Scalable Multidimensional Hierarchical Bayesian Modeling on Spark

Robert Ormandi, Hongxia Yang and Quan Lu

Yahoo!
Sunnyvale, CA

2015
Click-Through-Rate (CTR) Prediction

- Estimating the probability of *click* given
 - The *user* who opens
 - a *publisher’s page* with
 - an *advertiser’s ad* in it.

- That is, estimating

\[P(\text{click}|\text{user}, \text{publisher}, \text{advertiser}) \]

- Used for
 - selecting the most promising ad at serving time,
 - calculating the *bid price* in a second-price auction.
Challenges

- **Extreme Sparsity**
 - Huge amount of system level observations, but very few at the individual user, publisher or advertiser level

- **Heavily Imbalanced Click-Non-click Ratio**
 - Huge amount of system level observations, but very few at the individual *user, publisher* or *advertiser* level

- **Highly Interdependent Data**
 - Known hierarchies, e.g. Advertiser → Campaign → Ad; Exchange → Publisher → Page; etc.

- **Sampling Bias, Heavy-Tailed Distributions, Dynamic Environment, etc.**
Our Contributions—Highlight

- Model MadHab:
 - Bayesian which
 - jointly models multiple dimensions (*user*, *publisher* or *advertiser*); and
 - on multiple level of resolution (hierarchical).

- Algorithm MadHab-Spark:
 - efficient (in-memory); and
 - highly scalable (distributed).
The model is Bayesian, multidimensional and hierarchical. Why these?

- Hierarchical: The original data is organized in hierarchies (e.g. Advertiser \rightarrow Campaign \rightarrow Ad). We want to leverage this by “borrowing information” from multiple directions in the hierarchy of the model through the posterior sampling.
- Bayesian: We are interested in the whole and true posterior distribution to support e.g. the bid price calculation.
- Multidimensional: We want a joint model for better handling of the extreme sparsity.
Main Assumptions:

- The clicks follow a Bernoulli distribution:

\[\text{click}_{\text{user}, \text{page}, \text{ad}} \sim \text{Bernoulli}(q_{\text{user}, \text{publisher}, \text{advertiser}}) \]

- The CTR follows a Beta distribution:

\[q_{\text{user}, \text{publisher}, \text{advertiser}} \sim \text{Beta}(c \cdot q_{\text{user}}q_{\text{publisher}}q_{\text{advertiser}}, c(1 - q_{\text{user}}q_{\text{publisher}}q_{\text{advertiser}})) \]

- That is, the CTR distribution is a rank-one tensor decomposition of the three component-wise latent CTRs.

- The latent CTRs are learnt as well with their own model structure.
Madhab—Hierarchical Beta Prior

- Modeling the latent CTR for the \textit{advertiser} and \textit{publisher} components, we assume two \textit{Hierarchical Beta Prior} structures:
 - \textbf{Advertiser Component}:

 \[
 q_{ad} \sim \text{Beta}(c_3 \cdot q_{line}, c_3(1 - q_{line}))

 q_{line} \sim \text{Beta}(c_2 \cdot q_{campaign}, c_2(1 - q_{campaign}))

 q_{campaign} \sim \text{Beta}(c_1 \cdot q_{advertiser}, c_1(1 - q_{advertiser}))

 q_{advertiser} \sim \text{Beta}(c_0 \cdot q_a, c_0(1 - q_a))
 \]
 - \textbf{Where}:
 - \textit{campaign} denotes a campaign of the advertiser \textit{advertiser},
 - \textit{line} a targeting bucket of the campaign \textit{campaign} and
 - \textit{ad} is an ad assigned to the line \textit{line}
 - \textbf{resulting a tree}.
 - \textbf{For the publisher dimension we have a similar structure with the following levels}: exchange, publisher and page
User Component: we have a mixture model on the top of a predefined clustering with a logit link function

\[
\text{logit}(q_{\text{cluster(user)}}) \sim \text{Normal}(x_{\text{cluster(user)}}^T \cdot \beta_{\pi_j}, U_{\pi_j}^2)
\]

