Shape description using skeleton-like features

OMÁNYEGYETEM *ng and Computer Graphics*

CIENT

Kálmán Palágyi

Department of Image Processing and Computer Graphics University of Szeged, Hungary

shapes

Jomputer Graphics

YEGY

ERSITAS SI

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

shapes

VERSITAS SCIENTIARUM SZEGEDI FUDOMÁNYEGYETEM SZEGEDI TUDOMÁNYEGYETEM ebartment of Image Processing and Computer Graphics

Department

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

shapes

SZEGEDI TUDOMÁNYEGYETEM

VERSITAS SCIENTIAR

Department

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

The generic model of a modular machine vision system

Shape representation techniques

- to apply a **transform** in order to represent an object in terms of the transform coefficients,
- to describe the **boundary** that surrounds an object,
 - to describe the **region** that is occupied by an object.

Skeleton

Skeleton: region-based shape feature

shapes

VERSITAS SCIENTIARUM SZEGEDI FUDOMÁNYEGYETEM SZEGEDI TUDOMÁNYEGYETEM ebartment of Image Processing and Computer Graphics

KVepartment o

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

Definitions of the continuous skeleton

- result of the Medial Axis Transform: object points having at least two closest boundary points
- praire-fire analogy: the boundary is set on fire and skeleton is formed by the loci where the fire fronts meet and quench each other
 - the locus of the centers of all the maximal inscribed hyper-spheres

Computer Graphics

rocessing and

Department

ERSITAS SCIENT

OMÁNYEGYEI

Advantageous properties of the continuous skeleton

represents

- the general form of an object,
- the topological structure of an object, and
- local object symmetries.
- invariant to
 - translation,
 - rotation, and
 - (uniform) scale change.
- simplified and thin.

shapes

VERSITAS SCIENTIARUM SZEGEDI TUDOMÁNYEGYETEM SZEGEDI TUDOMÁNYEGYETEM

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

skeleton-like features in 2D:

• centerline

OMÁNYEGYETEM g and Computer Graphics

'ERSITAS S(

topological kernel

skeleton-like features in 3D:

- medial surface
- centerline
- topological kernel

"If you would know what the Lord God thinks of money, you have only to look at those to whom he gives it."

original

"If you would know what the Lord God thinks of money, you have only to look at those to whom he gives it."

centerline

Topological kernel in 2D

original objects with/without cavities

topological kernels

original object

medial surface

centerline

Centerlines and skeletal graphs

shapes

VERSITAS SCIENTIARUM SZEGEDI TUDOMÁNYEGYETEM SZEGEDI TUDOMÁNYEGYETEM

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

shapes

VERSITAS SCIENTIARUM SZEGEDI FUDOMÁNYEGYETEM SZEGEDI TUDOMÁNYEGYETEM ebartment of Image Processing and Computer Graphics

KVebartment o

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

Distance transform (DT)

<u>Input:</u>

Binary array A containing feature elements (1's) and non-feature elements (0's).

<u>Output:</u>

Distance map *B*: non-binary array containing the distance to the closest feature element.

Distance transform

distance map

discrete distances derived from adjacency relations

4 3 2 1 2 3 4 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 0 1 2 2 1 0 1 0 1 1 2 1 0 1 1 0 1 1 0 1 2 1 0 1 1 0 1 2 2 1 0 1 0 1 2 3 2 1 0 1 2 3 4 3 2													
3 2 1 0 1 2 3 2 1 0 1 0 1 2 2 1 0 1 0 1 1 2 1 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 2 1 0 1 1 0 1 2 1 0 1 1 0 1 2 3 2 1 0 1 2 3 4 3 2		4	3	2	1	2	3	4					
2 1 0 1 0 1 2 2 1 0 1 1 0 1 1 1 2 1 0 1 1 0 1 1 0 1 1 0 1 2 2 1 0 1 1 0 1 1 0 1 2 2 1 0 1 1 0 1 1 0 1 2 3 2 1 0 <td< th=""><th></th><th>3</th><th>2</th><th>1</th><th>0</th><th>1</th><th>2</th><th>3</th><th></th><th></th><th></th><th></th><th></th></td<>		3	2	1	0	1	2	3					
2 1 0 1 1 0 1 1 0 1 1 0 1 2 2 1 0 1 1 0 1 1 0 1 2 2 1 0 1 1 0 1 1 0 1 2 3 2 1 0 1 1 0 1 0 1 2 3 4 3 2 1 DT using Manhattan, city-block, or 4 distance		2	1	0	1	0	1	2		1			
1 0 1 2 2 1 0 1 0 1 2 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3 4 3 2 1		2	1	0	1	1	0	1	1	0	1		
1 0 1 2 3 2 1 0 1 2 3 4 3 2 0 1 2 3 4 3 2		1	0	1	2	2	1	0		1			
0 1 2 3 4 3 2 city-block, or 4 distance	<u>×</u>	1	0	1	2	3	2	1	DTı	usina	Man	hatta	n
	8	0	1	2	3	4	3	2	city-	block	k, or 4	4 dista	ance

