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Abstract—Applying sophisticated machine learning tech-
niques on fully distributed data is increasingly important in
many applications like distributed recommender systems or
spam filters. In this type of networked environment the data
model can change dynamically over time (concept drift). Iden-
tifying when concept drift occurred is a key for several drift
handling techniques and important in numerous scenarios.
However drift handling approaches exist, no efficient solution
for detecting the drift is known in very large scale networks.
Here, we propose an approach that can detect the concept drift
in large scale and fully distributed networks. In our approach,
the learning is performed by applying online learners that
take random walks in the network while updating themselves
using the samples available at the nodes. The drift detection
is based on an adaptive mechanism which uses the historical
performances of the models. Through empirical evaluations we
demonstrate that our approach handles the drifting concept
while additionally detects the occurrence of the concept drift
with high accuracy.
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I. INTRODUCTION

We are in the middle of big data era. Our devices and
applications accumulate more and more data. Smart phones
become easily programmable personal sensing devices with
accelerometer, gyroscope and GPS, having the capability to
communicate through the Internet all the time [1], [2]. The
pure P2P file sharing applications are getting more and more
social making possible to produce and share high quality
content [3], [4]. Paradoxically while getting access to more
and more data, we can find less information by applying
the original retrieval techniques. This phenomena increases
the importance of emerging fully distributed, large-scale data
mining algorithms that can work in unreliable networks, take
the privacy of users into account and be adaptive to changes
in the data.

The above-mentioned applications are usually prepared
for long-term running. In this type of applications, it is
crucial that the machine learning algorithms work adaptively,
since the behavior of the users and the trends—that appears
in the data—change continuously.

In this work we are interested in scenarios in which
a huge number of connected nodes learn global models
(e.g. classifiers) by applying local communications from
continuously changing data. We assume that the underlying
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data model changes and that only a limited amount of data
becomes available for identifying and following concept
drift. These assumptions are quite common in the systems
mentioned above.

Previously we proposed the so-called Gossip Learning
Framework (GoLF) [5], a general learning framework for
performing large-scale fully distributed learning. The basic
approach is not designed for dealing with changing data, but
recently we extended it by adding drift handling capability
to the framework [6]. That approach introduces adaptivity
through keeping the model diversity by managing the life-
time of the models without being able to detect the concept
drift.

Our current contribution is the following. We propose a
drift detecting mechanism for GoLF that makes it possible
to identify the time moment when the concept changed
while the method handles it as well. It is important to
highlight that our previous work on drift handling [6] is a
quite different approach which completely ignores the drift
detection mechanism (proposed here). Our current proposal
can be suitable in scenarios in which the drift detection
mechanism is important.

II. SYSTEM AND DATA MODEL

As our system model, we consider a network of computers
where each node can communicate with any other node by
messages if the address of the target node is locally available.
We assume that a peer sampling service exists which can
provide addresses of uniform randomly selected nodes from
the network.

In our data model, the database is horizontally distributed
over the whole network. Additionally we assume that each
peer in the network has just only one data record which
excludes the local statistical processing. Another key as-
sumption is that the record never leaves the node; collecting
the data to a central server is not allowed due to privacy
considerations.

III. BACKGROUND

A. Supervised Learning

The main problem of the supervised binary classification
can be defined as follows. We have a manually labeled train-
ing database S = {(x1, y1), . . . , (xl, yl)} ∈ R

d×{−1,+1}.
Here xi ∈ R

d called feature vector that describes an object
of real world (e.g. the content of a textual comment) as a
real-valued vector and yi is the class label which assigns the



feature vector to a well-defined class (e.g. spam). We assume
that all the samples are generated by an unknown underlying
probability distribution D. The goal—through the learning
phase—of the classification problem is to find a model
f : Rd → {−1,+1} which can classify any sample coming
from the same probability distribution (D). We expect that
the model has to classify unseen examples too i.e. it has to
generalize well. When the training samples are available as
a stream, the training process is known as online learning.

B. Concept Drift

The distribution that generates the training databases (D)
may change over the time. This change—especially when it
is significant and sudden—makes the already trained models
inaccurate. This phenomena is called concept drift. The main
goal of concept drift handling is to design algorithms that
provide a good model ft corresponding to any time moment
t in which the actual data distribution is Dt. However, in
some scenarios more is needed i.e. we have to identify the
time moment t∗ when (sudden) drift occurred while we
also handle it. This problem is known as the drift detection

problem.

C. Gossip Learning Framework

The Gossip Learning Framework (GoLF) [5] is a learning
framework designed for performing fully distributed learning
in large scale networks. The basic idea behind GoLF is
that large number of online models take random walks in
the network while improving themselves using the training
samples contained at the nodes and getting combined by
applying ensemble learning techniques.