Where

- \(\text{cluster(.)}\) denotes the predefined clustering of the users,
- \(\pi_j\) is the latent mixture index variable, and
- \((\beta_j, U_j^2)\) are the parameters of the \(j\)th latent component.
Madhab—The Model

- Multi-resolution (hierarchies),
- Multidimensional
 - User: A mixture of Gaussians with a logit link function
 - Advertiser: Hierarchical Beta Prior
 - Publisher: Hierarchical Beta Prior

- Bayesian model which jointly models the above defined dimensions
- by introducing component-wise latent CTRs along with their model structure.
Fitting the Model

- Applying MCMC-based posterior sampling (recap):

\[
\theta^{(0)} = (\theta_1^{(0)}, \ldots, \theta_K^{(0)}) \leftarrow \text{arbitrary}
\]

\[
\text{foreach } t \rightarrow \infty, i = 1 \ldots K
\]

\[
\theta_i^{(t+1)} \sim P(\theta_i | \theta_1^{(t)}, \ldots, \theta_{i-1}^{(t)}, \theta_{i+1}^{(t)}, \ldots, \theta_K^{(t)}, S)
\]

end

- Where \textit{theta} is a vector containing all the parameters and \textit{S} the set of observations.

- The set of \{\theta^{(l)}, \theta^{(l+d)}, \theta^{(l+2d)}, \ldots\} is a sample from the posterior.

- Please see the paper for the exact posterior updates corresponding to the model parameters.
Algorithms

- Algoritms:
 - Centralized: the naive implementation of the MCMC algorithm on a single machine → not scalable
 - MadHab-MapReduce: a Map-Reduce based approximation of the original MCMC
 - MadHab-Spark: the scalable yet efficient implementation

- Each applies the MCMC method, but in different environments under different scalability assumptions.
Map-Reduce-based Implementation:

- Each mapper responsible for performing posterior sampling $P(\theta_i|X_i)$ on an X_i subset of the data.
- Because of the nature of the distributed framework Map-Reduce, these subset samplers run in parallel.
- We apply one reducer which combines the subset-samples applying a Weierstrass transformation (ensemble).

Advantages: simple, fits well to the widely used Map-Reduce framework.

Drawback: the performance-scalability trade-off of the algorithm heavily depends on the number of mappers applied.
MadHab-Spark—The Proposed Algorithm

- **Spark** distributed computation model:
 - Distributed
 - In-memory
 - Highly parallel

- **GraphX library**: A lightweight library on the top of Spark making possible to store and operate on large distributed graphs
MadHab-Spark—The Proposed Algorithm

Spark/GraphX-based Implementation:

- Building an intermediate graph representation of the original model, called *blanket graph*
- Nodes are the Markov blankets of the original Bayesian network
- Directed edges between the blanket nodes iff there is an edge between the corresponding in the Bayesian network of the model
- Individual MCMC update: in-parallel as a graph node operation
Observations regarding the Spark-based implementation:

- The edge definition describes the *computational dependencies*.
- The MCMC update can be run as *node operations* in the blanket graph.
- The algorithm runs the posterior update algorithms on each Markov blanket as a distributed graph node program and spread the updated values along the blanket edges within *Gather-Apply-Scatter (GAS)* cycles iteratively.
- One can apply different *scheduler* for the GAS program resulting different consistency model between the nodes.
Implementing the model as a:
- highly scalable,
- fast (=in-memory because of the MCMC) and efficient,
- general Bayesian modeling framework which
- fits into the current system/data architecture.
Experimental Evaluation

▶ Algorithms:
1. Regularized Generalized Linear Model using Lasso Elastic Net with calibration through isotonic regression;
2. MadHab-MapReduce without calibration;
3. MadHab-Spark without calibration.

▶ Dataset:
- From running campaign with life cycle spanning from 01/19/2015 till 03/31/2015
- Campaign has multiple lines with each line consisting of several ads
- Each line has its specific targeting criteria with allocated budgets
Score Calibration

- As we showed applying some theoretical reasoning the model MadHab does not require score calibration
- However the non-MadHab-based approaches estimates the probabilities far from the true distributions
Thank you for your attention!