2	2	1	1	1	2	2	
2	1	1	0	1	1	2	
2	1	0	1	0	1	1	
1	1	0	1	1	0	1	
1	0	1	1	1	1	0	
1	0	1	2	2	1	1	
0	1	1	2	2	2	2	0

DT using chess-board or 8 distance

	-		-	-	-	-	-	-	
4	3	2	3	2	3	2	3	4	
3	2	3	2	3	2	3	2	3	
2	3	4	1	2	1	4	3	2	
3	2	1	2	3	2	1	2	3	
2	3	2	3	0	3	2	3	2	
3	2	1	2	3	2	1	2	3	
2	3	4	1	2	1	4	3	2	
3	2	3	2	3	2	3	2	3	
4	3	2	3	2	3	2	3	4	

VERSITAS SCIENTIARUM SZEGEDIENSIS SZEGEDI TUDOMÁNYEGYETEM Computer Graphics

DT using knight distance

knight disk with radius 2

Linear time distance mapping

Input:

Binary array A=[a(i,j)] of size n1xn2 containing feature elements (1's) and non-feature elements (0's)

Output:

Distance map B = [b(i,j)]is a non-binary array containing the distance to the closest feature element

G. Borgefors (1984)

Linear time distance mapping

chamfer masks

forward scan

 $\begin{array}{c|c} & & & \\ & & & \\ \hline & & & & \\ d_2 & & & d_1 \\ \hline & & & & d_2 \end{array}$

backward scan

best choice: d1=3, d2=4

Linear time distance mapping

initialization ("." $\rightarrow \infty$)

Linear time distance mapping

•	•	•	-
-	-	0	3
-	4	3	4
8	7	6	7
11	0	3	6
4	3	4	7

forward scan
Linear time distance mapping

	-	-	•
	-	0	3
	4	3	4
8	7	6	7
11	0	3	6
4	3	4	7
f	orwar	d scai	

7	4	3	4
6	3	0	3
7	4	3	4
4	3	4	7
3	0	3	6
4	3	4	7

backward scan

Linear time distance mapping

7	4	3	4
6	3		3
7	4	3	4
4	3	4	7
3	0	3	6
4	3	4	7

distance map

Distance-based skeletonization

- Calculate the distance map from the background (i.e., zeroes in the input binary image form the set of feature points)
- 2. Detect ridges (i.e., local maxima)

Distance-based skeletonization

Distance-based skeletonization

detected ridges

DT-based applications

- chamfer matching
- watershed segmentation
- wall thickness measurement

Matching is a basic approach to segmentation that can be used to locate known objects in an image.

pattern image

locations found

edges: pixels where brightness changes abruptly

original image

binary edge map

1. perform edge detection

DOMÁNYEGYETEM ing and Computer Graphics

cessing and

'ERSITAS SCIENTI,

- 2. generate a distance map from edges (as feature pixels)
- 3. match the pattern (given by a contour), where the matching criterion: sum of elements in the distance map covered by the pattern.

	0	0	0	0	0	0	0	0	
	0	0	0	0	1	1	1	0	
	0	0	0	0	1	0	1	0	
	0	0	0	0	1	0	1	0	
	0	0	0	0	1	1	1	0	
	0	0	0	0	0	0	0	0	
<	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

VERSITAS SCIENTIARUM STEGEDI TUDOMÁNYEGYETEM

Department of

binary edge map

5	4	3	2	1	1	1	2
4	3	2	1	0	0	0	1
4	3	2	1	0	1	0	1
4	3	2	1	0	1	0	1
4	3	2	1	0	0	0	1
5	4	3	2	1	1	1	2
6	5	4	3	2	2	2	3
7	6	5	4	3	3	3	4

distance map

5	4	3	2	1	1	1	2
4	3	2	1	0	0	0	1
4	3	2	1	0	1	0	1
4	3	2	1	0	1	0	1
4	3	2	1	0	0	0	1
5	4	3	2	1	1	1	2
6	5	4	3	2	2	2	3
7	6	5	4	3	3	3	4