In Algorithm 1, the skeleton of GoLF is shown extended
with an additional line (marked with the comment “Drift
Detection”) which calls the proposed drift detection subrou-
tine. Here, we explain the original parts of GoLF only; the
drift detecting approach is detailed in Section V.

At each peer in the network, the same protocol runs
which consists of an active loop of periodic activity, and
the message handler method ONRECEIVEMODEL to process
incoming models. This method updates the received model
using the locally stored training example and stores it in its
cache called receivedModels. In the active loop, the stored
models are sent to randomly selected neighbors (proposed by
the peer sampling service) and are deleted from the cache. At
anytime the freshest model (that is, CURRENTMODEL, the
model added to the local cache most recently) is used for
performing predictions. This means that no communication
is needed for performing predictions. The concrete learning
algorithm is implemented in the method UPDATEMODEL

which is detailed in Section V.
In the GoLF protocol, we make no assumptions about

either the synchrony of the loops at the different nodes
or the reliability of the messages. It is assumed only that
the distribution of the length of active period, denoted by
∆ in the algorithms and modeled with random variable
N (∆,∆/10), is the same at each node. There is no explicit
failure detection mechanism; however, if a node does not

receive any models for a certain number of periods (in our
case 10), then it will assume that the number of models
circulating in the network has decreased, and will send its
CURRENTMODEL to a random neighbor. This prevents the
network from running out of models due to message drop
failures.

IV. RELATED WORK

A. Non-Distributed Concept Drift Handling

The set of non-distributed approaches available in the
literature is quite large. The early approaches for handling
concept drift applied chunk based learning [7], [8], [9]
i.e. they learned a new model when a fixed sized sample
set (chunk) became available and discarded the previously
learned model. These approaches produce good performance
when the sample generation speed is faster relative to the
speed of concept drift. In these types of approaches, no drift
detection mechanism is introduced.

More sophisticated methods introduce various drift de-
tection methods [8], [10], [11]. These approaches use per-
formance related measures to investigate whether building
a new model has to be initiated. The recent approaches
apply ensemble techniques as well to improve their per-
formance [12]. Here, the old models are not be discarded
instead they are added to an ensemble pool. The models of
this pool are often weighted and they are used for making
predictions.

B. Handling Concept Drift in Fully Distributed Environment

Addressing machine learning in a fully distributed envi-
ronment is a relatively new but growing area. Some algo-
rithms were introduced in [13], [14], [15], [16], [17], [18],
[19], [20], [5]. However, very few approaches was proposed
to tackle concept drift in a fully distributed environment.

In a recent approach proposed by Ang et al. [15], a drift
detection (reactive behavior) and simultaneously a drift pre-
diction (proactive behavior) mechanisms were introduced.
The basic idea behind the approach is the chunk-based
technique extended with a triggering and an ensemble based
aspects. The evaluations show that the proposed approach is
suitable in many drifting scenarios, but the communication
cost of the method is extremely high. Later a number of
heuristics were proposed to decrease this cost.

A quite different yet general, gossip-based drift handling
technique was introduced in our previous work [6]. This
approach completely ignored the drift detection; instead it
takes advantage of the large number of models found in the
network and maintain a diverse pool of models by managing
the age distribution of the models in the pool. Additionally—
based on the mechanism proposed by GoLF—the models
continuously take random walks in the network, since they
can learn from new training samples. This mechanism is
crucial in those scenarios in which the sample generation
speed per node is low, since in the whole network there
should be enough samples for learning.



Algorithm 1 CDDGOLF
1: c← 0
2: currentModel ← initModel()
3: receivedModels.add(currentModel)
4: loop

5: if receivedModels = ∅ then

6: c← c+ 1
7: if c = 10 then

8: receivedModels.add(currentModel)
9: for all m ∈ receivedModels do

10: p← selectPeer()
11: send m to p
12: receivedModels.remove(m)
13: c← 0
14: wait(∆)

15: procedure ONRECEIVEMODEL(m)
16: m← driftHandler(m) ⊲ Drift Detection
17: currentModel ← updateModel(m)
18: receivedModels.add(currentModel)

V. ALGORITHM

In our proposal, referred as CDDGOLF, we extend the
original GoLF protocol described in Section III-C with
concept drift detection capability. This extension is attached
to the original GoLF through two modifications. First, we
added a method call at the line 16 in Alg. 1. This method,
called DRIFTHANDLER, is responsible for detecting drift.
Second, we extended the models with a bounded size queue,
called history, that stores some performance related data
from the model based on the previously seen examples.

The main idea behind our concept drift detection algo-
rithm is that we can use the samples stored at the nodes for
evaluating the models before we use them for training. Then
using the results got from this evaluation we can properly
characterize the models, i.e. we can decide whether the
concept drifted.

