−s m e l l r e p o r t p landora−code / s m e l l s . xml
p landora−code

Listing 7. Example usage of the command line interface of the SQL extractor.

<Sm el l s>
<Smel l>

<Kind>I m p l i c i t C o l u m n s</ Kind>
<F i l e>j a v a / com / pandora / dao / PreferenceDAO . j a v a</ F i l e>
<Line>9 0 / Line>
<C e r t a i n t y>NORMAL CERTAINTY</ C e r t a i n t y>
<Message>Name columns e x p l i c i t l y .</ Message>

</ Smel l>
<Smel l>

<Kind>I m p l i c i t C o l u m n s</ Kind>
<F i l e>j a v a / com / pandora / dao / DbQueryDAO . j a v a</ F i l e>
<Line>139</ L ine>
<C e r t a i n t y>NORMAL CERTAINTY</ C e r t a i n t y>
<Message>Name columns e x p l i c i t l y .</ Message>

</ Smel l>
</ S me l l s>

Listing 8. Example code smells in the Plandora project.

[10] ISO/IEC 9075:1992 Information Technology – Database Language SQL,
Std., July 1992.

[11] C. Welty, “Correcting user errors in SQL,” Int. J. of Man-Machine
Studies, vol. 22, no. 4, pp. 463 – 477, 1985.

[12] S. Brass and C. Goldberg, “Detecting logical errors in SQL queries,” in
Proc. of the 16th Workshop on Foundations of Databases, 2004.

[13] ——, “Semantic errors in SQL queries: A quite complete list,” J. Syst.
Softw., vol. 79, no. 5, pp. 630–644, May 2006.

[14] C. Goldberg, “Do you know SQL? About semantic errors in database
queries,” Higher Education Academy, Tech. Rep., 2009.

[15] S. Faroult and P. L’Hermite, Refactoring SQL Applications. O’Reilly
Media, Inc., 2008.

[16] A. Ahadi, J. Prior, V. Behbood, and R. Lister, “Students’ semantic
mistakes in writing seven different types of SQL queries,” in Proc. of
the Conf. on Innovation and Technology in Computer Science Education
(ITiCSE2016). ACM, 2016, pp. 272–277.

[17] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise analysis
of string expressions,” in Proc. of the 10th Int. Conf. on Static Analysis
(SAS2003). Springer-Verlag, 2003, pp. 1–18.

[18] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static checking of
dynamically generated queries in database applications,” ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 4, Sep. 2007.

[19] C. Gould, Z. Su, and P. Devanbu, “JDBC Checker: A static analysis tool
for SQL/JDBC applications,” in Proc. of the 26th Int. Conf. on Software
Engineering (ICSE2004). IEEE Com. Soc., 2004, pp. 697–698.

[20] D. Anderson and M. Hills, “Query construction patterns in PHP,”
in Proc. of the 24th Int. Conf. on Software Analysis, Evolution and
Reengineering (SANER2017). IEEE, Feb 2017, pp. 452–456.

[21] H. v. d. Brink, R. v. d. Leek, and J. Visser, “Quality assessment for
embedded SQL,” in Proc. of the 7th Int. Working Conf. on Source Code
Analysis and Manipulation (SCAM2007). IEEE, 2007, pp. 163–170.

[22] H. v. d. Brink, “A framework to distil SQL queries out of host languages
in order to apply quality metrics,” Master’s thesis, Utrecht Univ., 2007.

[23] M. Sonoda, T. Matsuda, D. Koizumi, and S. Hirasawa, “On automatic
detection of SQL injection attacks by the feature extraction of the single
character,” in Proc. of the 4th Int. Conf. on Security of Information and
Networks (SIN2011). ACM, 2011, pp. 81–86.

[24] A. S. Yeole and B. B. Meshram, “Analysis of different technique for
detection of SQL injection,” in Proc. of the Int. Conf. & Ws. on Emerging
Trends in Technology (ICWET2011). ACM, 2011, pp. 963–966.

[25] S. R. Clark, J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold,
“Localizing SQL faults in database applications,” in Proc. of the 26th
IEEE/ACM Int. Conf. on Automated Software Engineering (ASE2011).
IEEE Comp. Soc., 2011, pp. 213–222.

[26] J. Delplanque, A. Etien, O. Auverlot, T. Mens, N. Anquetil, and
S. Ducasse, “Codecritics applied to database schema: Challenges and
first results,” in Proc. of the 24th Int. Conf. on Soft. Analysis, Evolution
and Reengineering (SANER2017). IEEE, Feb 2017, pp. 432–436.

[27] A. Annamaa, A. Breslav, J. Kabanov, and V. Vene, “An interactive
tool for analyzing embedded SQL queries,” in Proc. of the 8th Asian
Conference on Programming Languages and Systems (APLAS2010).
Springer-Verlag, 2010, pp. 131–138.

[28] C. Nagy, L. Meurice, and A. Cleve, “Where was this SQL query
executed? A static concept location approach,” in Proc. of the
22nd Int. Conf. on Software Analysis, Evolution, and Reengineering
(SANER2015). IEEE Comp. Soc., 2015, pp. 580–584.

[29] C. Nagy and A. Cleve, “Mining Stack Overflow for discovering error
patterns in SQL queries,” in Proc. of the 31st Int. Conf. on Software
Maintenance and Evolution (ICSME2015). IEEE, 2015, pp. 516–520.