VERSITAS SCIENTIAR IN SZEGEDI FUDOMÁNYEGYETEM

matching criterion: sum of elements covered by the pattern

distance map

									_
	5	4	3	2	1	1	1	2	Γ
	4	3	2	1	0	0	0	1	
	4	3	2	1	0	1	0	1	
	4	3	2	1	0	1	0	1	
	4	3	2	1	0	0	0	1	
	5	4	3	2	1	1	1	2	
X	6	5	4	3	2	2	2	3	
and the second	7	6	5	4	3	3	3	4	

VERSITAS SCIENTIAR IN STERED FUEDOMÁNYEGYETEM

5	4	3	2	1	1	1	2
4	3	2	1	0	0	0	1
4	3	2	1	0	1	0	1
4	3	2	1	0	1	0	1
4	3	2	1	0	0	0	1
5	4	3	2	1	1	1	2
6	5	4	3	2	2	2	3

measure: 13

	5	4	3	2	1	1	1	2
	4	3	2	1	0	0	0	1
	4	3	2	1	0	1	0	1
	4	3	2	1	0	1	0	1
	4	3	2	1	0	0	0	1
	5	4	3	2	1	1	1	2
	6	5	4	3	2	2	2	3
THEFT	7	6	5	4	3	3	3	4

VERSITAS SCIENTIARUM STEGEDI TUDOMÁNYEGYETEM

5	4	3	2	1	1	1	2
4	3	2	1	0	0	0	1
4	3	2	1	0	1	0	1
4	3	2	1	0	1	0	1
4	3	2	1	0	0	0	1
5	4	3	2	1	1	1	2
6	5	4	3	2	2	2	3
7	6	5	1	3	3	3	Δ

measure: 0

Watershed segmentation

gray-scale image

(topographic representation)

Watershed segmentation

minima - markers

VERSITAS SCIENTIARUM SZEGEDI FUDOMÁNYEGYETEM

Department o

Starting from the minima the water will progressively flood the catchment basins. Dams are raised at the places where the waters coming from two different minima would merge. The whole set of dams corresponds to the watersheds.

Watershed segmentation

Wall thickness measurement

raw image (end of a rubber tube)

segmented tube end

Wall thickness measurement

inner contour

distance map from the outer contour

Wall thickness measurement

elements of the distance map at the points of the inner contour

Syllabus

shapes

VERSITAS SCIENTIARUM SZEGEDI FUDOMÁNYEGYETEM SZEGEDI TUDOMÁNYEGYETEM ebartment of Image Processing and Computer Graphics

Department

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

Voronoi diagram

Computer Graphics

Input:

Set of points (generating points)

Output:

the partition of the space into cells so that each cell contains exactly one generating point and the locus of all points which are closer to this generating point than to others.

Voronoi diagram

VIVERSITAS SCIENTIAR IN SZECEDIENSIS SZECEDI TUDOMÁNYEGYETEM Computer Graphics

Voronoi diagram

VERSITAS SCIENTIA

3D Voronoi diagram of 20 generating points

If the density of boundary points goes to infinity, then the corresponding Voronoi diagram converges to the skeleton.

Tagliasacchi et al., 2016

Tagliasacchi et al., 2016

Voronoi skeleton

raw Voronoi skeleton

M. Styner (UNC, Chapel Hill)

Applications of Voronoi diagrams

- network analysis
- computer graphics
- medical diagnostics
- astrophysics
- hydrology,
- robotics

EDI TUDOMÁNYEGYETEM *ye Processing and Computer Graphics*

'ERSITAS SCIENTI

• computational fluid dynamics

Convex hull

Delaunay triangulation

Rule: no generating point is inside the circumcircle of any triangle

Delaunay triangulation

Voronoi ↔ Delaunay

generating points Voronoi diagram Delaunay triangulation

Voronoi ↔ Delaunay

generating points Voronoi diagram Delaunay **tessellation**

Voronoi ↔ Delaunay

one-to-one correspondence

Delaunay in surface modeling

Delaunay in face morphing

Frame 1

Frame 25

Frame 9

Frame 17

Frame 41

Clint Eastwood (destination)

Frame 33 https://inst.eecs.berkeley.edu/~cs194-26/fa17/upload/files/proj4/cs194-26-abw/

Delaunay in face morphing

https://inst.eecs.berkeley.edu/~cs194-26/fa17/upload/files/proj4/cs194-26-abw/

Syllabus

shapes

VERSITAS SCIENTIARUM SZEGEDI FUDOMÁNYEGYETEM SZEGEDI TUDOMÁNYEGYETEM ebartment of Image Processing and Computer Graphics

KVepartment o

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

Thinning

Thinning

modelling fire-front propagation

Thinning algorithms

repeat

remove "*deletable*" points from the actual binary image until no points are deleted

one iteration step

degrees of freedom:

- which points are regarded as "*deletable*"?
- how to organize one iteration step?