Concretely when a node receives an incoming model it
calls the method DRIFTHANDLER at line 16 in Alg. 1. This
subroutine is presented at Alg. 2. First, it uses the locally
stored sample as a test sample and evaluates the model
(line 7). Then it updates the model history by storing the
error score (value 1 if the predicted and real class label
are different; 0 otherwise) measured on the locally stored
sample (line 8). Applying this technique we can accumulate
a bounded size series of independent error scores in the his-
tory. We have to take two important notes about the history.
First, the error sequence stored in the history is biased in the
sense that the model we measure is continuously changing
while we collect the error scores. But we expect that this
bias will not cause any huge failure for characterizing the
models. Second, we have to use a bounded size queue to
keep the message size constant, since the history is a part
of the model and it is sent through the network. In our case
we used a history size of 100.

Algorithm 2 Procedures
1: procedure INITMODEL

2: m.w← (0, 0, . . .)T

3: m.age← 0
4: m.history ← ∅
5: return m

6: procedure DRIFTHANDLER(m)
7: ŷ ← m.predict(x)
8: m.history.add(ŷ = y ? 0 : 1) ⊲ history update
9: if driftOccurred(m) then

10: m← initModel()
11: return m

12: procedure DRIFTOCCURRED(m)
13: errorRates← smooth(m.history)
14: slope← linearReg(errorRates)
15: if rand([0; 1]) < σc,d(slope) then

16: return true
17: return false

18: procedure UPDATEMODEL(m)
19: m.age← m.age+ 1
20: ŷ ← m.predict(x) ⊲ (x, y) is stored locally
21: m.w← (1 − 1

m.age
)m.w + 1

m.age·λ
(y − ŷ)x

22: return m

23: procedure PREDICT(x)
24: p0 ← 1/(1 + exp(currentModel.wTx))
25: p1 ← 1− p0
26: return p0 > p1 ? 0 : 1

After the history was updated, the DRIFTOCCURRED

method shown in Alg. 2 is called by the DRIFTHANDLER

to decide whether a concept drift occurred (line 9). In this
method, an analysis of the history is performed. Concretely,
first we perform a preprocessing step (line 13) by applying
a sliding window based averaging with window size his-

tory.size()/2 on the raw data. This step is necessary for noise
reduction reasons. Second, we apply linear regression [21]
on the smoothed error rates (line 14) to catch the main slope
of the data. Finally, using the normalized version of this
slope value, we make a decision about the drift (line 15).
That is, we apply a sigmoid function on the slope value
(normalization) and alert concept drift with a probability
proportional to this value. Here, the sigmoid function used is
σc,d(x) =

1

1+e−c(x−d) , with parameters c = 20 and d = 0.5.
We have to note that this decision has a clear geometrical

interpretation. That is, if the slope is negative or 0, the
learning is probably in the convergence or in the already
converged phase, respectively. Otherwise, if the slope is
positive, drift probably occurred.

When drift occurred (i.e. the method DRIFTOCCURRED

returned with true), we reinitialize the model by calling
the INITMODEL method in the method DRIFTHANDLER the
(line 10). Here, we can implement arbitrary drift handling
behavior; however—since we want to investigate the effect



Results on synthetic data set
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Results on real data set
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Figure 1. Adaptive methods avoid the burn in effect.

of CDDGOLF—we ignored this possibility. After the drift
detection procedure, the ONRECEIVEMODEL updates the
previously drift handled model using the locally stored
sample (line 17 in Alg. 1).

A. Online Learner

The CDDGOLF is independent of the applied online
learner. In our evaluation we applied the Logistic Regression
method [21], which is a commonly used online learner
algorithm. This method seeks the parameter vector (w) that
maximizes the logarithm of the conditional data likelihood

l(w) =

n
∑

i=1

lnP (yi|xi, w)−
λ

2
‖w‖2, (1)

where the (xi, yi) is the ith sample in the training set and
the λ is regularization parameter (we used the λ = 0.0001).
Applying this learner, the update rule for the parameter
vector w using the training sample (x, y) can be seen in
Alg. 2 (method UPDATEMODEL started at the line 18). The
prediction algorithm of the learner for a sample x is shown in
Alg. 2 (method PREDICT started at the line 23). The method
INITMODEL (presented in Alg. 2 started at line 1) is used
to reinitialize the model when drift occurred i.e. it clears the
model and its history.

VI. RESULTS

A. Evaluation Settings

We implemented our algorithm in the PeerSim [22]
P2P network simulation environment. We used the GoLF
API [23] for performing evaluations and applied the News-
cast [24], [25] protocol as the peer sampling service (the
current implementation is part of the PeerSim Extras pack-
age).

In the experiments we used a synthetically generated
database and a real world database. The synthetic database
was generated by drawing uniform random points from the
d dimension uniform cube (in our simulations d was set to
5). The labeling of these points is defined by a hyperplane.