A 2D parallel thinning algorithm

repeat

delete all points simultaneously that are matched at least one removing pattern, but are not matched by any restoring pattern until no points are deleted

A. Manzanera et al. (1999)

Manzanera's fully-parallel 2D thinning algorithm

A. Manzanera et al. (1999)

A 2D parallel thinning algorithm

Thinning

 allows extraction of all kinds of skeleton-like shape features

UDOMÁNYEGYETEM ssing and Computer Graphics

ERSITAS S(

- makes easy implementation possible
- takes the least computational costs
- can be executed in parallel

Syllabus

shapes

VERSITAS SCIENTIARUM SZEGEDI TUDOMÁNYEGYETEM SZEGEDI TUDOMÁNYEGYETEM

- shape representation
- continuous skeleton
- skeleton-like shape features
- skeletonization techniques
 - distance-based
 - Voronoi-based
 - thinning
- applications of skeletonization

Applications of Skeletonization

- animation
- chordal surface generation
- computer graphics
- coding
- design and engineering applications
- fingerprint analysis
- generating mesh sizing functions
- measuring shape similarity
- motion analysis
- multiscale shape analysis
- object recognition and classification
- off-line character recognition
 - part-patch segmentation

- object decomposition
- porous filter permeability
- · analysis of porous media
- morphology
- raster-to-vector conversion
- image registration
- segmentation
- shape deformation and morphing
- shape matching and retrieval
- shape modeling
- terrain modeling
- tracing and virtual navigation
- ...

Character recognition

Signature verification

DOMÁNYEGYETEM ing and Computer Graphics

age Processing and

Department

VERSITAS SCIENTIA

L.C. Bastos et al.

Fingerprint verification

Fingerprint verification

Palmprint verification

Shape matching and retrieval

skeletal graph construction

graph matching

Sundar et al., 2003

Shape deformation

deformed skeletons and objects

Yan et al., 2008

Medical applications in 3D

SZEGEDI TUDOMÁNYEGYETEM of Image Processing and Computer Graphics

Department

'ERSITAS SCIENTIA

Tubular structures (e.g., blood vessels, airways) are frequently found in living organs. They can be represented by their centerlines (extracted by 3D curve-thinning algorithms).

- assessment of laryngotracheal stenosis
- unravelling the colon

UDOMÁNYEGYETEM ssing and Computer Graphics

rocessing and

Assessment of laryngotracheal stenosis

Virtual colonoscopy

Cooperation with The University of Iowa

Quantitative analysis of pulmonary airway trees

Quantitative analysis of pulmonary airway trees

Quantitative analysis of pulmonary airway trees

branch partitioning

Quantitative analysis of pulmonary airway trees

Quantitative analysis of pulmonary airway trees

formal tree (in XML)

Quantitative analysis of pulmonary airway trees

Quantitative indices for tree branches

- <u>length</u> (Euclidean distance between the parent and the child branch points)
- volume (volume of all voxels belonging to the branch)
- <u>surface area</u> (surface area of all boundary voxels belonging to the branch)
- <u>average diameter</u> (assuming cylindric segments)

Quantitative analysis of pulmonary airway trees

Quantitative analysis of pulmonary airway trees

Quantitative analysis of pulmonary airway trees

functional residual capacity (FRC) total lung capacity (TLC)

Cooperation with Harvard University

Synapse-aware skeleton generation for neural circuits

Harvard John A. Paulson School of Engineering and Applied Sciences

https://vcg.seas.harvard.edu/

Synapse-aware skeleton generation

Suggested Readings

THEORY AND PRACTICE

SECOND EDITION

Luciano da Fontoura Costa Roberto Marcondes Cesar, Jr. Luciano da Fona Costa and Roberto Marcond Cesar, Jr.: Shape Classification and Analysis -Theory and Practice, Second Edition *CRC Press, 2009.*

Suggested Readings

Mathematics, Algorithms and Applications

2 Springer

Kaleem Siddiqi and Stephen Pizer (Eds.): Medial Representations -Mathematics, Algorithms and Applications Springer, 2008.

Suggested Readings

Skeletonization

Theory, Methods, and Applications

Punam K. Saha • Gunilla Borgefors • Gabriella Sanniti di Baja

Punam K. Saha, Gunilla Borgefors, and Gabriella Sanniti di Baja (Eds.): **Skeletonization: Theory, methods and applications,** *Academic Press, 2017.*

Szeged

Szeged has been the venue of the SSIP 14 times.