Here, the drift was modeled by moving this hyperplane
as a function of time according to some predefined pattern
(moving hyperplane approach) [26]. The exact state of the
moving hyperplane at time moment t is defined by ft(x) =
(1 − αt)fs(x) + αtfd(x), where fs(x) and fd(x) are the
source and the destination hyperplanes, respectively, which
are chosen randomly but kept orthogonal to each other. The
value of 0 ≤ αt ≤ 1 is defined by Eq. 2, where the concept
speed is denoted by v and [.] denotes the round function i.e.
it returns the closest integer to its parameter. This selection
of the drift model results a sudden change between fs(x)
and ft(x) hyperplanes.

αt =

{

[1− (tv − ⌊tv⌋)] if ⌊tv⌋ mod 2 = 1

[tv − ⌊tv⌋] otherwise
(2)

We used the Segmentation [27] database taken from
the UCI repository as well. This is a complex database
describing various images with 19 high-level numeric-valued
attributes. It contains 2310 samples that are classified into 7
distinct classes. We used the train-validation split proposed
by the author of the database.

As a drift model, we applied a class label rotation mech-
anism here that is similar to the one proposed in [28], [29].
This mechanism results a variant of sudden drift.

For both databases we modeled the drift by changing
the labeling over the time. The nodes get random samples
iteratively from that training pool with the correct labeling
i.e. with the label that the sample has in the time moment of
the selection. We applied 0.1 sample/∆ sample generation
speed and 0.001 tick/∆ drift speed, which defines an
extremely hard scenario.

In the simulations we performed evaluations applying
equidistant time step with length ∆. Here, we measured the
average error rate, the so-called 0-1 error, of the models
held by the nodes on an independent validation set which
was labeled corresponding to the time moment of the
measurement. In the results we averaged these elementary
error scores over the nodes.

B. Experimental Evaluations

1) Drift Handling: Algorithms (even the online learners)
without concept drift handling capabilities show burn in

effect, i.e. after a certain time they cannot adapt to the
changing concepts. In Fig. 1, we present this phenomena
on the original GoLF protocol and we also point out that
CDDGOLF avoids the burn in effect. Concretely, here
we demonstrate the prediction error, averaged over the
network, achieved by the original GoLF (baseline), the
ADAGOLF [6], and the CDDGOLF algorithms as a function
of time (divided into three distinct figures: beginning, middle
and end of a long-term run from left to right). It is easy to
see that on both the synthetic (upper figs.) and real world



Evaluations on synthetic database
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Evaluations on real database
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Figure 2. The drift detection and the classification performance of the proposed method on synthetic and real datasets.

database (lower figs.) the drift handling capable algorithms
(ADAGOLF and CDDGOLF) do not show the burn in
effect while the original protocol does. Moreover, we can
see that the performance of the two adaptive algorithms
(ADAGOLF and CDDGOLF) are quite similar; or perhaps
the performance of the ADAGOLF is slightly better. But we
note the fact that the CDDGOLF algorithm has an additional
feature of detecting the drift. This minimal difference in the
performance can be interpreted as the ”cost“ that we pay for
this additional feature.

2) Drift Detection: In Fig. 2, we show the drift detection
capability of CDDGOLF. Here, the rows represent different
databases, while the columns represent different network
sizes. Now we are focusing on the rows. In each figure
we present the averaged (over the nodes) errors (Error), the
percentage of drift detections of models (Detections) and
the cumulative percentage of drift detections (Cum. det.) as
a function of time. In the case of real world database, the
speed of drift detections is extremely fast, i.e. the cumulative
detection curve increases very quickly after drifts; while
in the case of the synthetic database it is much slower. A
possible reason for this could be that the synthetic database
is more easily learnable, which results that the models
are more robust to the change. Based on both databases,
these results indicate that the CDDGOLF detects the drift
accurately and very quickly.

3) Scalability: Let us now turn to the discussion of the
effect of network size changes. In Fig. 2, we present the
achieved results of CDDGOLF algorithm under different
network sized scenarios. These scenarios are grouped in

the columns of the figures, since here we are focusing
on the columns now. With both database types we cannot
see any significant difference in the error rate between the
simulations. This observation implies that the performance
of the CDDGOLF algorithm is independent of the network
size.

VII. CONCLUSION

In this work we proposed a novel algorithm for detecting
concept drifts in a fully distributed network on the top of
our previously proposed learning framework (GoLF). The
approach introduces a cache, called history, for collecting
data about the performance of the models. Later in the
protocol a mechanism decides whether drift occurred.

Through empirical evaluations we investigated the perfor-
mance (both for drift handling and detection capabilities)
and scalability of the method. Based on these, we pointed
out that our current proposal is a suitable choice when we
need the additional feature of drift detection, since the drift
handling performance of our approach is similar to the state-
of-the-art approaches.
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